glib/glib/gnode.c
2010-09-03 20:46:40 -04:00

1280 lines
28 KiB
C

/* GLIB - Library of useful routines for C programming
* Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald
*
* GNode: N-way tree implementation.
* Copyright (C) 1998 Tim Janik
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
/*
* Modified by the GLib Team and others 1997-2000. See the AUTHORS
* file for a list of people on the GLib Team. See the ChangeLog
* files for a list of changes. These files are distributed with
* GLib at ftp://ftp.gtk.org/pub/gtk/.
*/
/*
* MT safe
*/
#include "config.h"
#include "gnode.h"
#include "gtestutils.h"
/**
* SECTION: trees-nary
* @title: N-ary Trees
* @short_description: trees of data with any number of branches
*
* The #GNode struct and its associated functions provide a N-ary tree
* data structure, where nodes in the tree can contain arbitrary data.
*
* To create a new tree use g_node_new().
*
* To insert a node into a tree use g_node_insert(),
* g_node_insert_before(), g_node_append() and g_node_prepend().
*
* To create a new node and insert it into a tree use
* g_node_insert_data(), g_node_insert_data_before(),
* g_node_append_data() and g_node_prepend_data().
*
* To reverse the children of a node use g_node_reverse_children().
*
* To find a node use g_node_get_root(), g_node_find(),
* g_node_find_child(), g_node_child_index(), g_node_child_position(),
* g_node_first_child(), g_node_last_child(), g_node_nth_child(),
* g_node_first_sibling(), g_node_prev_sibling(), g_node_next_sibling()
* or g_node_last_sibling().
*
* To get information about a node or tree use G_NODE_IS_LEAF(),
* G_NODE_IS_ROOT(), g_node_depth(), g_node_n_nodes(),
* g_node_n_children(), g_node_is_ancestor() or g_node_max_height().
*
* To traverse a tree, calling a function for each node visited in the
* traversal, use g_node_traverse() or g_node_children_foreach().
*
* To remove a node or subtree from a tree use g_node_unlink() or
* g_node_destroy().
**/
/**
* GNode:
* @data: contains the actual data of the node.
* @next: points to the node's next sibling (a sibling is another
* #GNode with the same parent).
* @prev: points to the node's previous sibling.
* @parent: points to the parent of the #GNode, or is %NULL if the
* #GNode is the root of the tree.
* @children: points to the first child of the #GNode. The other
* children are accessed by using the @next pointer of each
* child.
*
* The #GNode struct represents one node in a
* <link linkend="glib-N-ary-Trees">N-ary Tree</link>. fields
**/
/**
* g_node_push_allocator:
* @dummy: the #GAllocator to use when allocating #GNode elements.
*
* Sets the allocator to use to allocate #GNode elements. Use
* g_node_pop_allocator() to restore the previous allocator.
*
* Note that this function is not available if GLib has been compiled
* with <option>--disable-mem-pools</option>
*
* Deprecated:2.10: It does nothing, since #GNode has been converted to
* the <link linkend="glib-Memory-Slices">slice
* allocator</link>
**/
void g_node_push_allocator (gpointer dummy) { /* present for binary compat only */ }
/**
* g_node_pop_allocator:
*
* Restores the previous #GAllocator, used when allocating #GNode
* elements.
*
* Note that this function is not available if GLib has been compiled
* with <option>--disable-mem-pools</option>
*
* Deprecated:2.10: It does nothing, since #GNode has been converted to
* the <link linkend="glib-Memory-Slices">slice
* allocator</link>
**/
void g_node_pop_allocator (void) { /* present for binary compat only */ }
#define g_node_alloc0() g_slice_new0 (GNode)
#define g_node_free(node) g_slice_free (GNode, node)
/* --- functions --- */
/**
* g_node_new:
* @data: the data of the new node
*
* Creates a new #GNode containing the given data.
* Used to create the first node in a tree.
