mirror of
https://gitlab.gnome.org/GNOME/glib.git
synced 2024-11-06 01:16:17 +01:00
e267653eab
Move the contents into the struct docs. Helps: #3037
844 lines
25 KiB
C
844 lines
25 KiB
C
/* GIO - GLib Input, Output and Streaming Library
|
||
*
|
||
* Copyright (C) 2006-2007 Red Hat, Inc.
|
||
*
|
||
* SPDX-License-Identifier: LGPL-2.1-or-later
|
||
*
|
||
* This library is free software; you can redistribute it and/or
|
||
* modify it under the terms of the GNU Lesser General Public
|
||
* License as published by the Free Software Foundation; either
|
||
* version 2.1 of the License, or (at your option) any later version.
|
||
*
|
||
* This library is distributed in the hope that it will be useful,
|
||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
* Lesser General Public License for more details.
|
||
*
|
||
* You should have received a copy of the GNU Lesser General
|
||
* Public License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
||
*
|
||
* Author: Alexander Larsson <alexl@redhat.com>
|
||
*/
|
||
|
||
#include "config.h"
|
||
#include "glib.h"
|
||
#include <gioerror.h>
|
||
#include "glib-private.h"
|
||
#include "gcancellable.h"
|
||
#include "glibintl.h"
|
||
|
||
|
||
/**
|
||
* GCancellable:
|
||
*
|
||
* `GCancellable` allows operations to be cancelled.
|
||
*
|
||
* `GCancellable` is a thread-safe operation cancellation stack used
|
||
* throughout GIO to allow for cancellation of synchronous and
|
||
* asynchronous operations.
|
||
*/
|
||
|
||
enum {
|
||
CANCELLED,
|
||
LAST_SIGNAL
|
||
};
|
||
|
||
struct _GCancellablePrivate
|
||
{
|
||
/* Atomic so that g_cancellable_is_cancelled does not require holding the mutex. */
|
||
gboolean cancelled;
|
||
/* Access to fields below is protected by cancellable_mutex. */
|
||
guint cancelled_running : 1;
|
||
guint cancelled_running_waiting : 1;
|
||
unsigned cancelled_emissions;
|
||
unsigned cancelled_emissions_waiting : 1;
|
||
|
||
guint fd_refcount;
|
||
GWakeup *wakeup;
|
||
};
|
||
|
||
static guint signals[LAST_SIGNAL] = { 0 };
|
||
|
||
G_DEFINE_TYPE_WITH_PRIVATE (GCancellable, g_cancellable, G_TYPE_OBJECT)
|
||
|
||
static GPrivate current_cancellable;
|
||
static GMutex cancellable_mutex;
|
||
static GCond cancellable_cond;
|
||
|
||
static void
|
||
g_cancellable_finalize (GObject *object)
|
||
{
|
||
GCancellable *cancellable = G_CANCELLABLE (object);
|
||
|
||
if (cancellable->priv->wakeup)
|
||
GLIB_PRIVATE_CALL (g_wakeup_free) (cancellable->priv->wakeup);
|
||
|
||
G_OBJECT_CLASS (g_cancellable_parent_class)->finalize (object);
|
||
}
|
||
|
||
static void
|
||
g_cancellable_class_init (GCancellableClass *klass)
|
||
{
|
||
GObjectClass *gobject_class = G_OBJECT_CLASS (klass);
|
||
|
||
gobject_class->finalize = g_cancellable_finalize;
|
||
|
||
/**
|
||
* GCancellable::cancelled:
|
||
* @cancellable: a #GCancellable.
|
||
*
|
||
* Emitted when the operation has been cancelled.
|
||
*
|
||
* Can be used by implementations of cancellable operations. If the
|
||
* operation is cancelled from another thread, the signal will be
|
||
* emitted in the thread that cancelled the operation, not the
|
||
* thread that is running the operation.
|
||
*
|
||
* Note that disconnecting from this signal (or any signal) in a
|
||
* multi-threaded program is prone to race conditions. For instance
|
||
* it is possible that a signal handler may be invoked even after
|
||
* a call to g_signal_handler_disconnect() for that handler has
|
||
* already returned.
