glib/glib/gthread-win32.c
Ryan Lortie 541693f42d winxp threads: fix some condition variable races
There are some races in the condition variable emulation code for
Windows XP with respect to timeouts while waiting.

First, in the event of a timeout, we never remove the waiter from the
condition variable.  This can cause crashes later.  That problem was
found by Rodrigo Rivas Costa.

Second, if the waiting thread times out and exits just as we were about
to call SetEvent() on its waiter event, we could end up trying to access
the waiter after it was closed/freed.  We need to hold on to the lock a
little bit longer to ensure that that's not possible.

https://bugzilla.gnome.org/show_bug.cgi?id=666551
2011-12-19 17:40:08 -05:00

1036 lines
25 KiB
C

/* GLIB - Library of useful routines for C programming
* Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald
*
* gthread.c: solaris thread system implementation
* Copyright 1998-2001 Sebastian Wilhelmi; University of Karlsruhe
* Copyright 2001 Hans Breuer
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
/*
* Modified by the GLib Team and others 1997-2000. See the AUTHORS
* file for a list of people on the GLib Team. See the ChangeLog
* files for a list of changes. These files are distributed with
* GLib at ftp://ftp.gtk.org/pub/gtk/.
*/
/* The GMutex and GCond implementations in this file are some of the
* lowest-level code in GLib. All other parts of GLib (messages,
* memory, slices, etc) assume that they can freely use these facilities
* without risking recursion.
*
* As such, these functions are NOT permitted to call any other part of
* GLib.
*
* The thread manipulation functions (create, exit, join, etc.) have
* more freedom -- they can do as they please.
*/
#include "config.h"
#include "glib.h"
#include "gthread.h"
#include "gthreadprivate.h"
#include "gslice.h"
#include <windows.h>
#include <process.h>
#include <stdlib.h>
#include <stdio.h>
static void
g_thread_abort (gint status,
const gchar *function)
{
fprintf (stderr, "GLib (gthread-win32.c): Unexpected error from C library during '%s': %s. Aborting.\n",
strerror (status), function);
abort ();
}
/* Starting with Vista and Windows 2008, we have access to the
* CONDITION_VARIABLE and SRWLock primatives on Windows, which are
* pretty reasonable approximations of the primatives specified in
* POSIX 2001 (pthread_cond_t and pthread_mutex_t respectively).
*
* Both of these types are structs containing a single pointer. That
* pointer is used as an atomic bitfield to support user-space mutexes
* that only get the kernel involved in cases of contention (similar
* to how futex()-based mutexes work on Linux). The biggest advantage
* of these new types is that they can be statically initialised to
* zero. That means that they are completely ABI compatible with our
* GMutex and GCond APIs.
*
* Unfortunately, Windows XP lacks these facilities and GLib still
* needs to support Windows XP. Our approach here is as follows:
*
* - avoid depending on structure declarations at compile-time by
* declaring our own GMutex and GCond strutures to be
* ABI-compatible with SRWLock and CONDITION_VARIABLE and using
* those instead
*
* - avoid a hard dependency on the symbols used to manipulate these
* structures by doing a dynamic lookup of those symbols at
* runtime
*
* - if the symbols are not available, emulate them using other
* primatives
*
* Using this approach also allows us to easily build a GLib that lacks
* support for Windows XP or to remove this code entirely when XP is no
* longer supported (end of line is currently April 8, 2014).
