mirror of
https://gitlab.gnome.org/GNOME/glib.git
synced 2025-01-03 19:36:16 +01:00
68a4e273b4
It might not be immediately obvious that this is the case. Let's record it in the description of `GTimeVal` itself and also in `g_time_val_from_iso8601`. We also drop an incorrect statement in the documentation for `g_time_val_from_iso8601` stating that years up to 3000 were supported; this is also not true for the same reason. Related: #1509
610 lines
15 KiB
C
610 lines
15 KiB
C
/* GLIB - Library of useful routines for C programming
|
||
* Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald
|
||
*
|
||
* This library is free software; you can redistribute it and/or
|
||
* modify it under the terms of the GNU Lesser General Public
|
||
* License as published by the Free Software Foundation; either
|
||
* version 2.1 of the License, or (at your option) any later version.
|
||
*
|
||
* This library is distributed in the hope that it will be useful,
|
||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
* Lesser General Public License for more details.
|
||
*
|
||
* You should have received a copy of the GNU Lesser General Public
|
||
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
||
*/
|
||
|
||
/*
|
||
* Modified by the GLib Team and others 1997-2000. See the AUTHORS
|
||
* file for a list of people on the GLib Team. See the ChangeLog
|
||
* files for a list of changes. These files are distributed with
|
||
* GLib at ftp://ftp.gtk.org/pub/gtk/.
|
||
*/
|
||
|
||
/*
|
||
* MT safe
|
||
*/
|
||
|
||
#include "config.h"
|
||
#include "glibconfig.h"
|
||
|
||
#include <stdlib.h>
|
||
|
||
#ifdef G_OS_UNIX
|
||
#include <unistd.h>
|
||
#endif /* G_OS_UNIX */
|
||
|
||
#ifdef HAVE_SYS_TIME_H
|
||
#include <sys/time.h>
|
||
#endif
|
||
#include <time.h>
|
||
#ifndef G_OS_WIN32
|
||
#include <errno.h>
|
||
#endif /* G_OS_WIN32 */
|
||
|
||
#ifdef G_OS_WIN32
|
||
#include <windows.h>
|
||
#endif /* G_OS_WIN32 */
|
||
|
||
#include "gtimer.h"
|
||
|
||
#include "gmem.h"
|
||
#include "gstrfuncs.h"
|
||
#include "gtestutils.h"
|
||
#include "gmain.h"
|
||
|
||
/**
|
||
* SECTION:timers
|
||
* @title: Timers
|
||
* @short_description: keep track of elapsed time
|
||
*
|
||
* #GTimer records a start time, and counts microseconds elapsed since
|
||
* that time. This is done somewhat differently on different platforms,
|
||
* and can be tricky to get exactly right, so #GTimer provides a
|
||
* portable/convenient interface.
|
||
**/
|
||
|
||
/**
|
||
* GTimer:
|
||
*
|
||
* Opaque datatype that records a start time.
|
||
**/
|
||
struct _GTimer
|
||
{
|
||
guint64 start;
|
||
guint64 end;
|
||
|
||
guint active : 1;
|
||
};
|
||
|
||
/**
|
||
* g_timer_new:
|
||
*
|
||
* Creates a new timer, and starts timing (i.e. g_timer_start() is
|
||
* implicitly called for you).
|
||
*
|
||
* Returns: a new #GTimer.
|
||
**/
|
||
GTimer*
|
||
g_timer_new (void)
|
||
{
|
||
GTimer *timer;
|
||
|
||
timer = g_new (GTimer, 1);
|
||
timer->active = TRUE;
|
||
|
||
timer->start = g_get_monotonic_time ();
|
||
|
||
return timer;
|
||
}
|
||
|
||
/**
|
||
* g_timer_destroy:
|
||
* @timer: a #GTimer to destroy.
|
||
*
|
||
* Destroys a timer, freeing associated resources.
|
||
**/
|
||
void
|
||
g_timer_destroy (GTimer *timer)
|
||
{
|
||
g_return_if_fail (timer != NULL);
|
||
|
||
g_free (timer);
|
||
}
|
||
|
||
/**
|
||
* g_timer_start:
|
||
* @timer: a #GTimer.
|
||
*
|
||
* Marks a start time, so that future calls to g_timer_elapsed() will
|
||
* report the time since g_timer_start() was called. g_timer_new()
|
||
* automatically marks the start time, so no need to call
|
||
* g_timer_start() immediately after creating the timer.
