mirror of
https://gitlab.gnome.org/GNOME/glib.git
synced 2025-01-01 02:16:14 +01:00
86b7d7cc99
...So that it will compile on non-C99 compilers. The changes are mainly moving the variable declarations to the start of the resecptive blocks. Also, replace the use of buflen in chd.c as it might not be defined for all platforms, instead using packed_cr_size as it seems to represent the value that is to be printed/displayed by the debugging output. https://bugzilla.gnome.org/show_bug.cgi?id=681820
639 lines
20 KiB
C
639 lines
20 KiB
C
#include "graph.h"
|
|
#include "bmz.h"
|
|
#include "cmph_structs.h"
|
|
#include "bmz_structs.h"
|
|
#include "hash.h"
|
|
#include "vqueue.h"
|
|
#include "bitbool.h"
|
|
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <assert.h>
|
|
#include <string.h>
|
|
#include <errno.h>
|
|
|
|
//#define DEBUG
|
|
#include "debug.h"
|
|
|
|
static int bmz_gen_edges(cmph_config_t *mph);
|
|
static cmph_uint8 bmz_traverse_critical_nodes(bmz_config_data_t *bmz, cmph_uint32 v, cmph_uint32 * biggest_g_value, cmph_uint32 * biggest_edge_value, cmph_uint8 * used_edges, cmph_uint8 * visited);
|
|
static cmph_uint8 bmz_traverse_critical_nodes_heuristic(bmz_config_data_t *bmz, cmph_uint32 v, cmph_uint32 * biggest_g_value, cmph_uint32 * biggest_edge_value, cmph_uint8 * used_edges, cmph_uint8 * visited);
|
|
static void bmz_traverse_non_critical_nodes(bmz_config_data_t *bmz, cmph_uint8 * used_edges, cmph_uint8 * visited);
|
|
|
|
bmz_config_data_t *bmz_config_new(void)
|
|
{
|
|
bmz_config_data_t *bmz = NULL;
|
|
bmz = (bmz_config_data_t *)malloc(sizeof(bmz_config_data_t));
|
|
assert(bmz);
|
|
memset(bmz, 0, sizeof(bmz_config_data_t));
|
|
bmz->hashfuncs[0] = CMPH_HASH_JENKINS;
|
|
bmz->hashfuncs[1] = CMPH_HASH_JENKINS;
|
|
bmz->g = NULL;
|
|
bmz->graph = NULL;
|
|
bmz->hashes = NULL;
|
|
return bmz;
|
|
}
|
|
|
|
void bmz_config_destroy(cmph_config_t *mph)
|
|
{
|
|
bmz_config_data_t *data = (bmz_config_data_t *)mph->data;
|
|
DEBUGP("Destroying algorithm dependent data\n");
|
|
free(data);
|
|
}
|
|
|
|
void bmz_config_set_hashfuncs(cmph_config_t *mph, CMPH_HASH *hashfuncs)
|
|
{
|
|
bmz_config_data_t *bmz = (bmz_config_data_t *)mph->data;
|
|
CMPH_HASH *hashptr = hashfuncs;
|
|
cmph_uint32 i = 0;
|
|
while(*hashptr != CMPH_HASH_COUNT)
|
|
{
|
|
if (i >= 2) break; //bmz only uses two hash functions
|
|
bmz->hashfuncs[i] = *hashptr;
|
|
++i, ++hashptr;
|
|
}
|
|
}
|
|
|
|
cmph_t *bmz_new(cmph_config_t *mph, double c)
|
|
{
|
|
cmph_t *mphf = NULL;
|
|
bmz_data_t *bmzf = NULL;
|
|
cmph_uint32 i;
|
|
cmph_uint32 iterations;
|
|
cmph_uint32 iterations_map = 20;
|
|
cmph_uint8 *used_edges = NULL;
|
|
cmph_uint8 restart_mapping = 0;
|
|
cmph_uint8 * visited = NULL;
|
|
|
|
bmz_config_data_t *bmz = (bmz_config_data_t *)mph->data;
|
|
if (c == 0) c = 1.15; // validating restrictions over parameter c.