|
||
*
|
||
* There is also a problem when cancellation happens right before
|
||
* connecting to the signal. If this happens the signal will
|
||
* unexpectedly not be emitted, and checking before connecting to
|
||
* the signal leaves a race condition where this is still happening.
|
||
*
|
||
* In order to make it safe and easy to connect handlers there
|
||
* are two helper functions: g_cancellable_connect() and
|
||
* g_cancellable_disconnect() which protect against problems
|
||
* like this.
|
||
*
|
||
* An example of how to us this:
|
||
* |[<!-- language="C" -->
|
||
* // Make sure we don't do unnecessary work if already cancelled
|
||
* if (g_cancellable_set_error_if_cancelled (cancellable, error))
|
||
* return;
|
||
*
|
||
* // Set up all the data needed to be able to handle cancellation
|
||
* // of the operation
|
||
* my_data = my_data_new (...);
|
||
*
|
||
* id = 0;
|
||
* if (cancellable)
|
||
* id = g_cancellable_connect (cancellable,
|
||
* G_CALLBACK (cancelled_handler)
|
||
* data, NULL);
|
||
*
|
||
* // cancellable operation here...
|
||
*
|
||
* g_cancellable_disconnect (cancellable, id);
|
||
*
|
||
* // cancelled_handler is never called after this, it is now safe
|
||
* // to free the data
|
||
* my_data_free (my_data);
|
||
* ]|
|
||
*
|
||
* Note that the cancelled signal is emitted in the thread that
|
||
* the user cancelled from, which may be the main thread. So, the
|
||
* cancellable signal should not do something that can block.
|
||
*/
|
||
signals[CANCELLED] =
|
||
g_signal_new (I_("cancelled"),
|
||
G_TYPE_FROM_CLASS (gobject_class),
|
||
G_SIGNAL_RUN_LAST,
|
||
G_STRUCT_OFFSET (GCancellableClass, cancelled),
|
||
NULL, NULL,
|
||
NULL,
|
||
G_TYPE_NONE, 0);
|
||
|
||
}
|
||
|
||
static void
|
||
g_cancellable_init (GCancellable *cancellable)
|
||
{
|
||
cancellable->priv = g_cancellable_get_instance_private (cancellable);
|
||
}
|
||
|
||
/**
|
||
* g_cancellable_new:
|
||
*
|
||
* Creates a new #GCancellable object.
|
||
*
|
||
* Applications that want to start one or more operations
|
||
* that should be cancellable should create a #GCancellable
|
||
* and pass it to the operations.
|
||
*
|
||
* One #GCancellable can be used in multiple consecutive
|
||
* operations or in multiple concurrent operations.
|
||
*
|
||
* Returns: a #GCancellable.
|
||
**/
|
||
GCancellable *
|
||
g_cancellable_new (void)
|
||
{
|
||
return g_object_new (G_TYPE_CANCELLABLE, NULL);
|
||
}
|
||
|
||
/**
|
||
* g_cancellable_push_current:
|
||
* @cancellable: a #GCancellable object
|
||
*
|
||
* Pushes @cancellable onto the cancellable stack. The current
|
||
* cancellable can then be received using g_cancellable_get_current().
|
||
*
|
||
* This is useful when implementing cancellable operations in
|
||
* code that does not allow you to pass down the cancellable object.
|
||
*
|
||
* This is typically called automatically by e.g. #GFile operations,
|
||
* so you rarely have to call this yourself.
|
||
**/
|
||
void
|
||
g_cancellable_push_current (GCancellable *cancellable)
|
||
{
|
||
GSList *l;
|
||
|
||
g_return_if_fail (cancellable != NULL);
|
||
|
||
l = g_private_get (¤t_cancellable);
|
||
l = g_slist_prepend (l, cancellable);
|
||
g_private_set (¤t_cancellable, l);
|
||
}
|
||
|
||
/**
|
||
* g_cancellable_pop_current:
|
||
* @cancellable: a #GCancellable object
|
||
*
|
||
* Pops @cancellable off the cancellable stack (verifying that @cancellable
|
||
* is on the top of the stack).