*/
typedef struct
{
void (__stdcall * CallThisOnThreadExit) (void); /* fake */
void (__stdcall * InitializeSRWLock) (gpointer lock);
void (__stdcall * DeleteSRWLock) (gpointer lock); /* fake */
void (__stdcall * AcquireSRWLockExclusive) (gpointer lock);
BOOLEAN (__stdcall * TryAcquireSRWLockExclusive) (gpointer lock);
void (__stdcall * ReleaseSRWLockExclusive) (gpointer lock);
void (__stdcall * AcquireSRWLockShared) (gpointer lock);
BOOLEAN (__stdcall * TryAcquireSRWLockShared) (gpointer lock);
void (__stdcall * ReleaseSRWLockShared) (gpointer lock);
void (__stdcall * InitializeConditionVariable) (gpointer cond);
void (__stdcall * DeleteConditionVariable) (gpointer cond); /* fake */
BOOL (__stdcall * SleepConditionVariableSRW) (gpointer cond,
gpointer lock,
DWORD timeout,
ULONG flags);
void (__stdcall * WakeAllConditionVariable) (gpointer cond);
void (__stdcall * WakeConditionVariable) (gpointer cond);
} GThreadImplVtable;
static GThreadImplVtable g_thread_impl_vtable;
/* {{{1 GMutex */
void
g_mutex_init (GMutex *mutex)
{
g_thread_impl_vtable.InitializeSRWLock (mutex);
}
void
g_mutex_clear (GMutex *mutex)
{
if (g_thread_impl_vtable.DeleteSRWLock != NULL)
g_thread_impl_vtable.DeleteSRWLock (mutex);
}
void
g_mutex_lock (GMutex *mutex)
{
g_thread_impl_vtable.AcquireSRWLockExclusive (mutex);
}
gboolean
g_mutex_trylock (GMutex *mutex)
{
return g_thread_impl_vtable.TryAcquireSRWLockExclusive (mutex);
}
void
g_mutex_unlock (GMutex *mutex)
{
g_thread_impl_vtable.ReleaseSRWLockExclusive (mutex);
}
/* {{{1 GRecMutex */
static CRITICAL_SECTION *
g_rec_mutex_impl_new (void)
{
CRITICAL_SECTION *cs;
cs = g_slice_new (CRITICAL_SECTION);
InitializeCriticalSection (cs);
return cs;
}
static void
g_rec_mutex_impl_free (CRITICAL_SECTION *cs)
{
DeleteCriticalSection (cs);
g_slice_free (CRITICAL_SECTION, cs);
}
static CRITICAL_SECTION *
g_rec_mutex_get_impl (GRecMutex *mutex)
{
CRITICAL_SECTION *impl = mutex->p;
if G_UNLIKELY (mutex->p == NULL)
{
impl = g_rec_mutex_impl_new ();
if (InterlockedCompareExchangePointer (&mutex->p, impl, NULL) != NULL)
g_rec_mutex_impl_free (impl);
impl = mutex->p;
}
return impl;
}
void
g_rec_mutex_init (GRecMutex *mutex)
{
mutex->p = g_rec_mutex_impl_new ();
}
void
g_rec_mutex_clear (GRecMutex *mutex)
{
g_rec_mutex_impl_free (mutex->p);
}
void
g_rec_mutex_lock (GRecMutex *mutex)
{
EnterCriticalSection (g_rec_mutex_get_impl (mutex));
}
void
g_rec_mutex_unlock (GRecMutex *mutex)
{
LeaveCriticalSection (mutex->p);
}
gboolean
g_rec_mutex_trylock (GRecMutex *mutex)
{
return TryEnterCriticalSection (g_rec_mutex_get_impl (mutex));
}
/* {{{1 GRWLock */
void
g_rw_lock_init (GRWLock *lock)
{
g_thread_impl_vtable.InitializeSRWLock (lock);
}
void
g_rw_lock_clear (GRWLock *lock)
{
if (g_thread_impl_vtable.DeleteSRWLock != NULL)
g_thread_impl_vtable.DeleteSRWLock (lock);
}
void
g_rw_lock_writer_lock (GRWLock *lock)
{
g_thread_impl_vtable.AcquireSRWLockExclusive (lock);
}
gboolean
g_rw_lock_writer_trylock (GRWLock *lock)
{
return g_thread_impl_vtable.TryAcquireSRWLockExclusive (lock);
}
void
g_rw_lock_writer_unlock (GRWLock *lock)
{
g_thread_impl_vtable.ReleaseSRWLockExclusive (lock);
}
void
g_rw_lock_reader_lock (GRWLock *lock)
{
g_thread_impl_vtable.AcquireSRWLockShared (lock);
}
gboolean
g_rw_lock_reader_trylock (GRWLock *lock)
{
return g_thread_impl_vtable.TryAcquireSRWLockShared (lock);
}
void
g_rw_lock_reader_unlock (GRWLock *lock)
{