*
* Returns: a new #GNode
*/
GNode*
g_node_new (gpointer data)
{
GNode *node = g_node_alloc0 ();
node->data = data;
return node;
}
static void
g_nodes_free (GNode *node)
{
while (node)
{
GNode *next = node->next;
if (node->children)
g_nodes_free (node->children);
g_node_free (node);
node = next;
}
}
/**
* g_node_destroy:
* @root: the root of the tree/subtree to destroy
*
* Removes @root and its children from the tree, freeing any memory
* allocated.
*/
void
g_node_destroy (GNode *root)
{
g_return_if_fail (root != NULL);
if (!G_NODE_IS_ROOT (root))
g_node_unlink (root);
g_nodes_free (root);
}
/**
* g_node_unlink:
* @node: the #GNode to unlink, which becomes the root of a new tree
*
* Unlinks a #GNode from a tree, resulting in two separate trees.
*/
void
g_node_unlink (GNode *node)
{
g_return_if_fail (node != NULL);
if (node->prev)
node->prev->next = node->next;
else if (node->parent)
node->parent->children = node->next;
node->parent = NULL;
if (node->next)
{
node->next->prev = node->prev;
node->next = NULL;
}
node->prev = NULL;
}
/**
* g_node_copy_deep:
* @node: a #GNode
* @copy_func: the function which is called to copy the data inside each node,
* or %NULL to use the original data.
* @data: data to pass to @copy_func
*
* Recursively copies a #GNode and its data.
*
* Return value: a new #GNode containing copies of the data in @node.
*
* Since: 2.4
**/
GNode*
g_node_copy_deep (GNode *node,
GCopyFunc copy_func,
gpointer data)
{
GNode *new_node = NULL;
if (copy_func == NULL)
return g_node_copy (node);
if (node)
{
GNode *child, *new_child;
new_node = g_node_new (copy_func (node->data, data));
for (child = g_node_last_child (node); child; child = child->prev)
{
new_child = g_node_copy_deep (child, copy_func, data);
g_node_prepend (new_node, new_child);
}
}
return new_node;
}
/**
* g_node_copy:
* @node: a #GNode
*
* Recursively copies a #GNode (but does not deep-copy the data inside the
* nodes, see g_node_copy_deep() if you need that).
*
* Returns: a new #GNode containing the same data pointers
*/
GNode*
g_node_copy (GNode *node)
{
GNode *new_node = NULL;
if (node)
{
GNode *child;
new_node = g_node_new (node->data);
for (child = g_node_last_child (node); child; child = child->prev)
g_node_prepend (new_node, g_node_copy (child));
}
return new_node;
}
/**
* g_node_insert:
* @parent: the #GNode to place @node under
* @position: the position to place @node at, with respect to its siblings
* If position is -1, @node is inserted as the last child of @parent
* @node: the #GNode to insert
*
* Inserts a #GNode beneath the parent at the given position.
*
* Returns: the inserted #GNode
*/
GNode*
g_node_insert (GNode *parent,
gint position,
GNode *node)
{
g_return_val_if_fail (parent != NULL, node);
g_return_val_if_fail (node != NULL, node);
g_return_val_if_fail (G_NODE_IS_ROOT (node), node);
if (position > 0)
return g_node_insert_before (parent,
g_node_nth_child (parent, position),
node);
else if (position == 0)
return g_node_prepend (parent, node);
else /* if (position < 0) */
return g_node_append (parent, node);
}
/**
* g_node_insert_before:
* @parent: the #GNode to place @node under
* @sibling: the sibling #GNode to place @node before.
* If sibling is %NULL, the node is inserted as the last child of @parent.
* @node: the #GNode to insert
*
* Inserts a #GNode beneath the parent before the given sibling.
*
* Returns: the inserted #GNode
*/
GNode*
g_node_insert_before (GNode *parent,
GNode *sibling,
GNode *node)
{
g_return_val_if_fail (parent != NULL, node);
g_return_val_if_fail (node != NULL, node);
g_return_val_if_fail (G_NODE_IS_ROOT (node), node);
if (sibling)
g_return_val_if_fail (sibling->parent == parent, node);
node->parent = parent;
if (sibling)
{
if (sibling->prev)
{
node->prev = sibling->prev;
node->prev->next = node;
node->next = sibling;
sibling->prev = node;
}
else
{
node->parent->children = node;
node->next = sibling;
sibling->prev = node;
}
}
else
{
if (parent->children)
{
sibling = parent->children;
while (sibling->next)
sibling = sibling->next;
node->prev = sibling;
sibling->next = node;
}
else
node->parent->children = node;
}
return node;
}
/**
* g_node_insert_after:
* @parent: the #GNode to place @node under
* @sibling: the sibling #GNode to place @node after.