|
||
**/
|
||
void
|
||
g_timer_start (GTimer *timer)
|
||
{
|
||
g_return_if_fail (timer != NULL);
|
||
|
||
timer->active = TRUE;
|
||
|
||
timer->start = g_get_monotonic_time ();
|
||
}
|
||
|
||
/**
|
||
* g_timer_stop:
|
||
* @timer: a #GTimer.
|
||
*
|
||
* Marks an end time, so calls to g_timer_elapsed() will return the
|
||
* difference between this end time and the start time.
|
||
**/
|
||
void
|
||
g_timer_stop (GTimer *timer)
|
||
{
|
||
g_return_if_fail (timer != NULL);
|
||
|
||
timer->active = FALSE;
|
||
|
||
timer->end = g_get_monotonic_time ();
|
||
}
|
||
|
||
/**
|
||
* g_timer_reset:
|
||
* @timer: a #GTimer.
|
||
*
|
||
* This function is useless; it's fine to call g_timer_start() on an
|
||
* already-started timer to reset the start time, so g_timer_reset()
|
||
* serves no purpose.
|
||
**/
|
||
void
|
||
g_timer_reset (GTimer *timer)
|
||
{
|
||
g_return_if_fail (timer != NULL);
|
||
|
||
timer->start = g_get_monotonic_time ();
|
||
}
|
||
|
||
/**
|
||
* g_timer_continue:
|
||
* @timer: a #GTimer.
|
||
*
|
||
* Resumes a timer that has previously been stopped with
|
||
* g_timer_stop(). g_timer_stop() must be called before using this
|
||
* function.
|
||
*
|
||
* Since: 2.4
|
||
**/
|
||
void
|
||
g_timer_continue (GTimer *timer)
|
||
{
|
||
guint64 elapsed;
|
||
|
||
g_return_if_fail (timer != NULL);
|
||
g_return_if_fail (timer->active == FALSE);
|
||
|
||
/* Get elapsed time and reset timer start time
|
||
* to the current time minus the previously
|
||
* elapsed interval.
|
||
*/
|
||
|
||
elapsed = timer->end - timer->start;
|
||
|
||
timer->start = g_get_monotonic_time ();
|
||
|
||
timer->start -= elapsed;
|
||
|
||
timer->active = TRUE;
|
||
}
|
||
|
||
/**
|
||
* g_timer_elapsed:
|
||
* @timer: a #GTimer.
|
||
* @microseconds: return location for the fractional part of seconds
|
||
* elapsed, in microseconds (that is, the total number
|
||
* of microseconds elapsed, modulo 1000000), or %NULL
|
||
*
|
||
* If @timer has been started but not stopped, obtains the time since
|
||
* the timer was started. If @timer has been stopped, obtains the
|
||
* elapsed time between the time it was started and the time it was
|
||
* stopped. The return value is the number of seconds elapsed,
|
||
* including any fractional part. The @microseconds out parameter is
|
||
* essentially useless.
|
||
*
|
||
* Returns: seconds elapsed as a floating point value, including any
|
||
* fractional part.
|
||
**/
|
||
gdouble
|
||
g_timer_elapsed (GTimer *timer,
|
||
gulong *microseconds)
|
||
{
|
||
gdouble total;
|
||
gint64 elapsed;
|
||
|
||
g_return_val_if_fail (timer != NULL, 0);
|
||
|
||
if (timer->active)
|
||
timer->end = g_get_monotonic_time ();
|
||
|
||
elapsed = timer->end - timer->start;
|
||
|
||
total = elapsed / 1e6;
|
||
|
||
if (microseconds)
|
||
*microseconds = elapsed % 1000000;
|
||
|
||
return total;
|
||
}
|
||
|
||
/**
|
||
* g_usleep:
|
||
* @microseconds: number of microseconds to pause
|
||
*
|
||
* Pauses the current thread for the given number of microseconds.
|
||
*
|
||
* There are 1 million microseconds per second (represented by the
|
||
* #G_USEC_PER_SEC macro). g_usleep() may have limited precision,
|
||
* depending on hardware and operating system; don't rely on the exact
|
||
* length of the sleep.
