mirror of
https://gitlab.gnome.org/GNOME/glib.git
synced 2024-11-15 05:46:15 +01:00
00bfb3ab44
This was mostly machine generated with the following command: ``` codespell \ --builtin clear,rare,usage \ --skip './po/*' --skip './.git/*' --skip './NEWS*' \ --write-changes . ``` using the latest git version of `codespell` as per [these instructions](https://github.com/codespell-project/codespell#user-content-updating). Then I manually checked each change using `git add -p`, made a few manual fixups and dropped a load of incorrect changes. There are still some outdated or loaded terms used in GLib, mostly to do with git branch terminology. They will need to be changed later as part of a wider migration of git terminology. If I’ve missed anything, please file an issue! Signed-off-by: Philip Withnall <withnall@endlessm.com>
731 lines
18 KiB
C
731 lines
18 KiB
C
/* GLIB - Library of useful routines for C programming
|
|
* Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/* Originally developed and coded by Makoto Matsumoto and Takuji
|
|
* Nishimura. Please mail <matumoto@math.keio.ac.jp>, if you're using
|
|
* code from this file in your own programs or libraries.
|
|
* Further information on the Mersenne Twister can be found at
|
|
* http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
|
|
* This code was adapted to glib by Sebastian Wilhelmi.
|
|
*/
|
|
|
|
/*
|
|
* Modified by the GLib Team and others 1997-2000. See the AUTHORS
|
|
* file for a list of people on the GLib Team. See the ChangeLog
|
|
* files for a list of changes. These files are distributed with
|
|
* GLib at ftp://ftp.gtk.org/pub/gtk/.
|
|
*/
|
|
|
|
/*
|
|
* MT safe
|
|
*/
|
|
|
|
#include "config.h"
|
|
#define _CRT_RAND_S
|
|
|
|
#include <math.h>
|
|
#include <errno.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <sys/types.h>
|
|
#include "grand.h"
|
|
|
|
#include "genviron.h"
|
|
#include "gmain.h"
|
|
#include "gmem.h"
|
|
#include "gtestutils.h"
|
|
#include "gthread.h"
|
|
#include "gtimer.h"
|
|
|
|
#ifdef G_OS_UNIX
|
|
#include <unistd.h>
|
|
#endif
|
|
|
|
#ifdef G_OS_WIN32
|
|
#include <stdlib.h>
|
|
#include <process.h> /* For getpid() */
|
|
#endif
|
|
|
|
/**
|
|
* SECTION:random_numbers
|
|
* @title: Random Numbers
|
|
* @short_description: pseudo-random number generator
|
|
*
|
|
* The following functions allow you to use a portable, fast and good
|
|
* pseudo-random number generator (PRNG).
|
|
*
|
|
* Do not use this API for cryptographic purposes such as key
|
|
* generation, nonces, salts or one-time pads.
|
|
*
|
|
* This PRNG is suitable for non-cryptographic use such as in games
|
|
* (shuffling a card deck, generating levels), generating data for
|
|
* a test suite, etc. If you need random data for cryptographic
|
|
* purposes, it is recommended to use platform-specific APIs such
|
|
* as `/dev/random` on UNIX, or CryptGenRandom() on Windows.
|
|
*
|
|
* GRand uses the Mersenne Twister PRNG, which was originally
|
|
* developed by Makoto Matsumoto and Takuji Nishimura. Further
|
|
* information can be found at
|
|
* [this page](http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html).
|
|
*
|
|
* If you just need a random number, you simply call the g_random_*
|
|
* functions, which will create a globally used #GRand and use the
|
|
* according g_rand_* functions internally. Whenever you need a
|
|
* stream of reproducible random numbers, you better create a
|
|
* #GRand yourself and use the g_rand_* functions directly, which
|
|
* will also be slightly faster. Initializing a #GRand with a
|
|
* certain seed will produce exactly the same series of random
|
|
* numbers on all platforms. This can thus be used as a seed for
|
|
* e.g. games.
|
|
*
|
|
* The g_rand*_range functions will return high quality equally
|
|
* distributed random numbers, whereas for example the
|
|
* `(g_random_int()%max)` approach often
|
|
* doesn't yield equally distributed numbers.
|
|
*
|
|
* GLib changed the seeding algorithm for the pseudo-random number
|
|
* generator Mersenne Twister, as used by #GRand. This was necessary,
|
|
* because some seeds would yield very bad pseudo-random streams.