* If sibling is %NULL, the node is inserted as the first child of @parent.
* @node: the #GNode to insert
*
* Inserts a #GNode beneath the parent after the given sibling.
*
* Returns: the inserted #GNode
*/
GNode*
g_node_insert_after (GNode *parent,
GNode *sibling,
GNode *node)
{
g_return_val_if_fail (parent != NULL, node);
g_return_val_if_fail (node != NULL, node);
g_return_val_if_fail (G_NODE_IS_ROOT (node), node);
if (sibling)
g_return_val_if_fail (sibling->parent == parent, node);
node->parent = parent;
if (sibling)
{
if (sibling->next)
{
sibling->next->prev = node;
}
node->next = sibling->next;
node->prev = sibling;
sibling->next = node;
}
else
{
if (parent->children)
{
node->next = parent->children;
parent->children->prev = node;
}
parent->children = node;
}
return node;
}
/**
* g_node_prepend:
* @parent: the #GNode to place the new #GNode under
* @node: the #GNode to insert
*
* Inserts a #GNode as the first child of the given parent.
*
* Returns: the inserted #GNode
*/
GNode*
g_node_prepend (GNode *parent,
GNode *node)
{
g_return_val_if_fail (parent != NULL, node);
return g_node_insert_before (parent, parent->children, node);
}
/**
* g_node_get_root:
* @node: a #GNode
*
* Gets the root of a tree.
*
* Returns: the root of the tree
*/
GNode*
g_node_get_root (GNode *node)
{
g_return_val_if_fail (node != NULL, NULL);
while (node->parent)
node = node->parent;
return node;
}
/**
* g_node_is_ancestor:
* @node: a #GNode
* @descendant: a #GNode
*
* Returns %TRUE if @node is an ancestor of @descendant.
* This is true if node is the parent of @descendant,
* or if node is the grandparent of @descendant etc.
*
* Returns: %TRUE if @node is an ancestor of @descendant
*/
gboolean
g_node_is_ancestor (GNode *node,
GNode *descendant)
{
g_return_val_if_fail (node != NULL, FALSE);
g_return_val_if_fail (descendant != NULL, FALSE);
while (descendant)
{
if (descendant->parent == node)
return TRUE;
descendant = descendant->parent;
}
return FALSE;
}
/**
* g_node_depth:
* @node: a #GNode
*
* Gets the depth of a #GNode.
*
* If @node is %NULL the depth is 0. The root node has a depth of 1.
* For the children of the root node the depth is 2. And so on.
*
* Returns: the depth of the #GNode
*/
guint
g_node_depth (GNode *node)
{
guint depth = 0;
while (node)
{
depth++;
node = node->parent;
}
return depth;
}
/**
* g_node_reverse_children:
* @node: a #GNode.
*
* Reverses the order of the children of a #GNode.
* (It doesn't change the order of the grandchildren.)
*/
void
g_node_reverse_children (GNode *node)
{
GNode *child;
GNode *last;
g_return_if_fail (node != NULL);
child = node->children;
last = NULL;
while (child)
{
last = child;
child = last->next;
last->next = last->prev;
last->prev = child;
}
node->children = last;
}
/**
* g_node_max_height:
* @root: a #GNode
*
* Gets the maximum height of all branches beneath a #GNode.
* This is the maximum distance from the #GNode to all leaf nodes.
*
* If @root is %NULL, 0 is returned. If @root has no children,
* 1 is returned. If @root has children, 2 is returned. And so on.