|
||
*/
|
||
void
|
||
g_usleep (gulong microseconds)
|
||
{
|
||
#ifdef G_OS_WIN32
|
||
/* Round up to the next millisecond */
|
||
Sleep (microseconds ? (1 + (microseconds - 1) / 1000) : 0);
|
||
#else
|
||
struct timespec request, remaining;
|
||
request.tv_sec = microseconds / G_USEC_PER_SEC;
|
||
request.tv_nsec = 1000 * (microseconds % G_USEC_PER_SEC);
|
||
while (nanosleep (&request, &remaining) == -1 && errno == EINTR)
|
||
request = remaining;
|
||
#endif
|
||
}
|
||
|
||
/**
|
||
* g_time_val_add:
|
||
* @time_: a #GTimeVal
|
||
* @microseconds: number of microseconds to add to @time
|
||
*
|
||
* Adds the given number of microseconds to @time_. @microseconds can
|
||
* also be negative to decrease the value of @time_.
|
||
**/
|
||
void
|
||
g_time_val_add (GTimeVal *time_, glong microseconds)
|
||
{
|
||
g_return_if_fail (time_->tv_usec >= 0 && time_->tv_usec < G_USEC_PER_SEC);
|
||
|
||
if (microseconds >= 0)
|
||
{
|
||
time_->tv_usec += microseconds % G_USEC_PER_SEC;
|
||
time_->tv_sec += microseconds / G_USEC_PER_SEC;
|
||
if (time_->tv_usec >= G_USEC_PER_SEC)
|
||
{
|
||
time_->tv_usec -= G_USEC_PER_SEC;
|
||
time_->tv_sec++;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
microseconds *= -1;
|
||
time_->tv_usec -= microseconds % G_USEC_PER_SEC;
|
||
time_->tv_sec -= microseconds / G_USEC_PER_SEC;
|
||
if (time_->tv_usec < 0)
|
||
{
|
||
time_->tv_usec += G_USEC_PER_SEC;
|
||
time_->tv_sec--;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* converts a broken down date representation, relative to UTC,
|
||
* to a timestamp; it uses timegm() if it's available.
|
||
*/
|
||
static time_t
|
||
mktime_utc (struct tm *tm)
|
||
{
|
||
time_t retval;
|
||
|
||
#ifndef HAVE_TIMEGM
|
||
static const gint days_before[] =
|
||
{
|
||
0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
|
||
};
|
||
#endif
|
||
|
||
#ifndef HAVE_TIMEGM
|
||
if (tm->tm_mon < 0 || tm->tm_mon > 11)
|
||
return (time_t) -1;
|
||
|
||
retval = (tm->tm_year - 70) * 365;
|
||
retval += (tm->tm_year - 68) / 4;
|
||
retval += days_before[tm->tm_mon] + tm->tm_mday - 1;
|
||
|
||
if (tm->tm_year % 4 == 0 && tm->tm_mon < 2)
|
||
retval -= 1;
|
||
|
||
retval = ((((retval * 24) + tm->tm_hour) * 60) + tm->tm_min) * 60 + tm->tm_sec;
|
||
#else
|
||
retval = timegm (tm);
|
||
#endif /* !HAVE_TIMEGM */
|
||
|
||
return retval;
|
||
}
|
||
|
||
/**
|
||
* g_time_val_from_iso8601:
|
||
* @iso_date: an ISO 8601 encoded date string
|
||
* @time_: (out): a #GTimeVal
|
||
*
|
||
* Converts a string containing an ISO 8601 encoded date and time
|
||
* to a #GTimeVal and puts it into @time_.
|
||
*
|
||
* @iso_date must include year, month, day, hours, minutes, and
|
||
* seconds. It can optionally include fractions of a second and a time
|
||
* zone indicator. (In the absence of any time zone indication, the
|
||
* timestamp is assumed to be in local time.)
|
||
*
|
||
* Any leading or trailing space in @iso_date is ignored.
|
||
*
|
||
* Returns: %TRUE if the conversion was successful.