|
|
DEBUGP("c: %f\n", c);
|
|
bmz->m = mph->key_source->nkeys;
|
|
bmz->n = (cmph_uint32)ceil(c * mph->key_source->nkeys);
|
|
DEBUGP("m (edges): %u n (vertices): %u c: %f\n", bmz->m, bmz->n, c);
|
|
bmz->graph = graph_new(bmz->n, bmz->m);
|
|
DEBUGP("Created graph\n");
|
|
|
|
bmz->hashes = (hash_state_t **)malloc(sizeof(hash_state_t *)*3);
|
|
for(i = 0; i < 3; ++i) bmz->hashes[i] = NULL;
|
|
|
|
do
|
|
{
|
|
// Mapping step
|
|
cmph_uint32 biggest_g_value = 0;
|
|
cmph_uint32 biggest_edge_value = 1;
|
|
iterations = 100;
|
|
if (mph->verbosity)
|
|
{
|
|
fprintf(stderr, "Entering mapping step for mph creation of %u keys with graph sized %u\n", bmz->m, bmz->n);
|
|
}
|
|
while(1)
|
|
{
|
|
int ok;
|
|
DEBUGP("hash function 1\n");
|
|
bmz->hashes[0] = hash_state_new(bmz->hashfuncs[0], bmz->n);
|
|
DEBUGP("hash function 2\n");
|
|
bmz->hashes[1] = hash_state_new(bmz->hashfuncs[1], bmz->n);
|
|
DEBUGP("Generating edges\n");
|
|
ok = bmz_gen_edges(mph);
|
|
if (!ok)
|
|
{
|
|
--iterations;
|
|
hash_state_destroy(bmz->hashes[0]);
|
|
bmz->hashes[0] = NULL;
|
|
hash_state_destroy(bmz->hashes[1]);
|
|
bmz->hashes[1] = NULL;
|
|
DEBUGP("%u iterations remaining\n", iterations);
|
|
if (mph->verbosity)
|
|
{
|
|
fprintf(stderr, "simple graph creation failure - %u iterations remaining\n", iterations);
|
|
}
|
|
if (iterations == 0) break;
|
|
}
|
|
else break;
|
|
}
|
|
if (iterations == 0)
|
|
{
|
|
graph_destroy(bmz->graph);
|
|
return NULL;
|
|
}
|
|
// Ordering step
|
|
if (mph->verbosity)
|
|
{
|
|
fprintf(stderr, "Starting ordering step\n");
|
|
}
|
|
graph_obtain_critical_nodes(bmz->graph);
|
|
|
|
// Searching step
|
|
if (mph->verbosity)
|
|
{
|
|
fprintf(stderr, "Starting Searching step.\n");
|
|
fprintf(stderr, "\tTraversing critical vertices.\n");
|
|
}
|
|
DEBUGP("Searching step\n");
|
|
visited = (cmph_uint8 *)malloc((size_t)bmz->n/8 + 1);
|
|
memset(visited, 0, (size_t)bmz->n/8 + 1);
|
|
used_edges = (cmph_uint8 *)malloc((size_t)bmz->m/8 + 1);
|
|
memset(used_edges, 0, (size_t)bmz->m/8 + 1);
|
|
free(bmz->g);
|
|
bmz->g = (cmph_uint32 *)calloc((size_t)bmz->n, sizeof(cmph_uint32));
|
|
assert(bmz->g);
|
|
for (i = 0; i < bmz->n; ++i) // critical nodes
|
|
{
|
|
if (graph_node_is_critical(bmz->graph, i) && (!GETBIT(visited,i)))
|
|
{
|
|
if(c > 1.14) restart_mapping = bmz_traverse_critical_nodes(bmz, i, &biggest_g_value, &biggest_edge_value, used_edges, visited);
|
|
else restart_mapping = bmz_traverse_critical_nodes_heuristic(bmz, i, &biggest_g_value, &biggest_edge_value, used_edges, visited);
|
|
if(restart_mapping) break;
|
|
}
|
|
}
|
|
if(!restart_mapping)
|
|
{
|
|
if (mph->verbosity)
|
|
{
|
|
fprintf(stderr, "\tTraversing non critical vertices.\n");
|
|
}