*
* Returns: the maximum height of the tree beneath @root
*/
guint
g_node_max_height (GNode *root)
{
GNode *child;
guint max_height = 0;
if (!root)
return 0;
child = root->children;
while (child)
{
guint tmp_height;
tmp_height = g_node_max_height (child);
if (tmp_height > max_height)
max_height = tmp_height;
child = child->next;
}
return max_height + 1;
}
static gboolean
g_node_traverse_pre_order (GNode *node,
GTraverseFlags flags,
GNodeTraverseFunc func,
gpointer data)
{
if (node->children)
{
GNode *child;
if ((flags & G_TRAVERSE_NON_LEAFS) &&
func (node, data))
return TRUE;
child = node->children;
while (child)
{
GNode *current;
current = child;
child = current->next;
if (g_node_traverse_pre_order (current, flags, func, data))
return TRUE;
}
}
else if ((flags & G_TRAVERSE_LEAFS) &&
func (node, data))
return TRUE;
return FALSE;
}
static gboolean
g_node_depth_traverse_pre_order (GNode *node,
GTraverseFlags flags,
guint depth,
GNodeTraverseFunc func,
gpointer data)
{
if (node->children)
{
GNode *child;
if ((flags & G_TRAVERSE_NON_LEAFS) &&
func (node, data))
return TRUE;
depth--;
if (!depth)
return FALSE;
child = node->children;
while (child)
{
GNode *current;
current = child;
child = current->next;
if (g_node_depth_traverse_pre_order (current, flags, depth, func, data))
return TRUE;
}
}
else if ((flags & G_TRAVERSE_LEAFS) &&
func (node, data))
return TRUE;
return FALSE;
}
static gboolean
g_node_traverse_post_order (GNode *node,
GTraverseFlags flags,
GNodeTraverseFunc func,
gpointer data)
{
if (node->children)
{
GNode *child;
child = node->children;
while (child)
{
GNode *current;
current = child;
child = current->next;
if (g_node_traverse_post_order (current, flags, func, data))
return TRUE;
}
if ((flags & G_TRAVERSE_NON_LEAFS) &&
func (node, data))
return TRUE;
}
else if ((flags & G_TRAVERSE_LEAFS) &&
func (node, data))
return TRUE;
return FALSE;
}
static gboolean
g_node_depth_traverse_post_order (GNode *node,
GTraverseFlags flags,
guint depth,
GNodeTraverseFunc func,
gpointer data)
{
if (node->children)
{
depth--;
if (depth)
{
GNode *child;
child = node->children;
while (child)
{
GNode *current;
current = child;
child = current->next;
if (g_node_depth_traverse_post_order (current, flags, depth, func, data))
return TRUE;
}
}
if ((flags & G_TRAVERSE_NON_LEAFS) &&
func (node, data))
return TRUE;
}
else if ((flags & G_TRAVERSE_LEAFS) &&
func (node, data))
return TRUE;
return FALSE;
}
static gboolean
g_node_traverse_in_order (GNode *node,
GTraverseFlags flags,
GNodeTraverseFunc func,
gpointer data)
{
if (node->children)
{
GNode *child;
GNode *current;
child = node->children;
current = child;
child = current->next;
if (g_node_traverse_in_order (current, flags, func, data))
return TRUE;
if ((flags & G_TRAVERSE_NON_LEAFS) &&
func (node, data))
return TRUE;
while (child)
{
current = child;
child = current->next;
if (g_node_traverse_in_order (current, flags, func, data))
return TRUE;
}
}
else if ((flags & G_TRAVERSE_LEAFS) &&
func (node, data))
return TRUE;
return FALSE;
}
static gboolean
g_node_depth_traverse_in_order (GNode *node,
GTraverseFlags flags,
guint depth,
GNodeTraverseFunc func,
gpointer data)
{
if (node->children)
{
depth--;
if (depth)
{
GNode *child;
GNode *current;
child = node->children;