g_thread_impl_vtable.ReleaseSRWLockShared (lock);
}
/* {{{1 GCond */
void
g_cond_init (GCond *cond)
{
g_thread_impl_vtable.InitializeConditionVariable (cond);
}
void
g_cond_clear (GCond *cond)
{
if (g_thread_impl_vtable.DeleteConditionVariable)
g_thread_impl_vtable.DeleteConditionVariable (cond);
}
void
g_cond_signal (GCond *cond)
{
g_thread_impl_vtable.WakeConditionVariable (cond);
}
void
g_cond_broadcast (GCond *cond)
{
g_thread_impl_vtable.WakeAllConditionVariable (cond);
}
void
g_cond_wait (GCond *cond,
GMutex *entered_mutex)
{
g_thread_impl_vtable.SleepConditionVariableSRW (cond, entered_mutex, INFINITE, 0);
}
gboolean
g_cond_wait_until (GCond *cond,
GMutex *entered_mutex,
gint64 end_time)
{
gint64 span;
FILETIME ft;
gint64 now;
GetSystemTimeAsFileTime (&ft);
memmove (&now, &ft, sizeof (FILETIME));
now -= G_GINT64_CONSTANT (116444736000000000);
now /= 10;
span = end_time - now;
if G_UNLIKELY (span < 0)
span = 0;
if G_UNLIKELY (span > G_GINT64_CONSTANT (1000) * G_MAXINT32)
span = INFINITE;
return g_thread_impl_vtable.SleepConditionVariableSRW (cond, entered_mutex, span / 1000, 0);
}
/* {{{1 GPrivate */
typedef struct _GPrivateDestructor GPrivateDestructor;
struct _GPrivateDestructor
{
DWORD index;
GDestroyNotify notify;
GPrivateDestructor *next;
};
static GPrivateDestructor * volatile g_private_destructors;
static CRITICAL_SECTION g_private_lock;
static DWORD
g_private_get_impl (GPrivate *key)
{
DWORD impl = (DWORD) key->p;
if G_UNLIKELY (impl == 0)
{
EnterCriticalSection (&g_private_lock);
impl = (DWORD) key->p;
if (impl == 0)
{
GPrivateDestructor *destructor;
impl = TlsAlloc ();
if (impl == TLS_OUT_OF_INDEXES)
g_thread_abort (0, "TlsAlloc");
if (key->notify != NULL)
{
destructor = malloc (sizeof (GPrivateDestructor));
if G_UNLIKELY (destructor == NULL)
g_thread_abort (errno, "malloc");
destructor->index = impl;
destructor->notify = key->notify;
destructor->next = g_private_destructors;
/* We need to do an atomic store due to the unlocked
* access to the destructor list from the thread exit
* function.
*
* It can double as a sanity check...
*/
if (InterlockedCompareExchangePointer (&g_private_destructors, destructor,
destructor->next) != destructor->next)
g_thread_abort (0, "g_private_get_impl(1)");
}
/* Ditto, due to the unlocked access on the fast path */
if (InterlockedCompareExchangePointer (&key->p, impl, NULL) != NULL)
g_thread_abort (0, "g_private_get_impl(2)");
}
LeaveCriticalSection (&g_private_lock);
}
return impl;
}
gpointer
g_private_get (GPrivate *key)
{
return TlsGetValue (g_private_get_impl (key));
}
void
g_private_set (GPrivate *key,
gpointer value)
{
TlsSetValue (g_private_get_impl (key), value);
}
void
g_private_replace (GPrivate *key,
gpointer value)
{
DWORD impl = g_private_get_impl (key);
gpointer old;
old = TlsGetValue (impl);
if (old && key->notify)
key->notify (old);
TlsSetValue (impl, value);
}
/* {{{1 GThread */
#define win32_check_for_error(what) G_STMT_START{ \
if (!(what)) \
g_error ("file %s: line %d (%s): error %s during %s", \
__FILE__, __LINE__, G_STRFUNC, \
g_win32_error_message (GetLastError ()), #what); \
}G_STMT_END
#define G_MUTEX_SIZE (sizeof (gpointer))
typedef BOOL (__stdcall *GTryEnterCriticalSectionFunc) (CRITICAL_SECTION *);
typedef struct
{
GRealThread thread;
GThreadFunc proxy;
HANDLE handle;
} GThreadWin32;
void
g_system_thread_free (GRealThread *thread)
{
GThreadWin32 *wt = (GThreadWin32 *) thread;
win32_check_for_error (CloseHandle (wt->handle));