|
|
* Also the pseudo-random integers generated by g_rand*_int_range()
|
|
* will have a slightly better equal distribution with the new
|
|
* version of GLib.
|
|
*
|
|
* The original seeding and generation algorithms, as found in
|
|
* GLib 2.0.x, can be used instead of the new ones by setting the
|
|
* environment variable `G_RANDOM_VERSION` to the value of '2.0'.
|
|
* Use the GLib-2.0 algorithms only if you have sequences of numbers
|
|
* generated with Glib-2.0 that you need to reproduce exactly.
|
|
*/
|
|
|
|
/**
|
|
* GRand:
|
|
*
|
|
* The GRand struct is an opaque data structure. It should only be
|
|
* accessed through the g_rand_* functions.
|
|
**/
|
|
|
|
G_LOCK_DEFINE_STATIC (global_random);
|
|
|
|
/* Period parameters */
|
|
#define N 624
|
|
#define M 397
|
|
#define MATRIX_A 0x9908b0df /* constant vector a */
|
|
#define UPPER_MASK 0x80000000 /* most significant w-r bits */
|
|
#define LOWER_MASK 0x7fffffff /* least significant r bits */
|
|
|
|
/* Tempering parameters */
|
|
#define TEMPERING_MASK_B 0x9d2c5680
|
|
#define TEMPERING_MASK_C 0xefc60000
|
|
#define TEMPERING_SHIFT_U(y) (y >> 11)
|
|
#define TEMPERING_SHIFT_S(y) (y << 7)
|
|
#define TEMPERING_SHIFT_T(y) (y << 15)
|
|
#define TEMPERING_SHIFT_L(y) (y >> 18)
|
|
|
|
static guint
|
|
get_random_version (void)
|
|
{
|
|
static gsize initialized = FALSE;
|
|
static guint random_version;
|
|
|
|
if (g_once_init_enter (&initialized))
|
|
{
|
|
const gchar *version_string = g_getenv ("G_RANDOM_VERSION");
|
|
if (!version_string || version_string[0] == '\000' ||
|
|
strcmp (version_string, "2.2") == 0)
|
|
random_version = 22;
|
|
else if (strcmp (version_string, "2.0") == 0)
|
|
random_version = 20;
|
|
else
|
|
{
|
|
g_warning ("Unknown G_RANDOM_VERSION \"%s\". Using version 2.2.",
|
|
version_string);
|
|
random_version = 22;
|
|
}
|
|
g_once_init_leave (&initialized, TRUE);
|
|
}
|
|
|
|
return random_version;
|
|
}
|
|
|
|
struct _GRand
|
|
{
|
|
guint32 mt[N]; /* the array for the state vector */
|
|
guint mti;
|
|
};
|
|
|
|
/**
|
|
* g_rand_new_with_seed:
|
|
* @seed: a value to initialize the random number generator
|
|
*
|
|
* Creates a new random number generator initialized with @seed.
|
|
*
|
|
* Returns: the new #GRand
|
|
**/
|
|
GRand*
|
|
g_rand_new_with_seed (guint32 seed)
|
|
{
|
|
GRand *rand = g_new0 (GRand, 1);
|
|
g_rand_set_seed (rand, seed);
|
|
return rand;
|
|
}
|
|
|
|
/**
|
|
* g_rand_new_with_seed_array:
|
|
* @seed: an array of seeds to initialize the random number generator
|
|
* @seed_length: an array of seeds to initialize the random number
|
|
* generator
|
|
*
|
|
* Creates a new random number generator initialized with @seed.
|
|
*
|
|
* Returns: the new #GRand
|
|
*
|
|
* Since: 2.4
|
|
*/
|
|
GRand*
|
|
g_rand_new_with_seed_array (const guint32 *seed,
|
|
guint seed_length)
|
|
{
|
|
GRand *rand = g_new0 (GRand, 1);
|
|
g_rand_set_seed_array (rand, seed, seed_length);
|
|
return rand;
|
|
}
|
|
|
|
/**
|
|
* g_rand_new:
|
|
*
|
|
* Creates a new random number generator initialized with a seed taken
|
|
* either from `/dev/urandom` (if existing) or from the current time
|
|
* (as a fallback).
|
|
*
|
|
* On Windows, the seed is taken from rand_s().