current = child;
child = current->next;
if (g_node_depth_traverse_in_order (current, flags, depth, func, data))
return TRUE;
if ((flags & G_TRAVERSE_NON_LEAFS) &&
func (node, data))
return TRUE;
while (child)
{
current = child;
child = current->next;
if (g_node_depth_traverse_in_order (current, flags, depth, func, data))
return TRUE;
}
}
else if ((flags & G_TRAVERSE_NON_LEAFS) &&
func (node, data))
return TRUE;
}
else if ((flags & G_TRAVERSE_LEAFS) &&
func (node, data))
return TRUE;
return FALSE;
}
static gboolean
g_node_traverse_level (GNode *node,
GTraverseFlags flags,
guint level,
GNodeTraverseFunc func,
gpointer data,
gboolean *more_levels)
{
if (level == 0)
{
if (node->children)
{
*more_levels = TRUE;
return (flags & G_TRAVERSE_NON_LEAFS) && func (node, data);
}
else
{
return (flags & G_TRAVERSE_LEAFS) && func (node, data);
}
}
else
{
node = node->children;
while (node)
{
if (g_node_traverse_level (node, flags, level - 1, func, data, more_levels))
return TRUE;
node = node->next;
}
}
return FALSE;
}
static gboolean
g_node_depth_traverse_level (GNode *node,
GTraverseFlags flags,
guint depth,
GNodeTraverseFunc func,
gpointer data)
{
guint level;
gboolean more_levels;
level = 0;
while (level != depth)
{
more_levels = FALSE;
if (g_node_traverse_level (node, flags, level, func, data, &more_levels))
return TRUE;
if (!more_levels)
break;
level++;
}
return FALSE;
}
/**
* g_node_traverse:
* @root: the root #GNode of the tree to traverse
* @order: the order in which nodes are visited - %G_IN_ORDER,
* %G_PRE_ORDER, %G_POST_ORDER, or %G_LEVEL_ORDER.
* @flags: which types of children are to be visited, one of
* %G_TRAVERSE_ALL, %G_TRAVERSE_LEAVES and %G_TRAVERSE_NON_LEAVES
* @max_depth: the maximum depth of the traversal. Nodes below this
* depth will not be visited. If max_depth is -1 all nodes in
* the tree are visited. If depth is 1, only the root is visited.
* If depth is 2, the root and its children are visited. And so on.
* @func: the function to call for each visited #GNode
* @data: user data to pass to the function
*
* Traverses a tree starting at the given root #GNode.
* It calls the given function for each node visited.
* The traversal can be halted at any point by returning %TRUE from @func.
*/
/**
* GTraverseFlags:
* @G_TRAVERSE_LEAVES: only leaf nodes should be visited. This name has
* been introduced in 2.6, for older version use
* %G_TRAVERSE_LEAFS.
* @G_TRAVERSE_NON_LEAVES: only non-leaf nodes should be visited. This
* name has been introduced in 2.6, for older
* version use %G_TRAVERSE_NON_LEAFS.
* @G_TRAVERSE_ALL: all nodes should be visited.
* @G_TRAVERSE_MASK: a mask of all traverse flags.
* @G_TRAVERSE_LEAFS: identical to %G_TRAVERSE_LEAVES.
* @G_TRAVERSE_NON_LEAFS: identical to %G_TRAVERSE_NON_LEAVES.
*
* Specifies which nodes are visited during several of the tree
* functions, including g_node_traverse() and g_node_find().
**/
/**
* GNodeTraverseFunc:
* @node: a #GNode.
* @data: user data passed to g_node_traverse().
* @Returns: %TRUE to stop the traversal.
*
* Specifies the type of function passed to g_node_traverse(). The
* function is called with each of the nodes visited, together with the
* user data passed to g_node_traverse(). If the function returns
* %TRUE, then the traversal is stopped.