|
||
**/
|
||
void
|
||
g_cancellable_pop_current (GCancellable *cancellable)
|
||
{
|
||
GSList *l;
|
||
|
||
l = g_private_get (¤t_cancellable);
|
||
|
||
g_return_if_fail (l != NULL);
|
||
g_return_if_fail (l->data == cancellable);
|
||
|
||
l = g_slist_delete_link (l, l);
|
||
g_private_set (¤t_cancellable, l);
|
||
}
|
||
|
||
/**
|
||
* g_cancellable_get_current:
|
||
*
|
||
* Gets the top cancellable from the stack.
|
||
*
|
||
* Returns: (nullable) (transfer none): a #GCancellable from the top
|
||
* of the stack, or %NULL if the stack is empty.
|
||
**/
|
||
GCancellable *
|
||
g_cancellable_get_current (void)
|
||
{
|
||
GSList *l;
|
||
|
||
l = g_private_get (¤t_cancellable);
|
||
if (l == NULL)
|
||
return NULL;
|
||
|
||
return G_CANCELLABLE (l->data);
|
||
}
|
||
|
||
/**
|
||
* g_cancellable_reset:
|
||
* @cancellable: a #GCancellable object.
|
||
*
|
||
* Resets @cancellable to its uncancelled state.
|
||
*
|
||
* If cancellable is currently in use by any cancellable operation
|
||
* then the behavior of this function is undefined.
|
||
*
|
||
* Note that it is generally not a good idea to reuse an existing
|
||
* cancellable for more operations after it has been cancelled once,
|
||
* as this function might tempt you to do. The recommended practice
|
||
* is to drop the reference to a cancellable after cancelling it,
|
||
* and let it die with the outstanding async operations. You should
|
||
* create a fresh cancellable for further async operations.
|
||
**/
|
||
void
|
||
g_cancellable_reset (GCancellable *cancellable)
|
||
{
|
||
GCancellablePrivate *priv;
|
||
|
||
g_return_if_fail (G_IS_CANCELLABLE (cancellable));
|
||
|
||
g_mutex_lock (&cancellable_mutex);
|
||
|
||
priv = cancellable->priv;
|
||
|
||
while (priv->cancelled_running || priv->cancelled_emissions > 0)
|
||
{
|
||
if (priv->cancelled_running)
|
||
priv->cancelled_running_waiting = TRUE;
|
||
|
||
if (priv->cancelled_emissions > 0)
|
||
priv->cancelled_emissions_waiting = TRUE;
|
||
|
||
g_cond_wait (&cancellable_cond, &cancellable_mutex);
|
||
}
|
||
|
||
if (g_atomic_int_exchange (&priv->cancelled, FALSE))
|
||
{
|
||
if (priv->wakeup)
|
||
GLIB_PRIVATE_CALL (g_wakeup_acknowledge) (priv->wakeup);
|
||
}
|
||
|
||
g_mutex_unlock (&cancellable_mutex);
|
||
}
|
||
|
||
/**
|
||
* g_cancellable_is_cancelled:
|
||
* @cancellable: (nullable): a #GCancellable or %NULL
|
||
*
|
||
* Checks if a cancellable job has been cancelled.
|
||
*
|
||
* Returns: %TRUE if @cancellable is cancelled,
|
||
* FALSE if called with %NULL or if item is not cancelled.
|
||
**/
|
||
gboolean
|
||
g_cancellable_is_cancelled (GCancellable *cancellable)
|
||
{
|
||
return cancellable != NULL && g_atomic_int_get (&cancellable->priv->cancelled);
|
||
}
|
||
|
||
/**
|
||
* g_cancellable_set_error_if_cancelled:
|
||
* @cancellable: (nullable): a #GCancellable or %NULL
|
||
* @error: #GError to append error state to
|
||
*
|
||
* If the @cancellable is cancelled, sets the error to notify
|
||
* that the operation was cancelled.