|
|
bmz_traverse_non_critical_nodes(bmz, used_edges, visited); // non_critical_nodes
|
|
}
|
|
else
|
|
{
|
|
iterations_map--;
|
|
if (mph->verbosity) fprintf(stderr, "Restarting mapping step. %u iterations remaining.\n", iterations_map);
|
|
}
|
|
free(used_edges);
|
|
free(visited);
|
|
}while(restart_mapping && iterations_map > 0);
|
|
graph_destroy(bmz->graph);
|
|
bmz->graph = NULL;
|
|
if (iterations_map == 0)
|
|
{
|
|
return NULL;
|
|
}
|
|
mphf = (cmph_t *)malloc(sizeof(cmph_t));
|
|
mphf->algo = mph->algo;
|
|
bmzf = (bmz_data_t *)malloc(sizeof(bmz_data_t));
|
|
bmzf->g = bmz->g;
|
|
bmz->g = NULL; //transfer memory ownership
|
|
bmzf->hashes = bmz->hashes;
|
|
bmz->hashes = NULL; //transfer memory ownership
|
|
bmzf->n = bmz->n;
|
|
bmzf->m = bmz->m;
|
|
mphf->data = bmzf;
|
|
mphf->size = bmz->m;
|
|
|
|
DEBUGP("Successfully generated minimal perfect hash\n");
|
|
if (mph->verbosity)
|
|
{
|
|
fprintf(stderr, "Successfully generated minimal perfect hash function\n");
|
|
}
|
|
return mphf;
|
|
}
|
|
|
|
static cmph_uint8 bmz_traverse_critical_nodes(bmz_config_data_t *bmz, cmph_uint32 v, cmph_uint32 * biggest_g_value, cmph_uint32 * biggest_edge_value, cmph_uint8 * used_edges, cmph_uint8 * visited)
|
|
{
|
|
cmph_uint32 next_g;
|
|
cmph_uint32 u; /* Auxiliary vertex */
|
|
cmph_uint32 lav; /* lookahead vertex */
|
|
cmph_uint8 collision;
|
|
vqueue_t * q = vqueue_new((cmph_uint32)(graph_ncritical_nodes(bmz->graph)) + 1);
|
|
graph_iterator_t it, it1;
|
|
|
|
DEBUGP("Labelling critical vertices\n");
|
|
bmz->g[v] = (cmph_uint32)ceil ((double)(*biggest_edge_value)/2) - 1;
|
|
SETBIT(visited, v);
|
|
next_g = (cmph_uint32)floor((double)(*biggest_edge_value/2)); /* next_g is incremented in the do..while statement*/
|
|
vqueue_insert(q, v);
|
|
while(!vqueue_is_empty(q))
|
|
{
|
|
v = vqueue_remove(q);
|
|
it = graph_neighbors_it(bmz->graph, v);
|
|
while ((u = graph_next_neighbor(bmz->graph, &it)) != GRAPH_NO_NEIGHBOR)
|
|
{
|
|
if (graph_node_is_critical(bmz->graph, u) && (!GETBIT(visited,u)))
|
|
{
|
|
collision = 1;
|
|
while(collision) // lookahead to resolve collisions
|
|
{
|
|
next_g = *biggest_g_value + 1;
|
|
it1 = graph_neighbors_it(bmz->graph, u);
|
|
collision = 0;
|
|
while((lav = graph_next_neighbor(bmz->graph, &it1)) != GRAPH_NO_NEIGHBOR)
|
|
{
|
|
if (graph_node_is_critical(bmz->graph, lav) && GETBIT(visited,lav))
|
|
{
|
|
if(next_g + bmz->g[lav] >= bmz->m)
|
|
{
|
|
vqueue_destroy(q);
|
|
return 1; // restart mapping step.
|
|
}
|
|
if (GETBIT(used_edges, (next_g + bmz->g[lav])))
|
|
{
|
|
collision = 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (next_g > *biggest_g_value) *biggest_g_value = next_g;
|
|
}
|
|
// Marking used edges...