**/
void
g_node_traverse (GNode *root,
GTraverseType order,
GTraverseFlags flags,
gint depth,
GNodeTraverseFunc func,
gpointer data)
{
g_return_if_fail (root != NULL);
g_return_if_fail (func != NULL);
g_return_if_fail (order <= G_LEVEL_ORDER);
g_return_if_fail (flags <= G_TRAVERSE_MASK);
g_return_if_fail (depth == -1 || depth > 0);
switch (order)
{
case G_PRE_ORDER:
if (depth < 0)
g_node_traverse_pre_order (root, flags, func, data);
else
g_node_depth_traverse_pre_order (root, flags, depth, func, data);
break;
case G_POST_ORDER:
if (depth < 0)
g_node_traverse_post_order (root, flags, func, data);
else
g_node_depth_traverse_post_order (root, flags, depth, func, data);
break;
case G_IN_ORDER:
if (depth < 0)
g_node_traverse_in_order (root, flags, func, data);
else
g_node_depth_traverse_in_order (root, flags, depth, func, data);
break;
case G_LEVEL_ORDER:
g_node_depth_traverse_level (root, flags, depth, func, data);
break;
}
}
static gboolean
g_node_find_func (GNode *node,
gpointer data)
{
gpointer *d = data;
if (*d != node->data)
return FALSE;
*(++d) = node;
return TRUE;
}
/**
* g_node_find:
* @root: the root #GNode of the tree to search
* @order: the order in which nodes are visited - %G_IN_ORDER,
* %G_PRE_ORDER, %G_POST_ORDER, or %G_LEVEL_ORDER
* @flags: which types of children are to be searched, one of
* %G_TRAVERSE_ALL, %G_TRAVERSE_LEAVES and %G_TRAVERSE_NON_LEAVES
* @data: the data to find
*
* Finds a #GNode in a tree.
*
* Returns: the found #GNode, or %NULL if the data is not found
*/
GNode*
g_node_find (GNode *root,
GTraverseType order,
GTraverseFlags flags,
gpointer data)
{
gpointer d[2];
g_return_val_if_fail (root != NULL, NULL);
g_return_val_if_fail (order <= G_LEVEL_ORDER, NULL);
g_return_val_if_fail (flags <= G_TRAVERSE_MASK, NULL);
d[0] = data;
d[1] = NULL;
g_node_traverse (root, order, flags, -1, g_node_find_func, d);
return d[1];
}
static void
g_node_count_func (GNode *node,
GTraverseFlags flags,
guint *n)
{
if (node->children)
{
GNode *child;
if (flags & G_TRAVERSE_NON_LEAFS)
(*n)++;
child = node->children;
while (child)
{
g_node_count_func (child, flags, n);
child = child->next;
}
}
else if (flags & G_TRAVERSE_LEAFS)
(*n)++;
}
/**
* g_node_n_nodes:
* @root: a #GNode
* @flags: which types of children are to be counted, one of
* %G_TRAVERSE_ALL, %G_TRAVERSE_LEAVES and %G_TRAVERSE_NON_LEAVES
*
* Gets the number of nodes in a tree.
*
* Returns: the number of nodes in the tree
*/
guint
g_node_n_nodes (GNode *root,
GTraverseFlags flags)
{
guint n = 0;
g_return_val_if_fail (root != NULL, 0);
g_return_val_if_fail (flags <= G_TRAVERSE_MASK, 0);
g_node_count_func (root, flags, &n);
return n;
}
/**
* g_node_last_child:
* @node: a #GNode (must not be %NULL)
*
* Gets the last child of a #GNode.
*
* Returns: the last child of @node, or %NULL if @node has no children
*/
GNode*
g_node_last_child (GNode *node)
{
g_return_val_if_fail (node != NULL, NULL);
node = node->children;
if (node)
while (node->next)
node = node->next;
return node;
}
/**
* g_node_nth_child:
* @node: a #GNode
* @n: the index of the desired child
*
* Gets a child of a #GNode, using the given index.
* The first child is at index 0. If the index is
* too big, %NULL is returned.
*
* Returns: the child of @node at index @n
*/
GNode*
g_node_nth_child (GNode *node,
guint n)
{
g_return_val_if_fail (node != NULL, NULL);
node = node->children;
if (node)
while ((n-- > 0) && node)
node = node->next;
return node;
}
/**
* g_node_n_children:
* @node: a #GNode
*
* Gets the number of children of a #GNode.
*
* Returns: the number of children of @node
*/
guint
g_node_n_children (GNode *node)
{
guint n = 0;
g_return_val_if_fail (node != NULL, 0);
node = node->children;
while (node)
{
n++;
node = node->next;
}
return n;
}
/**
* g_node_find_child:
* @node: a #GNode
* @flags: which types of children are to be searched, one of
* %G_TRAVERSE_ALL, %G_TRAVERSE_LEAVES and %G_TRAVERSE_NON_LEAVES
* @data: the data to find
*
* Finds the first child of a #GNode with the given data.