|
||
*
|
||
* Returns: %TRUE if @cancellable was cancelled, %FALSE if it was not
|
||
*/
|
||
gboolean
|
||
g_cancellable_set_error_if_cancelled (GCancellable *cancellable,
|
||
GError **error)
|
||
{
|
||
if (g_cancellable_is_cancelled (cancellable))
|
||
{
|
||
g_set_error_literal (error,
|
||
G_IO_ERROR,
|
||
G_IO_ERROR_CANCELLED,
|
||
_("Operation was cancelled"));
|
||
return TRUE;
|
||
}
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
/**
|
||
* g_cancellable_get_fd:
|
||
* @cancellable: a #GCancellable.
|
||
*
|
||
* Gets the file descriptor for a cancellable job. This can be used to
|
||
* implement cancellable operations on Unix systems. The returned fd will
|
||
* turn readable when @cancellable is cancelled.
|
||
*
|
||
* You are not supposed to read from the fd yourself, just check for
|
||
* readable status. Reading to unset the readable status is done
|
||
* with g_cancellable_reset().
|
||
*
|
||
* After a successful return from this function, you should use
|
||
* g_cancellable_release_fd() to free up resources allocated for
|
||
* the returned file descriptor.
|
||
*
|
||
* See also g_cancellable_make_pollfd().
|
||
*
|
||
* Returns: A valid file descriptor. `-1` if the file descriptor
|
||
* is not supported, or on errors.
|
||
**/
|
||
int
|
||
g_cancellable_get_fd (GCancellable *cancellable)
|
||
{
|
||
GPollFD pollfd;
|
||
#ifndef G_OS_WIN32
|
||
gboolean retval G_GNUC_UNUSED /* when compiling with G_DISABLE_ASSERT */;
|
||
#endif
|
||
|
||
if (cancellable == NULL)
|
||
return -1;
|
||
|
||
#ifdef G_OS_WIN32
|
||
pollfd.fd = -1;
|
||
#else
|
||
retval = g_cancellable_make_pollfd (cancellable, &pollfd);
|
||
g_assert (retval);
|
||
#endif
|
||
|
||
return pollfd.fd;
|
||
}
|
||
|
||
/**
|
||
* g_cancellable_make_pollfd:
|
||
* @cancellable: (nullable): a #GCancellable or %NULL
|
||
* @pollfd: a pointer to a #GPollFD
|
||
*
|
||
* Creates a #GPollFD corresponding to @cancellable; this can be passed
|
||
* to g_poll() and used to poll for cancellation. This is useful both
|
||
* for unix systems without a native poll and for portability to
|
||
* windows.
|
||
*
|
||
* When this function returns %TRUE, you should use
|
||
* g_cancellable_release_fd() to free up resources allocated for the
|
||
* @pollfd. After a %FALSE return, do not call g_cancellable_release_fd().
|
||
*
|
||
* If this function returns %FALSE, either no @cancellable was given or
|
||
* resource limits prevent this function from allocating the necessary
|
||
* structures for polling. (On Linux, you will likely have reached
|
||
* the maximum number of file descriptors.) The suggested way to handle
|
||
* these cases is to ignore the @cancellable.
|
||
*
|
||
* You are not supposed to read from the fd yourself, just check for
|
||
* readable status. Reading to unset the readable status is done
|
||
* with g_cancellable_reset().
|
||
*
|
||
* Returns: %TRUE if @pollfd was successfully initialized, %FALSE on
|
||
* failure to prepare the cancellable.
|
||
*
|
||
* Since: 2.22
|
||
**/
|
||
gboolean
|
||
g_cancellable_make_pollfd (GCancellable *cancellable, GPollFD *pollfd)
|
||
{
|
||
g_return_val_if_fail (pollfd != NULL, FALSE);
|
||
if (cancellable == NULL)
|
||
return FALSE;
|
||
g_return_val_if_fail (G_IS_CANCELLABLE (cancellable), FALSE);
|
||
|
||
g_mutex_lock (&cancellable_mutex);
|
||
|
||
cancellable->priv->fd_refcount++;
|
||
|
||
if (cancellable->priv->wakeup == NULL)
|
||
{
|
||
cancellable->priv->wakeup = GLIB_PRIVATE_CALL (g_wakeup_new) ();
|
||
|
||
if (g_atomic_int_get (&cancellable->priv->cancelled))
|
||
GLIB_PRIVATE_CALL (g_wakeup_signal) (cancellable->priv->wakeup);
|
||
}
|
||
|
||
GLIB_PRIVATE_CALL (g_wakeup_get_pollfd) (cancellable->priv->wakeup, pollfd);
|
||
|
||
g_mutex_unlock (&cancellable_mutex);
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/**
|
||
* g_cancellable_release_fd:
|
||
* @cancellable: a #GCancellable
|
||
*
|
||
* Releases a resources previously allocated by g_cancellable_get_fd()
|
||
* or g_cancellable_make_pollfd().