|
|
it1 = graph_neighbors_it(bmz->graph, u);
|
|
while((lav = graph_next_neighbor(bmz->graph, &it1)) != GRAPH_NO_NEIGHBOR)
|
|
{
|
|
if (graph_node_is_critical(bmz->graph, lav) && GETBIT(visited, lav))
|
|
{
|
|
SETBIT(used_edges,(next_g + bmz->g[lav]));
|
|
if(next_g + bmz->g[lav] > *biggest_edge_value) *biggest_edge_value = next_g + bmz->g[lav];
|
|
}
|
|
}
|
|
bmz->g[u] = next_g; // Labelling vertex u.
|
|
SETBIT(visited,u);
|
|
vqueue_insert(q, u);
|
|
}
|
|
}
|
|
|
|
}
|
|
vqueue_destroy(q);
|
|
return 0;
|
|
}
|
|
|
|
static cmph_uint8 bmz_traverse_critical_nodes_heuristic(bmz_config_data_t *bmz, cmph_uint32 v, cmph_uint32 * biggest_g_value, cmph_uint32 * biggest_edge_value, cmph_uint8 * used_edges, cmph_uint8 * visited)
|
|
{
|
|
cmph_uint32 next_g;
|
|
cmph_uint32 u; /* Auxiliary vertex */
|
|
cmph_uint32 lav; /* lookahead vertex */
|
|
cmph_uint8 collision;
|
|
cmph_uint32 * unused_g_values = NULL;
|
|
cmph_uint32 unused_g_values_capacity = 0;
|
|
cmph_uint32 nunused_g_values = 0;
|
|
vqueue_t * q = vqueue_new((cmph_uint32)(0.5*graph_ncritical_nodes(bmz->graph))+1);
|
|
graph_iterator_t it, it1;
|
|
|
|
DEBUGP("Labelling critical vertices\n");
|
|
bmz->g[v] = (cmph_uint32)ceil ((double)(*biggest_edge_value)/2) - 1;
|
|
SETBIT(visited, v);
|
|
next_g = (cmph_uint32)floor((double)(*biggest_edge_value/2)); /* next_g is incremented in the do..while statement*/
|
|
vqueue_insert(q, v);
|
|
while(!vqueue_is_empty(q))
|
|
{
|
|
v = vqueue_remove(q);
|
|
it = graph_neighbors_it(bmz->graph, v);
|
|
while ((u = graph_next_neighbor(bmz->graph, &it)) != GRAPH_NO_NEIGHBOR)
|
|
{
|
|
if (graph_node_is_critical(bmz->graph, u) && (!GETBIT(visited,u)))
|
|
{
|
|
cmph_uint32 next_g_index = 0;
|
|
collision = 1;
|
|
while(collision) // lookahead to resolve collisions
|
|
{
|
|
if (next_g_index < nunused_g_values)
|
|
{
|
|
next_g = unused_g_values[next_g_index++];
|
|
}
|
|
else
|
|
{
|
|
next_g = *biggest_g_value + 1;
|
|
next_g_index = UINT_MAX;
|
|
}
|
|
it1 = graph_neighbors_it(bmz->graph, u);
|
|
collision = 0;
|
|
while((lav = graph_next_neighbor(bmz->graph, &it1)) != GRAPH_NO_NEIGHBOR)
|
|
{
|
|
if (graph_node_is_critical(bmz->graph, lav) && GETBIT(visited,lav))
|
|
{
|
|
if(next_g + bmz->g[lav] >= bmz->m)
|
|
{
|
|
vqueue_destroy(q);
|
|
free(unused_g_values);
|
|
return 1; // restart mapping step.
|
|
}
|
|
if (GETBIT(used_edges, (next_g + bmz->g[lav])))
|
|
{
|
|
collision = 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if(collision && (next_g > *biggest_g_value)) // saving the current g value stored in next_g.