|
|
*
|
|
* Returns: the new #GRand
|
|
*/
|
|
GRand*
|
|
g_rand_new (void)
|
|
{
|
|
guint32 seed[4];
|
|
#ifdef G_OS_UNIX
|
|
static gboolean dev_urandom_exists = TRUE;
|
|
|
|
if (dev_urandom_exists)
|
|
{
|
|
FILE* dev_urandom;
|
|
|
|
do
|
|
{
|
|
dev_urandom = fopen("/dev/urandom", "rb");
|
|
}
|
|
while G_UNLIKELY (dev_urandom == NULL && errno == EINTR);
|
|
|
|
if (dev_urandom)
|
|
{
|
|
int r;
|
|
|
|
setvbuf (dev_urandom, NULL, _IONBF, 0);
|
|
do
|
|
{
|
|
errno = 0;
|
|
r = fread (seed, sizeof (seed), 1, dev_urandom);
|
|
}
|
|
while G_UNLIKELY (errno == EINTR);
|
|
|
|
if (r != 1)
|
|
dev_urandom_exists = FALSE;
|
|
|
|
fclose (dev_urandom);
|
|
}
|
|
else
|
|
dev_urandom_exists = FALSE;
|
|
}
|
|
|
|
if (!dev_urandom_exists)
|
|
{
|
|
gint64 now_us = g_get_real_time ();
|
|
seed[0] = now_us / G_USEC_PER_SEC;
|
|
seed[1] = now_us % G_USEC_PER_SEC;
|
|
seed[2] = getpid ();
|
|
seed[3] = getppid ();
|
|
}
|
|
#else /* G_OS_WIN32 */
|
|
/* rand_s() is only available since Visual Studio 2005 and
|
|
* MinGW-w64 has a wrapper that will emulate rand_s() if it's not in msvcrt
|
|
*/
|
|
#if (defined(_MSC_VER) && _MSC_VER >= 1400) || defined(__MINGW64_VERSION_MAJOR)
|
|
gint i;
|
|
|
|
for (i = 0; i < G_N_ELEMENTS (seed); i++)
|
|
rand_s (&seed[i]);
|
|
#else
|
|
#warning Using insecure seed for random number generation because of missing rand_s() in Windows XP
|
|
GTimeVal now;
|
|
|
|
g_get_current_time (&now);
|
|
seed[0] = now.tv_sec;
|
|
seed[1] = now.tv_usec;
|
|
seed[2] = getpid ();
|
|
seed[3] = 0;
|
|
#endif
|
|
|
|
#endif
|
|
|
|
return g_rand_new_with_seed_array (seed, 4);
|
|
}
|
|
|
|
/**
|
|
* g_rand_free:
|
|
* @rand_: a #GRand
|
|
*
|
|
* Frees the memory allocated for the #GRand.
|
|
*/
|
|
void
|
|
g_rand_free (GRand *rand)
|
|
{
|
|
g_return_if_fail (rand != NULL);
|
|
|
|
g_free (rand);
|
|
}
|
|
|
|
/**
|
|
* g_rand_copy:
|
|
* @rand_: a #GRand
|
|
*
|
|
* Copies a #GRand into a new one with the same exact state as before.
|
|
* This way you can take a snapshot of the random number generator for
|
|
* replaying later.
|
|
*
|
|
* Returns: the new #GRand
|
|
*
|
|
* Since: 2.4
|
|
*/
|
|
GRand*
|
|
g_rand_copy (GRand *rand)
|
|
{
|
|
GRand* new_rand;
|
|
|
|
g_return_val_if_fail (rand != NULL, NULL);
|
|
|
|
new_rand = g_new0 (GRand, 1);
|
|
memcpy (new_rand, rand, sizeof (GRand));
|
|
|
|
return new_rand;
|
|
}
|
|
|
|
/**
|
|
* g_rand_set_seed:
|
|
* @rand_: a #GRand
|
|
* @seed: a value to reinitialize the random number generator
|
|
*
|
|
* Sets the seed for the random number generator #GRand to @seed.