|
||
*
|
||
* For compatibility reasons with older releases, calling this function
|
||
* is not strictly required, the resources will be automatically freed
|
||
* when the @cancellable is finalized. However, the @cancellable will
|
||
* block scarce file descriptors until it is finalized if this function
|
||
* is not called. This can cause the application to run out of file
|
||
* descriptors when many #GCancellables are used at the same time.
|
||
*
|
||
* Since: 2.22
|
||
**/
|
||
void
|
||
g_cancellable_release_fd (GCancellable *cancellable)
|
||
{
|
||
GCancellablePrivate *priv;
|
||
|
||
if (cancellable == NULL)
|
||
return;
|
||
|
||
g_return_if_fail (G_IS_CANCELLABLE (cancellable));
|
||
|
||
priv = cancellable->priv;
|
||
|
||
g_mutex_lock (&cancellable_mutex);
|
||
g_assert (priv->fd_refcount > 0);
|
||
|
||
priv->fd_refcount--;
|
||
if (priv->fd_refcount == 0)
|
||
{
|
||
GLIB_PRIVATE_CALL (g_wakeup_free) (priv->wakeup);
|
||
priv->wakeup = NULL;
|
||
}
|
||
|
||
g_mutex_unlock (&cancellable_mutex);
|
||
}
|
||
|
||
/**
|
||
* g_cancellable_cancel:
|
||
* @cancellable: (nullable): a #GCancellable object.
|
||
*
|
||
* Will set @cancellable to cancelled, and will emit the
|
||
* #GCancellable::cancelled signal. (However, see the warning about
|
||
* race conditions in the documentation for that signal if you are
|
||
* planning to connect to it.)
|
||
*
|
||
* This function is thread-safe. In other words, you can safely call
|
||
* it from a thread other than the one running the operation that was
|
||
* passed the @cancellable.
|
||
*
|
||
* If @cancellable is %NULL, this function returns immediately for convenience.
|
||
*
|
||
* The convention within GIO is that cancelling an asynchronous
|
||
* operation causes it to complete asynchronously. That is, if you
|
||
* cancel the operation from the same thread in which it is running,
|
||
* then the operation's #GAsyncReadyCallback will not be invoked until
|
||
* the application returns to the main loop.
|
||
**/
|
||
void
|
||
g_cancellable_cancel (GCancellable *cancellable)
|
||
{
|
||
GCancellablePrivate *priv;
|
||
|
||
if (cancellable == NULL || g_cancellable_is_cancelled (cancellable))
|
||
return;
|
||
|
||
priv = cancellable->priv;
|
||
|
||
g_mutex_lock (&cancellable_mutex);
|
||
|
||
if (g_atomic_int_exchange (&priv->cancelled, TRUE))
|
||
{
|
||
g_mutex_unlock (&cancellable_mutex);
|
||
return;
|
||
}
|
||
|
||
priv->cancelled_running = TRUE;
|
||
|
||
if (priv->wakeup)
|
||
GLIB_PRIVATE_CALL (g_wakeup_signal) (priv->wakeup);
|
||
|
||
g_mutex_unlock (&cancellable_mutex);
|
||
|
||
g_object_ref (cancellable);
|
||
g_signal_emit (cancellable, signals[CANCELLED], 0);
|
||
|
||
g_mutex_lock (&cancellable_mutex);
|
||
|
||
priv->cancelled_running = FALSE;
|
||
if (priv->cancelled_running_waiting)
|
||
g_cond_broadcast (&cancellable_cond);
|
||
priv->cancelled_running_waiting = FALSE;
|
||
|
||
g_mutex_unlock (&cancellable_mutex);
|
||
|
||
g_object_unref (cancellable);
|
||
}
|
||
|
||
/**
|
||
* g_cancellable_connect:
|
||
* @cancellable: A #GCancellable.