|
|
{
|
|
if(nunused_g_values == unused_g_values_capacity)
|
|
{
|
|
unused_g_values = (cmph_uint32 *)realloc(unused_g_values, (unused_g_values_capacity + BUFSIZ)*sizeof(cmph_uint32));
|
|
unused_g_values_capacity += BUFSIZ;
|
|
}
|
|
unused_g_values[nunused_g_values++] = next_g;
|
|
|
|
}
|
|
if (next_g > *biggest_g_value) *biggest_g_value = next_g;
|
|
}
|
|
next_g_index--;
|
|
if (next_g_index < nunused_g_values) unused_g_values[next_g_index] = unused_g_values[--nunused_g_values];
|
|
|
|
// Marking used edges...
|
|
it1 = graph_neighbors_it(bmz->graph, u);
|
|
while((lav = graph_next_neighbor(bmz->graph, &it1)) != GRAPH_NO_NEIGHBOR)
|
|
{
|
|
if (graph_node_is_critical(bmz->graph, lav) && GETBIT(visited, lav))
|
|
{
|
|
SETBIT(used_edges,(next_g + bmz->g[lav]));
|
|
if(next_g + bmz->g[lav] > *biggest_edge_value) *biggest_edge_value = next_g + bmz->g[lav];
|
|
}
|
|
}
|
|
bmz->g[u] = next_g; // Labelling vertex u.
|
|
SETBIT(visited, u);
|
|
vqueue_insert(q, u);
|
|
}
|
|
}
|
|
|
|
}
|
|
vqueue_destroy(q);
|
|
free(unused_g_values);
|
|
return 0;
|
|
}
|
|
|
|
static cmph_uint32 next_unused_edge(bmz_config_data_t *bmz, cmph_uint8 * used_edges, cmph_uint32 unused_edge_index)
|
|
{
|
|
while(1)
|
|
{
|
|
assert(unused_edge_index < bmz->m);
|
|
if(GETBIT(used_edges, unused_edge_index)) unused_edge_index ++;
|
|
else break;
|
|
}
|
|
return unused_edge_index;
|
|
}
|
|
|
|
static void bmz_traverse(bmz_config_data_t *bmz, cmph_uint8 * used_edges, cmph_uint32 v, cmph_uint32 * unused_edge_index, cmph_uint8 * visited)
|
|
{
|
|
graph_iterator_t it = graph_neighbors_it(bmz->graph, v);
|
|
cmph_uint32 neighbor = 0;
|
|
while((neighbor = graph_next_neighbor(bmz->graph, &it)) != GRAPH_NO_NEIGHBOR)
|
|
{
|
|
if(GETBIT(visited,neighbor)) continue;
|
|
//DEBUGP("Visiting neighbor %u\n", neighbor);
|
|
*unused_edge_index = next_unused_edge(bmz, used_edges, *unused_edge_index);
|
|
bmz->g[neighbor] = *unused_edge_index - bmz->g[v];
|
|
//if (bmz->g[neighbor] >= bmz->m) bmz->g[neighbor] += bmz->m;
|
|
SETBIT(visited, neighbor);
|
|
(*unused_edge_index)++;
|
|
bmz_traverse(bmz, used_edges, neighbor, unused_edge_index, visited);
|
|
|
|
}
|
|
}
|
|
|
|
static void bmz_traverse_non_critical_nodes(bmz_config_data_t *bmz, cmph_uint8 * used_edges, cmph_uint8 * visited)
|
|
{
|
|
|
|
cmph_uint32 i, v1, v2, unused_edge_index = 0;
|
|
DEBUGP("Labelling non critical vertices\n");
|
|
for(i = 0; i < bmz->m; i++)
|
|
{
|
|
v1 = graph_vertex_id(bmz->graph, i, 0);
|
|
v2 = graph_vertex_id(bmz->graph, i, 1);
|
|
if((GETBIT(visited,v1) && GETBIT(visited,v2)) || (!GETBIT(visited,v1) && !GETBIT(visited,v2))) continue;
|
|
if(GETBIT(visited,v1)) bmz_traverse(bmz, used_edges, v1, &unused_edge_index, visited);
|
|
else bmz_traverse(bmz, used_edges, v2, &unused_edge_index, visited);