|
|
*/
|
|
void
|
|
g_rand_set_seed (GRand *rand,
|
|
guint32 seed)
|
|
{
|
|
g_return_if_fail (rand != NULL);
|
|
|
|
switch (get_random_version ())
|
|
{
|
|
case 20:
|
|
/* setting initial seeds to mt[N] using */
|
|
/* the generator Line 25 of Table 1 in */
|
|
/* [KNUTH 1981, The Art of Computer Programming */
|
|
/* Vol. 2 (2nd Ed.), pp102] */
|
|
|
|
if (seed == 0) /* This would make the PRNG produce only zeros */
|
|
seed = 0x6b842128; /* Just set it to another number */
|
|
|
|
rand->mt[0]= seed;
|
|
for (rand->mti=1; rand->mti<N; rand->mti++)
|
|
rand->mt[rand->mti] = (69069 * rand->mt[rand->mti-1]);
|
|
|
|
break;
|
|
case 22:
|
|
/* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
|
|
/* In the previous version (see above), MSBs of the */
|
|
/* seed affect only MSBs of the array mt[]. */
|
|
|
|
rand->mt[0]= seed;
|
|
for (rand->mti=1; rand->mti<N; rand->mti++)
|
|
rand->mt[rand->mti] = 1812433253UL *
|
|
(rand->mt[rand->mti-1] ^ (rand->mt[rand->mti-1] >> 30)) + rand->mti;
|
|
break;
|
|
default:
|
|
g_assert_not_reached ();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* g_rand_set_seed_array:
|
|
* @rand_: a #GRand
|
|
* @seed: array to initialize with
|
|
* @seed_length: length of array
|
|
*
|
|
* Initializes the random number generator by an array of longs.
|
|
* Array can be of arbitrary size, though only the first 624 values
|
|
* are taken. This function is useful if you have many low entropy
|
|
* seeds, or if you require more then 32 bits of actual entropy for
|
|
* your application.
|
|
*
|
|
* Since: 2.4
|
|
*/
|
|
void
|
|
g_rand_set_seed_array (GRand *rand,
|
|
const guint32 *seed,
|
|
guint seed_length)
|
|
{
|
|
guint i, j, k;
|
|
|
|
g_return_if_fail (rand != NULL);
|
|
g_return_if_fail (seed_length >= 1);
|
|
|
|
g_rand_set_seed (rand, 19650218UL);
|
|
|
|
i=1; j=0;
|
|
k = (N>seed_length ? N : seed_length);
|
|
for (; k; k--)
|
|
{
|
|
rand->mt[i] = (rand->mt[i] ^
|
|
((rand->mt[i-1] ^ (rand->mt[i-1] >> 30)) * 1664525UL))
|
|
+ seed[j] + j; /* non linear */
|
|
rand->mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */
|
|
i++; j++;
|
|
if (i>=N)
|
|
{
|
|
rand->mt[0] = rand->mt[N-1];
|
|
i=1;
|
|
}
|
|
if (j>=seed_length)
|
|
j=0;
|
|
}
|
|
for (k=N-1; k; k--)
|
|
{
|
|
rand->mt[i] = (rand->mt[i] ^
|
|
((rand->mt[i-1] ^ (rand->mt[i-1] >> 30)) * 1566083941UL))
|
|
- i; /* non linear */
|
|
rand->mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */
|
|
i++;
|
|
if (i>=N)
|
|
{
|
|
rand->mt[0] = rand->mt[N-1];
|
|
i=1;
|
|
}
|
|
}
|
|
|
|
rand->mt[0] = 0x80000000UL; /* MSB is 1; assuring non-zero initial array */
|
|
}
|
|
|
|
/**
|
|
* g_rand_boolean:
|
|
* @rand_: a #GRand
|
|
*
|
|
* Returns a random #gboolean from @rand_.
|
|
* This corresponds to an unbiased coin toss.
|
|
*
|
|
* Returns: a random #gboolean
|
|
*/
|
|
/**
|
|
* g_rand_int:
|
|
* @rand_: a #GRand
|
|
*
|
|
* Returns the next random #guint32 from @rand_ equally distributed over
|
|
* the range [0..2^32-1].