g_slice_free (GThreadWin32, wt);
}
void
g_system_thread_exit (void)
{
_endthreadex (0);
}
static guint __stdcall
g_thread_win32_proxy (gpointer data)
{
GThreadWin32 *self = data;
self->proxy (self);
g_system_thread_exit ();
g_assert_not_reached ();
return 0;
}
GRealThread *
g_system_thread_new (GThreadFunc func,
gulong stack_size,
GError **error)
{
GThreadWin32 *thread;
guint ignore;
thread = g_slice_new0 (GThreadWin32);
thread->proxy = func;
thread->handle = (HANDLE) _beginthreadex (NULL, stack_size, g_thread_win32_proxy, thread, 0, &ignore);
if (thread->handle == NULL)
{
gchar *win_error = g_win32_error_message (GetLastError ());
g_set_error (error, G_THREAD_ERROR, G_THREAD_ERROR_AGAIN,
"Error creating thread: %s", win_error);
g_free (win_error);
g_slice_free (GThreadWin32, thread);
return NULL;
}
return (GRealThread *) thread;
}
void
g_thread_yield (void)
{
Sleep(0);
}
void
g_system_thread_wait (GRealThread *thread)
{
GThreadWin32 *wt = (GThreadWin32 *) thread;
win32_check_for_error (WAIT_FAILED != WaitForSingleObject (wt->handle, INFINITE));
}
void
g_system_thread_set_name (const gchar *name)
{
/* FIXME: implement */
}
/* {{{1 SRWLock and CONDITION_VARIABLE emulation (for Windows XP) */
static CRITICAL_SECTION g_thread_xp_lock;
static DWORD g_thread_xp_waiter_tls;
/* {{{2 GThreadWaiter utility class for CONDITION_VARIABLE emulation */
typedef struct _GThreadXpWaiter GThreadXpWaiter;
struct _GThreadXpWaiter
{
HANDLE event;
volatile GThreadXpWaiter *next;
volatile GThreadXpWaiter **my_owner;
};
static GThreadXpWaiter *
g_thread_xp_waiter_get (void)
{
GThreadXpWaiter *waiter;
waiter = TlsGetValue (g_thread_xp_waiter_tls);
if G_UNLIKELY (waiter == NULL)
{
waiter = malloc (sizeof (GThreadXpWaiter));
if (waiter == NULL)
g_thread_abort (GetLastError (), "malloc");
waiter->event = CreateEvent (0, FALSE, FALSE, NULL);
if (waiter->event == NULL)
g_thread_abort (GetLastError (), "CreateEvent");
waiter->my_owner = NULL;
TlsSetValue (g_thread_xp_waiter_tls, waiter);
}
return waiter;
}
static void __stdcall
g_thread_xp_CallThisOnThreadExit (void)
{
GThreadXpWaiter *waiter;
waiter = TlsGetValue (g_thread_xp_waiter_tls);
if (waiter != NULL)
{
TlsSetValue (g_thread_xp_waiter_tls, NULL);
CloseHandle (waiter->event);
free (waiter);
}
}
/* {{{2 SRWLock emulation */
typedef struct
{
CRITICAL_SECTION writer_lock;
gboolean ever_shared; /* protected by writer_lock */
gboolean writer_locked; /* protected by writer_lock */
/* below is only ever touched if ever_shared becomes true */
CRITICAL_SECTION atomicity;
GThreadXpWaiter *queued_writer; /* protected by atomicity lock */
gint num_readers; /* protected by atomicity lock */
} GThreadSRWLock;
static void __stdcall
g_thread_xp_InitializeSRWLock (gpointer mutex)
{
*(GThreadSRWLock * volatile *) mutex = NULL;
}
static void __stdcall
g_thread_xp_DeleteSRWLock (gpointer mutex)
{
GThreadSRWLock *lock = *(GThreadSRWLock * volatile *) mutex;
if (lock)
{
if (lock->ever_shared)
DeleteCriticalSection (&lock->atomicity);
DeleteCriticalSection (&lock->writer_lock);
free (lock);
}
}
static GThreadSRWLock * __stdcall
g_thread_xp_get_srwlock (GThreadSRWLock * volatile *lock)
{
GThreadSRWLock *result;
/* It looks like we're missing some barriers here, but this code only
* ever runs on Windows XP, which in turn only ever runs on hardware
* with a relatively rigid memory model. The 'volatile' will take
* care of the compiler.