|
||
*
|
||
* Since: 2.12
|
||
*/
|
||
gboolean
|
||
g_time_val_from_iso8601 (const gchar *iso_date,
|
||
GTimeVal *time_)
|
||
{
|
||
struct tm tm = {0};
|
||
long val;
|
||
long mday, mon, year;
|
||
long hour, min, sec;
|
||
|
||
g_return_val_if_fail (iso_date != NULL, FALSE);
|
||
g_return_val_if_fail (time_ != NULL, FALSE);
|
||
|
||
/* Ensure that the first character is a digit, the first digit
|
||
* of the date, otherwise we don't have an ISO 8601 date
|
||
*/
|
||
while (g_ascii_isspace (*iso_date))
|
||
iso_date++;
|
||
|
||
if (*iso_date == '\0')
|
||
return FALSE;
|
||
|
||
if (!g_ascii_isdigit (*iso_date) && *iso_date != '+')
|
||
return FALSE;
|
||
|
||
val = strtoul (iso_date, (char **)&iso_date, 10);
|
||
if (*iso_date == '-')
|
||
{
|
||
/* YYYY-MM-DD */
|
||
year = val;
|
||
iso_date++;
|
||
|
||
mon = strtoul (iso_date, (char **)&iso_date, 10);
|
||
if (*iso_date++ != '-')
|
||
return FALSE;
|
||
|
||
mday = strtoul (iso_date, (char **)&iso_date, 10);
|
||
}
|
||
else
|
||
{
|
||
/* YYYYMMDD */
|
||
mday = val % 100;
|
||
mon = (val % 10000) / 100;
|
||
year = val / 10000;
|
||
}
|
||
|
||
/* Validation. */
|
||
if (year < 1900 || year > G_MAXINT)
|
||
return FALSE;
|
||
if (mon < 1 || mon > 12)
|
||
return FALSE;
|
||
if (mday < 1 || mday > 31)
|
||
return FALSE;
|
||
|
||
tm.tm_mday = mday;
|
||
tm.tm_mon = mon - 1;
|
||
tm.tm_year = year - 1900;
|
||
|
||
if (*iso_date != 'T')
|
||
return FALSE;
|
||
|
||
iso_date++;
|
||
|
||
/* If there is a 'T' then there has to be a time */
|
||
if (!g_ascii_isdigit (*iso_date))
|
||
return FALSE;
|
||
|
||
val = strtoul (iso_date, (char **)&iso_date, 10);
|
||
if (*iso_date == ':')
|
||
{
|
||
/* hh:mm:ss */
|
||
hour = val;
|
||
iso_date++;
|
||
min = strtoul (iso_date, (char **)&iso_date, 10);
|
||
|
||
if (*iso_date++ != ':')
|
||
return FALSE;
|
||
|
||
sec = strtoul (iso_date, (char **)&iso_date, 10);
|
||
}
|
||
else
|
||
{
|
||
/* hhmmss */
|
||
sec = val % 100;
|
||
min = (val % 10000) / 100;
|
||
hour = val / 10000;
|
||
}
|
||
|
||
/* Validation. Allow up to 2 leap seconds when validating @sec. */
|
||
if (hour > 23)
|
||
return FALSE;
|
||
if (min > 59)
|
||
return FALSE;
|
||
if (sec > 61)
|
||
return FALSE;
|
||
|
||
tm.tm_hour = hour;
|
||
tm.tm_min = min;
|
||
tm.tm_sec = sec;
|
||
|
||
time_->tv_usec = 0;
|
||
|
||
if (*iso_date == ',' || *iso_date == '.')
|
||
{
|
||
glong mul = 100000;
|
||
|
||
while (mul >= 1 && g_ascii_isdigit (*++iso_date))
|
||
{
|
||
time_->tv_usec += (*iso_date - '0') * mul;
|
||
mul /= 10;
|
||
}
|
||
|
||
/* Skip any remaining digits after we’ve reached our limit of precision. */
|
||
while (g_ascii_isdigit (*iso_date))
|
||
iso_date++;
|
||
}
|
||
|
||
/* Now parse the offset and convert tm to a time_t */
|
||
if (*iso_date == 'Z')
|
||
{
|
||
iso_date++;
|
||
time_->tv_sec = mktime_utc (&tm);
|
||
}
|
||
else if (*iso_date == '+' || *iso_date == '-')
|
||
{
|
||
gint sign = (*iso_date == '+') ? -1 : 1;
|
||
|
||
val = strtoul (iso_date + 1, (char **)&iso_date, 10);
|
||
|
||
if (*iso_date == ':')
|
||
{
|
||
/* hh:mm */
|
||
hour = val;
|
||
min = strtoul (iso_date + 1, (char **)&iso_date, 10);
|
||
}
|
||
else
|
||
{
|
||
/* hhmm */
|
||
hour = val / 100;
|
||
min = val % 100;
|
||
}
|
||
|
||
if (hour > 99)
|
||
return FALSE;
|
||
if (min > 59)
|
||
return FALSE;
|
||
|
||
time_->tv_sec = mktime_utc (&tm) + (time_t) (60 * (gint64) (60 * hour + min) * sign);
|
||
}
|
||
else
|
||
{
|
||
/* No "Z" or offset, so local time */
|
||
tm.tm_isdst = -1; /* locale selects DST */
|
||
time_->tv_sec = mktime (&tm);
|
||
}
|
||
|
||
while (g_ascii_isspace (*iso_date))
|
||
iso_date++;
|
||
|
||
return *iso_date == '\0';
|
||
}
|
||
|
||
/**
|
||
* g_time_val_to_iso8601:
|
||
* @time_: a #GTimeVal
|
||
*
|
||
* Converts @time_ into an RFC 3339 encoded string, relative to the
|
||
* Coordinated Universal Time (UTC). This is one of the many formats
|
||
* allowed by ISO 8601.