*
* Returns: the found child #GNode, or %NULL if the data is not found
*/
GNode*
g_node_find_child (GNode *node,
GTraverseFlags flags,
gpointer data)
{
g_return_val_if_fail (node != NULL, NULL);
g_return_val_if_fail (flags <= G_TRAVERSE_MASK, NULL);
node = node->children;
while (node)
{
if (node->data == data)
{
if (G_NODE_IS_LEAF (node))
{
if (flags & G_TRAVERSE_LEAFS)
return node;
}
else
{
if (flags & G_TRAVERSE_NON_LEAFS)
return node;
}
}
node = node->next;
}
return NULL;
}
/**
* g_node_child_position:
* @node: a #GNode
* @child: a child of @node
*
* Gets the position of a #GNode with respect to its siblings.
* @child must be a child of @node. The first child is numbered 0,
* the second 1, and so on.
*
* Returns: the position of @child with respect to its siblings
*/
gint
g_node_child_position (GNode *node,
GNode *child)
{
guint n = 0;
g_return_val_if_fail (node != NULL, -1);
g_return_val_if_fail (child != NULL, -1);
g_return_val_if_fail (child->parent == node, -1);
node = node->children;
while (node)
{
if (node == child)
return n;
n++;
node = node->next;
}
return -1;
}
/**
* g_node_child_index:
* @node: a #GNode
* @data: the data to find
*
* Gets the position of the first child of a #GNode
* which contains the given data.
*
* Returns: the index of the child of @node which contains
* @data, or -1 if the data is not found
*/
gint
g_node_child_index (GNode *node,
gpointer data)
{
guint n = 0;
g_return_val_if_fail (node != NULL, -1);
node = node->children;
while (node)
{
if (node->data == data)
return n;
n++;
node = node->next;
}
return -1;
}
/**
* g_node_first_sibling:
* @node: a #GNode
*
* Gets the first sibling of a #GNode.
* This could possibly be the node itself.
*
* Returns: the first sibling of @node
*/
GNode*
g_node_first_sibling (GNode *node)
{
g_return_val_if_fail (node != NULL, NULL);
if (node->parent)
return node->parent->children;
while (node->prev)
node = node->prev;
return node;
}
/**
* g_node_last_sibling:
* @node: a #GNode
*
* Gets the last sibling of a #GNode.
* This could possibly be the node itself.
*
* Returns: the last sibling of @node
*/
GNode*
g_node_last_sibling (GNode *node)
{
g_return_val_if_fail (node != NULL, NULL);
while (node->next)
node = node->next;
return node;
}
/**
* g_node_children_foreach:
* @node: a #GNode
* @flags: which types of children are to be visited, one of
* %G_TRAVERSE_ALL, %G_TRAVERSE_LEAVES and %G_TRAVERSE_NON_LEAVES
* @func: the function to call for each visited node
* @data: user data to pass to the function
*
* Calls a function for each of the children of a #GNode.
* Note that it doesn't descend beneath the child nodes.
*/
/**
* GNodeForeachFunc:
* @node: a #GNode.
* @data: user data passed to g_node_children_foreach().
*
* Specifies the type of function passed to g_node_children_foreach().
* The function is called with each child node, together with the user
* data passed to g_node_children_foreach().
**/
void
g_node_children_foreach (GNode *node,
GTraverseFlags flags,
GNodeForeachFunc func,
gpointer data)
{
g_return_if_fail (node != NULL);
g_return_if_fail (flags <= G_TRAVERSE_MASK);
g_return_if_fail (func != NULL);
node = node->children;
while (node)
{
GNode *current;
current = node;
node = current->next;
if (G_NODE_IS_LEAF (current))
{
if (flags & G_TRAVERSE_LEAFS)
func (current, data);
}
else
{
if (flags & G_TRAVERSE_NON_LEAFS)
func (current, data);
}
}
}