|
|
|
|
}
|
|
|
|
for(i = 0; i < bmz->n; i++)
|
|
{
|
|
if(!GETBIT(visited,i))
|
|
{
|
|
bmz->g[i] = 0;
|
|
SETBIT(visited, i);
|
|
bmz_traverse(bmz, used_edges, i, &unused_edge_index, visited);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
static int bmz_gen_edges(cmph_config_t *mph)
|
|
{
|
|
cmph_uint32 e;
|
|
bmz_config_data_t *bmz = (bmz_config_data_t *)mph->data;
|
|
cmph_uint8 multiple_edges = 0;
|
|
DEBUGP("Generating edges for %u vertices\n", bmz->n);
|
|
graph_clear_edges(bmz->graph);
|
|
mph->key_source->rewind(mph->key_source->data);
|
|
for (e = 0; e < mph->key_source->nkeys; ++e)
|
|
{
|
|
cmph_uint32 h1, h2;
|
|
cmph_uint32 keylen;
|
|
char *key = NULL;
|
|
mph->key_source->read(mph->key_source->data, &key, &keylen);
|
|
|
|
// if (key == NULL)fprintf(stderr, "key = %s -- read BMZ\n", key);
|
|
h1 = hash(bmz->hashes[0], key, keylen) % bmz->n;
|
|
h2 = hash(bmz->hashes[1], key, keylen) % bmz->n;
|
|
if (h1 == h2) if (++h2 >= bmz->n) h2 = 0;
|
|
if (h1 == h2)
|
|
{
|
|
if (mph->verbosity) fprintf(stderr, "Self loop for key %u\n", e);
|
|
mph->key_source->dispose(mph->key_source->data, key, keylen);
|
|
return 0;
|
|
}
|
|
//DEBUGP("Adding edge: %u -> %u for key %s\n", h1, h2, key);
|
|
mph->key_source->dispose(mph->key_source->data, key, keylen);
|
|
// fprintf(stderr, "key = %s -- dispose BMZ\n", key);
|
|
multiple_edges = graph_contains_edge(bmz->graph, h1, h2);
|
|
if (mph->verbosity && multiple_edges) fprintf(stderr, "A non simple graph was generated\n");
|
|
if (multiple_edges) return 0; // checking multiple edge restriction.
|
|
graph_add_edge(bmz->graph, h1, h2);
|
|
}
|
|
return !multiple_edges;
|
|
}
|
|
|
|
int bmz_dump(cmph_t *mphf, FILE *fd)
|
|
{
|
|
char *buf = NULL;
|
|
cmph_uint32 buflen;
|
|
cmph_uint32 two = 2; //number of hash functions
|
|
bmz_data_t *data = (bmz_data_t *)mphf->data;
|
|
register size_t nbytes;
|
|
#ifdef DEBUG
|
|
cmph_uint32 i;
|
|
#endif
|
|
|
|
__cmph_dump(mphf, fd);
|
|
|
|
nbytes = fwrite(&two, sizeof(cmph_uint32), (size_t)1, fd);
|
|
|
|
hash_state_dump(data->hashes[0], &buf, &buflen);
|
|
DEBUGP("Dumping hash state with %u bytes to disk\n", buflen);
|
|
nbytes = fwrite(&buflen, sizeof(cmph_uint32), (size_t)1, fd);
|
|
nbytes = fwrite(buf, (size_t)buflen, (size_t)1, fd);
|
|
free(buf);
|
|
|
|
hash_state_dump(data->hashes[1], &buf, &buflen);
|
|
DEBUGP("Dumping hash state with %u bytes to disk\n", buflen);
|
|
nbytes = fwrite(&buflen, sizeof(cmph_uint32), (size_t)1, fd);
|
|
nbytes = fwrite(buf, (size_t)buflen, (size_t)1, fd);
|
|
free(buf);
|
|
|
|
nbytes = fwrite(&(data->n), sizeof(cmph_uint32), (size_t)1, fd);
|
|
nbytes = fwrite(&(data->m), sizeof(cmph_uint32), (size_t)1, fd);
|
|
|
|