|
||
*
|
||
* ISO 8601 allows a large number of date/time formats, with or without
|
||
* punctuation and optional elements. The format returned by this function
|
||
* is a complete date and time, with optional punctuation included, the
|
||
* UTC time zone represented as "Z", and the @tv_usec part included if
|
||
* and only if it is nonzero, i.e. either
|
||
* "YYYY-MM-DDTHH:MM:SSZ" or "YYYY-MM-DDTHH:MM:SS.fffffZ".
|
||
*
|
||
* This corresponds to the Internet date/time format defined by
|
||
* [RFC 3339](https://www.ietf.org/rfc/rfc3339.txt),
|
||
* and to either of the two most-precise formats defined by
|
||
* the W3C Note
|
||
* [Date and Time Formats](http://www.w3.org/TR/NOTE-datetime-19980827).
|
||
* Both of these documents are profiles of ISO 8601.
|
||
*
|
||
* Use g_date_time_format() or g_strdup_printf() if a different
|
||
* variation of ISO 8601 format is required.
|
||
*
|
||
* If @time_ represents a date which is too large to fit into a `struct tm`,
|
||
* %NULL will be returned. This is platform dependent. Note also that since
|
||
* `GTimeVal` stores the number of seconds as a `glong`, on 32-bit systems it
|
||
* is subject to the year 2038 problem.
|
||
*
|
||
* The return value of g_time_val_to_iso8601() has been nullable since GLib
|
||
* 2.54; before then, GLib would crash under the same conditions.
|
||
*
|
||
* Returns: (nullable): a newly allocated string containing an ISO 8601 date,
|
||
* or %NULL if @time_ was too large
|
||
*
|
||
* Since: 2.12
|
||
*/
|
||
gchar *
|
||
g_time_val_to_iso8601 (GTimeVal *time_)
|
||
{
|
||
gchar *retval;
|
||
struct tm *tm;
|
||
#ifdef HAVE_GMTIME_R
|
||
struct tm tm_;
|
||
#endif
|
||
time_t secs;
|
||
|
||
g_return_val_if_fail (time_->tv_usec >= 0 && time_->tv_usec < G_USEC_PER_SEC, NULL);
|
||
|
||
secs = time_->tv_sec;
|
||
#ifdef _WIN32
|
||
tm = gmtime (&secs);
|
||
#else
|
||
#ifdef HAVE_GMTIME_R
|
||
tm = gmtime_r (&secs, &tm_);
|
||
#else
|
||
tm = gmtime (&secs);
|
||
#endif
|
||
#endif
|
||
|
||
/* If the gmtime() call has failed, time_->tv_sec is too big. */
|
||
if (tm == NULL)
|
||
return NULL;
|
||
|
||
if (time_->tv_usec != 0)
|
||
{
|
||
/* ISO 8601 date and time format, with fractionary seconds:
|
||
* YYYY-MM-DDTHH:MM:SS.MMMMMMZ
|
||
*/
|
||
retval = g_strdup_printf ("%4d-%02d-%02dT%02d:%02d:%02d.%06ldZ",
|
||
tm->tm_year + 1900,
|
||
tm->tm_mon + 1,
|
||
tm->tm_mday,
|
||
tm->tm_hour,
|
||
tm->tm_min,
|
||
tm->tm_sec,
|
||
time_->tv_usec);
|
||
}
|
||
else
|
||
{
|
||
/* ISO 8601 date and time format:
|
||
* YYYY-MM-DDTHH:MM:SSZ
|
||
*/
|
||
retval = g_strdup_printf ("%4d-%02d-%02dT%02d:%02d:%02dZ",
|
||
tm->tm_year + 1900,
|
||
tm->tm_mon + 1,
|
||
tm->tm_mday,
|
||
tm->tm_hour,
|
||
tm->tm_min,
|
||
tm->tm_sec);
|
||
}
|
||
|
||
return retval;
|
||
}
|