|
|
*
|
|
* Returns: a random number
|
|
*/
|
|
guint32
|
|
g_rand_int (GRand *rand)
|
|
{
|
|
guint32 y;
|
|
static const guint32 mag01[2]={0x0, MATRIX_A};
|
|
/* mag01[x] = x * MATRIX_A for x=0,1 */
|
|
|
|
g_return_val_if_fail (rand != NULL, 0);
|
|
|
|
if (rand->mti >= N) { /* generate N words at one time */
|
|
int kk;
|
|
|
|
for (kk = 0; kk < N - M; kk++) {
|
|
y = (rand->mt[kk]&UPPER_MASK)|(rand->mt[kk+1]&LOWER_MASK);
|
|
rand->mt[kk] = rand->mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1];
|
|
}
|
|
for (; kk < N - 1; kk++) {
|
|
y = (rand->mt[kk]&UPPER_MASK)|(rand->mt[kk+1]&LOWER_MASK);
|
|
rand->mt[kk] = rand->mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1];
|
|
}
|
|
y = (rand->mt[N-1]&UPPER_MASK)|(rand->mt[0]&LOWER_MASK);
|
|
rand->mt[N-1] = rand->mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1];
|
|
|
|
rand->mti = 0;
|
|
}
|
|
|
|
y = rand->mt[rand->mti++];
|
|
y ^= TEMPERING_SHIFT_U(y);
|
|
y ^= TEMPERING_SHIFT_S(y) & TEMPERING_MASK_B;
|
|
y ^= TEMPERING_SHIFT_T(y) & TEMPERING_MASK_C;
|
|
y ^= TEMPERING_SHIFT_L(y);
|
|
|
|
return y;
|
|
}
|
|
|
|
/* transform [0..2^32] -> [0..1] */
|
|
#define G_RAND_DOUBLE_TRANSFORM 2.3283064365386962890625e-10
|
|
|
|
/**
|
|
* g_rand_int_range:
|
|
* @rand_: a #GRand
|
|
* @begin: lower closed bound of the interval
|
|
* @end: upper open bound of the interval
|
|
*
|
|
* Returns the next random #gint32 from @rand_ equally distributed over
|
|
* the range [@begin..@end-1].
|
|
*
|
|
* Returns: a random number
|
|
*/
|
|
gint32
|
|
g_rand_int_range (GRand *rand,
|
|
gint32 begin,
|
|
gint32 end)
|
|
{
|
|
guint32 dist = end - begin;
|
|
guint32 random = 0;
|
|
|
|
g_return_val_if_fail (rand != NULL, begin);
|
|
g_return_val_if_fail (end > begin, begin);
|
|
|
|
switch (get_random_version ())
|
|
{
|
|
case 20:
|
|
if (dist <= 0x10000L) /* 2^16 */
|
|
{
|
|
/* This method, which only calls g_rand_int once is only good
|
|
* for (end - begin) <= 2^16, because we only have 32 bits set
|
|
* from the one call to g_rand_int ().
|
|
*
|
|
* We are using (trans + trans * trans), because g_rand_int only
|
|
* covers [0..2^32-1] and thus g_rand_int * trans only covers
|
|
* [0..1-2^-32], but the biggest double < 1 is 1-2^-52.
|
|
*/
|
|
|
|
gdouble double_rand = g_rand_int (rand) *
|
|
(G_RAND_DOUBLE_TRANSFORM +
|
|
G_RAND_DOUBLE_TRANSFORM * G_RAND_DOUBLE_TRANSFORM);
|
|
|
|
random = (gint32) (double_rand * dist);
|
|
}
|
|
else
|
|
{
|
|
/* Now we use g_rand_double_range (), which will set 52 bits
|
|
* for us, so that it is safe to round and still get a decent
|
|
* distribution
|
|
*/
|
|
random = (gint32) g_rand_double_range (rand, 0, dist);
|
|
}
|
|
break;
|
|
case 22:
|
|
if (dist == 0)
|
|
random = 0;
|
|
else
|
|
{
|
|
/* maxvalue is set to the predecessor of the greatest
|
|
* multiple of dist less or equal 2^32.
|
|
*/
|
|
guint32 maxvalue;
|
|
if (dist <= 0x80000000u) /* 2^31 */
|
|
{
|
|
/* maxvalue = 2^32 - 1 - (2^32 % dist) */
|
|
guint32 leftover = (0x80000000u % dist) * 2;
|
|
if (leftover >= dist) leftover -= dist;
|
|
maxvalue = 0xffffffffu - leftover;
|
|
}
|
|
else
|
|
maxvalue = dist - 1;
|
|
|
|
do
|
|
random = g_rand_int (rand);
|
|
while (random > maxvalue);
|
|
|
|
random %= dist;
|
|
}
|
|
break;
|
|
default:
|
|
g_assert_not_reached ();
|
|
}
|
|
|
|
return begin + random;
|
|
}
|
|
|
|
/**
|
|
* g_rand_double:
|
|
* @rand_: a #GRand
|
|
*
|
|
* Returns the next random #gdouble from @rand_ equally distributed over
|
|
* the range [0..1).