|
||
* @callback: The #GCallback to connect.
|
||
* @data: Data to pass to @callback.
|
||
* @data_destroy_func: (nullable): Free function for @data or %NULL.
|
||
*
|
||
* Convenience function to connect to the #GCancellable::cancelled
|
||
* signal. Also handles the race condition that may happen
|
||
* if the cancellable is cancelled right before connecting.
|
||
*
|
||
* @callback is called at most once, either directly at the
|
||
* time of the connect if @cancellable is already cancelled,
|
||
* or when @cancellable is cancelled in some thread.
|
||
*
|
||
* @data_destroy_func will be called when the handler is
|
||
* disconnected, or immediately if the cancellable is already
|
||
* cancelled.
|
||
*
|
||
* See #GCancellable::cancelled for details on how to use this.
|
||
*
|
||
* Since GLib 2.40, the lock protecting @cancellable is not held when
|
||
* @callback is invoked. This lifts a restriction in place for
|
||
* earlier GLib versions which now makes it easier to write cleanup
|
||
* code that unconditionally invokes e.g. g_cancellable_cancel().
|
||
*
|
||
* Returns: The id of the signal handler or 0 if @cancellable has already
|
||
* been cancelled.
|
||
*
|
||
* Since: 2.22
|
||
*/
|
||
gulong
|
||
g_cancellable_connect (GCancellable *cancellable,
|
||
GCallback callback,
|
||
gpointer data,
|
||
GDestroyNotify data_destroy_func)
|
||
{
|
||
gulong id;
|
||
|
||
g_return_val_if_fail (G_IS_CANCELLABLE (cancellable), 0);
|
||
|
||
g_mutex_lock (&cancellable_mutex);
|
||
|
||
if (g_atomic_int_get (&cancellable->priv->cancelled))
|
||
{
|
||
void (*_callback) (GCancellable *cancellable,
|
||
gpointer user_data);
|
||
|
||
_callback = (void *)callback;
|
||
id = 0;
|
||
|
||
cancellable->priv->cancelled_emissions++;
|
||
|
||
g_mutex_unlock (&cancellable_mutex);
|
||
|
||
_callback (cancellable, data);
|
||
|
||
if (data_destroy_func)
|
||
data_destroy_func (data);
|
||
|
||
g_mutex_lock (&cancellable_mutex);
|
||
|
||
if (cancellable->priv->cancelled_emissions_waiting)
|
||
g_cond_broadcast (&cancellable_cond);
|
||
|
||
cancellable->priv->cancelled_emissions--;
|
||
|
||
g_mutex_unlock (&cancellable_mutex);
|
||
}
|
||
else
|
||
{
|
||
id = g_signal_connect_data (cancellable, "cancelled",
|
||
callback, data,
|
||
(GClosureNotify) data_destroy_func,
|
||
G_CONNECT_DEFAULT);
|
||
|
||
g_mutex_unlock (&cancellable_mutex);
|
||
}
|
||
|
||
|
||
return id;
|
||
}
|
||
|
||
/**
|
||
* g_cancellable_disconnect:
|
||
* @cancellable: (nullable): A #GCancellable or %NULL.
|
||
* @handler_id: Handler id of the handler to be disconnected, or `0`.
|
||
*
|
||
* Disconnects a handler from a cancellable instance similar to
|
||
* g_signal_handler_disconnect(). Additionally, in the event that a
|
||
* signal handler is currently running, this call will block until the
|
||
* handler has finished. Calling this function from a
|
||
* #GCancellable::cancelled signal handler will therefore result in a
|
||
* deadlock.
|
||
*
|
||
* This avoids a race condition where a thread cancels at the
|
||
* same time as the cancellable operation is finished and the
|
||
* signal handler is removed. See #GCancellable::cancelled for
|
||
* details on how to use this.
|
||
*
|
||
* If @cancellable is %NULL or @handler_id is `0` this function does
|
||
* nothing.