nbytes = fwrite(data->g, sizeof(cmph_uint32)*(data->n), (size_t)1, fd);
|
|
if (nbytes == 0 && ferror(fd)) {
|
|
fprintf(stderr, "ERROR: %s\n", strerror(errno));
|
|
return 0;
|
|
}
|
|
#ifdef DEBUG
|
|
fprintf(stderr, "G: ");
|
|
for (i = 0; i < data->n; ++i) fprintf(stderr, "%u ", data->g[i]);
|
|
fprintf(stderr, "\n");
|
|
#endif
|
|
return 1;
|
|
}
|
|
|
|
void bmz_load(FILE *f, cmph_t *mphf)
|
|
{
|
|
cmph_uint32 nhashes;
|
|
char *buf = NULL;
|
|
cmph_uint32 buflen;
|
|
cmph_uint32 i;
|
|
bmz_data_t *bmz = (bmz_data_t *)malloc(sizeof(bmz_data_t));
|
|
register size_t nbytes;
|
|
DEBUGP("Loading bmz mphf\n");
|
|
mphf->data = bmz;
|
|
nbytes = fread(&nhashes, sizeof(cmph_uint32), (size_t)1, f);
|
|
bmz->hashes = (hash_state_t **)malloc(sizeof(hash_state_t *)*(nhashes + 1));
|
|
bmz->hashes[nhashes] = NULL;
|
|
DEBUGP("Reading %u hashes\n", nhashes);
|
|
for (i = 0; i < nhashes; ++i)
|
|
{
|
|
hash_state_t *state = NULL;
|
|
nbytes = fread(&buflen, sizeof(cmph_uint32), (size_t)1, f);
|
|
DEBUGP("Hash state has %u bytes\n", buflen);
|
|
buf = (char *)malloc((size_t)buflen);
|
|
nbytes = fread(buf, (size_t)buflen, (size_t)1, f);
|
|
state = hash_state_load(buf, buflen);
|
|
bmz->hashes[i] = state;
|
|
free(buf);
|
|
}
|
|
|
|
DEBUGP("Reading m and n\n");
|
|
nbytes = fread(&(bmz->n), sizeof(cmph_uint32), (size_t)1, f);
|
|
nbytes = fread(&(bmz->m), sizeof(cmph_uint32), (size_t)1, f);
|
|
|
|
bmz->g = (cmph_uint32 *)malloc(sizeof(cmph_uint32)*bmz->n);
|
|
nbytes = fread(bmz->g, bmz->n*sizeof(cmph_uint32), (size_t)1, f);
|
|
if (nbytes == 0 && ferror(f)) {
|
|
fprintf(stderr, "ERROR: %s\n", strerror(errno));
|
|
return;
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
fprintf(stderr, "G: ");
|
|
for (i = 0; i < bmz->n; ++i) fprintf(stderr, "%u ", bmz->g[i]);
|
|
fprintf(stderr, "\n");
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
|
|
cmph_uint32 bmz_search(cmph_t *mphf, const char *key, cmph_uint32 keylen)
|
|
{
|
|
bmz_data_t *bmz = mphf->data;
|
|
cmph_uint32 h1 = hash(bmz->hashes[0], key, keylen) % bmz->n;
|
|
cmph_uint32 h2 = hash(bmz->hashes[1], key, keylen) % bmz->n;
|
|
DEBUGP("key: %s h1: %u h2: %u\n", key, h1, h2);
|
|
if (h1 == h2 && ++h2 > bmz->n) h2 = 0;
|
|
DEBUGP("key: %s g[h1]: %u g[h2]: %u edges: %u\n", key, bmz->g[h1], bmz->g[h2], bmz->m);
|
|
return bmz->g[h1] + bmz->g[h2];
|
|
}
|
|
void bmz_destroy(cmph_t *mphf)
|
|
{
|
|
bmz_data_t *data = (bmz_data_t *)mphf->data;
|
|
free(data->g);
|
|
hash_state_destroy(data->hashes[0]);
|
|
hash_state_destroy(data->hashes[1]);
|
|
free(data->hashes);
|
|
free(data);
|
|
free(mphf);
|
|
}
|
|
|
|
/** \fn void bmz_pack(cmph_t *mphf, void *packed_mphf);
|
|
* \brief Support the ability to pack a perfect hash function into a preallocated contiguous memory space pointed by packed_mphf.