|
|
*
|
|
* Returns: a random number
|
|
*/
|
|
gdouble
|
|
g_rand_double (GRand *rand)
|
|
{
|
|
/* We set all 52 bits after the point for this, not only the first
|
|
32. That's why we need two calls to g_rand_int */
|
|
gdouble retval = g_rand_int (rand) * G_RAND_DOUBLE_TRANSFORM;
|
|
retval = (retval + g_rand_int (rand)) * G_RAND_DOUBLE_TRANSFORM;
|
|
|
|
/* The following might happen due to very bad rounding luck, but
|
|
* actually this should be more than rare, we just try again then */
|
|
if (retval >= 1.0)
|
|
return g_rand_double (rand);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* g_rand_double_range:
|
|
* @rand_: a #GRand
|
|
* @begin: lower closed bound of the interval
|
|
* @end: upper open bound of the interval
|
|
*
|
|
* Returns the next random #gdouble from @rand_ equally distributed over
|
|
* the range [@begin..@end).
|
|
*
|
|
* Returns: a random number
|
|
*/
|
|
gdouble
|
|
g_rand_double_range (GRand *rand,
|
|
gdouble begin,
|
|
gdouble end)
|
|
{
|
|
gdouble r;
|
|
|
|
r = g_rand_double (rand);
|
|
|
|
return r * end - (r - 1) * begin;
|
|
}
|
|
|
|
static GRand *
|
|
get_global_random (void)
|
|
{
|
|
static GRand *global_random;
|
|
|
|
/* called while locked */
|
|
if (!global_random)
|
|
global_random = g_rand_new ();
|
|
|
|
return global_random;
|
|
}
|
|
|
|
/**
|
|
* g_random_boolean:
|
|
*
|
|
* Returns a random #gboolean.
|
|
* This corresponds to an unbiased coin toss.
|
|
*
|
|
* Returns: a random #gboolean
|
|
*/
|
|
/**
|
|
* g_random_int:
|
|
*
|
|
* Return a random #guint32 equally distributed over the range
|
|
* [0..2^32-1].
|
|
*
|
|
* Returns: a random number
|
|
*/
|
|
guint32
|
|
g_random_int (void)
|
|
{
|
|
guint32 result;
|
|
G_LOCK (global_random);
|
|
result = g_rand_int (get_global_random ());
|
|
G_UNLOCK (global_random);
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* g_random_int_range:
|
|
* @begin: lower closed bound of the interval
|
|
* @end: upper open bound of the interval
|
|
*
|
|
* Returns a random #gint32 equally distributed over the range
|
|
* [@begin..@end-1].
|
|
*
|
|
* Returns: a random number
|
|
*/
|
|
gint32
|
|
g_random_int_range (gint32 begin,
|
|
gint32 end)
|
|
{
|
|
gint32 result;
|
|
G_LOCK (global_random);
|
|
result = g_rand_int_range (get_global_random (), begin, end);
|
|
G_UNLOCK (global_random);
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* g_random_double:
|
|
*
|
|
* Returns a random #gdouble equally distributed over the range [0..1).
|
|
*
|
|
* Returns: a random number
|
|
*/
|
|
gdouble
|
|
g_random_double (void)
|
|
{
|
|
double result;
|
|
G_LOCK (global_random);
|
|
result = g_rand_double (get_global_random ());
|
|
G_UNLOCK (global_random);
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* g_random_double_range:
|
|
* @begin: lower closed bound of the interval
|
|
* @end: upper open bound of the interval
|
|
*
|
|
* Returns a random #gdouble equally distributed over the range
|
|
* [@begin..@end).
|
|
*
|
|
* Returns: a random number
|
|
*/
|
|
gdouble
|
|
g_random_double_range (gdouble begin,
|
|
gdouble end)
|
|
{
|
|
double result;
|
|
G_LOCK (global_random);
|
|
result = g_rand_double_range (get_global_random (), begin, end);
|
|
G_UNLOCK (global_random);
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* g_random_set_seed:
|
|
* @seed: a value to reinitialize the global random number generator
|
|
*
|
|
* Sets the seed for the global random number generator, which is used
|
|
* by the g_random_* functions, to @seed.
|
|
*/
|
|
void
|
|
g_random_set_seed (guint32 seed)
|
|
{
|
|
G_LOCK (global_random);
|
|
g_rand_set_seed (get_global_random (), seed);
|
|
G_UNLOCK (global_random);
|
|
}
|