|
||
*
|
||
* Since: 2.22
|
||
*/
|
||
void
|
||
g_cancellable_disconnect (GCancellable *cancellable,
|
||
gulong handler_id)
|
||
{
|
||
GCancellablePrivate *priv;
|
||
|
||
if (handler_id == 0 || cancellable == NULL)
|
||
return;
|
||
|
||
g_mutex_lock (&cancellable_mutex);
|
||
|
||
priv = cancellable->priv;
|
||
|
||
while (priv->cancelled_running || priv->cancelled_emissions)
|
||
{
|
||
if (priv->cancelled_running)
|
||
priv->cancelled_running_waiting = TRUE;
|
||
|
||
if (priv->cancelled_emissions)
|
||
priv->cancelled_emissions_waiting = TRUE;
|
||
|
||
g_cond_wait (&cancellable_cond, &cancellable_mutex);
|
||
}
|
||
|
||
g_signal_handler_disconnect (cancellable, handler_id);
|
||
|
||
g_mutex_unlock (&cancellable_mutex);
|
||
}
|
||
|
||
typedef struct {
|
||
GSource source;
|
||
|
||
GCancellable *cancellable;
|
||
gulong cancelled_handler;
|
||
/* Protected by cancellable_mutex: */
|
||
gboolean resurrected_during_cancellation;
|
||
} GCancellableSource;
|
||
|
||
/*
|
||
* The reference count of the GSource might be 0 at this point but it is not
|
||
* finalized yet and its dispose function did not run yet, or otherwise we
|
||
* would have disconnected the signal handler already and due to the signal
|
||
* emission lock it would be impossible to call the signal handler at that
|
||
* point. That is: at this point we either have a fully valid GSource, or
|
||
* it's not disposed or finalized yet and we can still resurrect it as needed.
|
||
*
|
||
* As such we first ensure that we have a strong reference to the GSource in
|
||
* here before calling any other GSource API.
|
||
*/
|
||
static void
|
||
cancellable_source_cancelled (GCancellable *cancellable,
|
||
gpointer user_data)
|
||
{
|
||
GSource *source = user_data;
|
||
GCancellableSource *cancellable_source = (GCancellableSource *) source;
|
||
|
||
g_mutex_lock (&cancellable_mutex);
|
||
|
||
/* Drop the reference added in cancellable_source_dispose(); see the comment there.
|
||
* The reference must be dropped after unlocking @cancellable_mutex since
|
||
* it could be the final reference, and the dispose function takes
|
||
* @cancellable_mutex. */
|
||
if (cancellable_source->resurrected_during_cancellation)
|
||
{
|
||
cancellable_source->resurrected_during_cancellation = FALSE;
|
||
g_mutex_unlock (&cancellable_mutex);
|
||
g_source_unref (source);
|
||
return;
|
||
}
|
||
|
||
g_source_ref (source);
|
||
g_mutex_unlock (&cancellable_mutex);
|
||
g_source_set_ready_time (source, 0);
|
||
g_source_unref (source);
|
||
}
|
||
|
||
static gboolean
|
||
cancellable_source_dispatch (GSource *source,
|
||
GSourceFunc callback,
|
||
gpointer user_data)
|
||
{
|
||
GCancellableSourceFunc func = (GCancellableSourceFunc)callback;
|
||
GCancellableSource *cancellable_source = (GCancellableSource *)source;
|
||
|
||
g_source_set_ready_time (source, -1);
|
||
return (*func) (cancellable_source->cancellable, user_data);
|
||
}
|
||
|
||
static void
|
||
cancellable_source_dispose (GSource *source)
|
||
{
|
||
GCancellableSource *cancellable_source = (GCancellableSource *)source;
|
||
|
||
g_mutex_lock (&cancellable_mutex);
|
||
|
||
if (cancellable_source->cancellable)
|
||
{
|
||
if (cancellable_source->cancellable->priv->cancelled_running)
|
||
{
|
||
/* There can be a race here: if thread A has called
|
||
* g_cancellable_cancel() and has got as far as committing to call
|
||
* cancellable_source_cancelled(), then thread B drops the final
|
||
* ref on the GCancellableSource before g_source_ref() is called in
|
||
* cancellable_source_cancelled(), then cancellable_source_dispose()
|
||
* will run through and the GCancellableSource will be finalised
|
||
* before cancellable_source_cancelled() gets to g_source_ref(). It
|
||
* will then be left in a state where it’s committed to using a
|
||
* dangling GCancellableSource pointer.