|
|
* \param mphf pointer to the resulting mphf
|
|
* \param packed_mphf pointer to the contiguous memory area used to store the resulting mphf. The size of packed_mphf must be at least cmph_packed_size()
|
|
*/
|
|
void bmz_pack(cmph_t *mphf, void *packed_mphf)
|
|
{
|
|
|
|
bmz_data_t *data = (bmz_data_t *)mphf->data;
|
|
cmph_uint8 * ptr = packed_mphf;
|
|
CMPH_HASH h2_type;
|
|
|
|
// packing h1 type
|
|
CMPH_HASH h1_type = hash_get_type(data->hashes[0]);
|
|
*((cmph_uint32 *) ptr) = h1_type;
|
|
ptr += sizeof(cmph_uint32);
|
|
|
|
// packing h1
|
|
hash_state_pack(data->hashes[0], ptr);
|
|
ptr += hash_state_packed_size(h1_type);
|
|
|
|
// packing h2 type
|
|
h2_type = hash_get_type(data->hashes[1]);
|
|
*((cmph_uint32 *) ptr) = h2_type;
|
|
ptr += sizeof(cmph_uint32);
|
|
|
|
// packing h2
|
|
hash_state_pack(data->hashes[1], ptr);
|
|
ptr += hash_state_packed_size(h2_type);
|
|
|
|
// packing n
|
|
*((cmph_uint32 *) ptr) = data->n;
|
|
ptr += sizeof(data->n);
|
|
|
|
// packing g
|
|
memcpy(ptr, data->g, sizeof(cmph_uint32)*data->n);
|
|
}
|
|
|
|
/** \fn cmph_uint32 bmz_packed_size(cmph_t *mphf);
|
|
* \brief Return the amount of space needed to pack mphf.
|
|
* \param mphf pointer to a mphf
|
|
* \return the size of the packed function or zero for failures
|
|
*/
|
|
cmph_uint32 bmz_packed_size(cmph_t *mphf)
|
|
{
|
|
bmz_data_t *data = (bmz_data_t *)mphf->data;
|
|
CMPH_HASH h1_type = hash_get_type(data->hashes[0]);
|
|
CMPH_HASH h2_type = hash_get_type(data->hashes[1]);
|
|
|
|
return (cmph_uint32)(sizeof(CMPH_ALGO) + hash_state_packed_size(h1_type) + hash_state_packed_size(h2_type) +
|
|
3*sizeof(cmph_uint32) + sizeof(cmph_uint32)*data->n);
|
|
}
|
|
|
|
/** cmph_uint32 bmz_search(void *packed_mphf, const char *key, cmph_uint32 keylen);
|
|
* \brief Use the packed mphf to do a search.
|
|
* \param packed_mphf pointer to the packed mphf
|
|
* \param key key to be hashed
|
|
* \param keylen key legth in bytes
|
|
* \return The mphf value
|
|
*/
|
|
cmph_uint32 bmz_search_packed(void *packed_mphf, const char *key, cmph_uint32 keylen)
|
|
{
|
|
register cmph_uint8 *h1_ptr = packed_mphf;
|
|
register CMPH_HASH h1_type = *((cmph_uint32 *)h1_ptr);
|
|
register cmph_uint8 *h2_ptr;
|
|
register CMPH_HASH h2_type;
|
|
register cmph_uint32 *g_ptr, n, h1, h2;
|
|
|
|
h1_ptr += 4;
|
|
|
|
h2_ptr = h1_ptr + hash_state_packed_size(h1_type);
|
|
h2_type = *((cmph_uint32 *)h2_ptr);
|
|
h2_ptr += 4;
|
|
|
|
g_ptr = (cmph_uint32 *)(h2_ptr + hash_state_packed_size(h2_type));
|
|
|
|
n = *g_ptr++;
|
|
|
|
h1 = hash_packed(h1_ptr, h1_type, key, keylen) % n;
|
|
h2 = hash_packed(h2_ptr, h2_type, key, keylen) % n;
|
|
if (h1 == h2 && ++h2 > n) h2 = 0;
|
|
return (g_ptr[h1] + g_ptr[h2]);
|
|
}
|