|
||
*
|
||
* Eliminate that race by resurrecting the #GSource temporarily, and
|
||
* then dropping that reference in cancellable_source_cancelled(),
|
||
* which should be guaranteed to fire because we’re inside a
|
||
* @cancelled_running block.
|
||
*/
|
||
g_source_ref (source);
|
||
cancellable_source->resurrected_during_cancellation = TRUE;
|
||
}
|
||
|
||
g_clear_signal_handler (&cancellable_source->cancelled_handler,
|
||
cancellable_source->cancellable);
|
||
g_clear_object (&cancellable_source->cancellable);
|
||
}
|
||
|
||
g_mutex_unlock (&cancellable_mutex);
|
||
}
|
||
|
||
static gboolean
|
||
cancellable_source_closure_callback (GCancellable *cancellable,
|
||
gpointer data)
|
||
{
|
||
GClosure *closure = data;
|
||
|
||
GValue params = G_VALUE_INIT;
|
||
GValue result_value = G_VALUE_INIT;
|
||
gboolean result;
|
||
|
||
g_value_init (&result_value, G_TYPE_BOOLEAN);
|
||
|
||
g_value_init (¶ms, G_TYPE_CANCELLABLE);
|
||
g_value_set_object (¶ms, cancellable);
|
||
|
||
g_closure_invoke (closure, &result_value, 1, ¶ms, NULL);
|
||
|
||
result = g_value_get_boolean (&result_value);
|
||
g_value_unset (&result_value);
|
||
g_value_unset (¶ms);
|
||
|
||
return result;
|
||
}
|
||
|
||
static GSourceFuncs cancellable_source_funcs =
|
||
{
|
||
NULL,
|
||
NULL,
|
||
cancellable_source_dispatch,
|
||
NULL,
|
||
(GSourceFunc)cancellable_source_closure_callback,
|
||
NULL,
|
||
};
|
||
|
||
/**
|
||
* g_cancellable_source_new:
|
||
* @cancellable: (nullable): a #GCancellable, or %NULL
|
||
*
|
||
* Creates a source that triggers if @cancellable is cancelled and
|
||
* calls its callback of type #GCancellableSourceFunc. This is
|
||
* primarily useful for attaching to another (non-cancellable) source
|
||
* with g_source_add_child_source() to add cancellability to it.
|
||
*
|
||
* For convenience, you can call this with a %NULL #GCancellable,
|
||
* in which case the source will never trigger.
|
||
*
|
||
* The new #GSource will hold a reference to the #GCancellable.
|
||
*
|
||
* Returns: (transfer full): the new #GSource.
|
||
*
|
||
* Since: 2.28
|
||
*/
|
||
GSource *
|
||
g_cancellable_source_new (GCancellable *cancellable)
|
||
{
|
||
GSource *source;
|
||
GCancellableSource *cancellable_source;
|
||
|
||
source = g_source_new (&cancellable_source_funcs, sizeof (GCancellableSource));
|
||
g_source_set_static_name (source, "GCancellable");
|
||
g_source_set_dispose_function (source, cancellable_source_dispose);
|
||
cancellable_source = (GCancellableSource *)source;
|
||
|
||
if (cancellable)
|
||
{
|
||
cancellable_source->cancellable = g_object_ref (cancellable);
|
||
|
||
/* We intentionally don't use g_cancellable_connect() here,
|
||
* because we don't want the "at most once" behavior.
|
||
*/
|
||
cancellable_source->cancelled_handler =
|
||
g_signal_connect (cancellable, "cancelled",
|
||
G_CALLBACK (cancellable_source_cancelled),
|
||
source);
|
||
if (g_cancellable_is_cancelled (cancellable))
|
||
g_source_set_ready_time (source, 0);
|
||
}
|
||
|
||
return source;
|
||
}
|