*/
result = *lock;
if G_UNLIKELY (result == NULL)
{
EnterCriticalSection (&g_thread_xp_lock);
/* Check again */
result = *lock;
if (result == NULL)
{
result = malloc (sizeof (GThreadSRWLock));
if (result == NULL)
g_thread_abort (errno, "malloc");
InitializeCriticalSection (&result->writer_lock);
result->writer_locked = FALSE;
result->ever_shared = FALSE;
*lock = result;
}
LeaveCriticalSection (&g_thread_xp_lock);
}
return result;
}
static void __stdcall
g_thread_xp_AcquireSRWLockExclusive (gpointer mutex)
{
GThreadSRWLock *lock = g_thread_xp_get_srwlock (mutex);
EnterCriticalSection (&lock->writer_lock);
/* CRITICAL_SECTION is reentrant, but SRWLock is not.
* Detect the deadlock that would occur on later Windows version.
*/
g_assert (!lock->writer_locked);
lock->writer_locked = TRUE;
if (lock->ever_shared)
{
GThreadXpWaiter *waiter = NULL;
EnterCriticalSection (&lock->atomicity);
if (lock->num_readers > 0)
lock->queued_writer = waiter = g_thread_xp_waiter_get ();
LeaveCriticalSection (&lock->atomicity);
if (waiter != NULL)
WaitForSingleObject (waiter->event, INFINITE);
lock->queued_writer = NULL;
}
}
static BOOLEAN __stdcall
g_thread_xp_TryAcquireSRWLockExclusive (gpointer mutex)
{
GThreadSRWLock *lock = g_thread_xp_get_srwlock (mutex);
if (!TryEnterCriticalSection (&lock->writer_lock))
return FALSE;
/* CRITICAL_SECTION is reentrant, but SRWLock is not.
* Ensure that this properly returns FALSE (as SRWLock would).
*/
if G_UNLIKELY (lock->writer_locked)
{
LeaveCriticalSection (&lock->writer_lock);
return FALSE;
}
lock->writer_locked = TRUE;
if (lock->ever_shared)
{
gboolean available;
EnterCriticalSection (&lock->atomicity);
available = lock->num_readers == 0;
LeaveCriticalSection (&lock->atomicity);
if (!available)
{
LeaveCriticalSection (&lock->writer_lock);
return FALSE;
}
}
return TRUE;
}
static void __stdcall
g_thread_xp_ReleaseSRWLockExclusive (gpointer mutex)
{
GThreadSRWLock *lock = *(GThreadSRWLock * volatile *) mutex;
lock->writer_locked = FALSE;
/* We need this until we fix some weird parts of GLib that try to
* unlock freshly-allocated mutexes.
*/
if (lock != NULL)
LeaveCriticalSection (&lock->writer_lock);
}
static void
g_thread_xp_srwlock_become_reader (GThreadSRWLock *lock)
{
if G_UNLIKELY (!lock->ever_shared)
{
InitializeCriticalSection (&lock->atomicity);
lock->queued_writer = NULL;
lock->num_readers = 0;
lock->ever_shared = TRUE;
}
EnterCriticalSection (&lock->atomicity);
lock->num_readers++;
LeaveCriticalSection (&lock->atomicity);
}
static void __stdcall
g_thread_xp_AcquireSRWLockShared (gpointer mutex)
{
GThreadSRWLock *lock = g_thread_xp_get_srwlock (mutex);
EnterCriticalSection (&lock->writer_lock);
/* See g_thread_xp_AcquireSRWLockExclusive */
g_assert (!lock->writer_locked);
g_thread_xp_srwlock_become_reader (lock);
LeaveCriticalSection (&lock->writer_lock);
}
static BOOLEAN __stdcall
g_thread_xp_TryAcquireSRWLockShared (gpointer mutex)
{
GThreadSRWLock *lock = g_thread_xp_get_srwlock (mutex);
if (!TryEnterCriticalSection (&lock->writer_lock))
return FALSE;
/* See g_thread_xp_AcquireSRWLockExclusive */
if G_UNLIKELY (lock->writer_locked)
{
LeaveCriticalSection (&lock->writer_lock);
return FALSE;
}
g_thread_xp_srwlock_become_reader (lock);
LeaveCriticalSection (&lock->writer_lock);
return TRUE;
}
static void __stdcall
g_thread_xp_ReleaseSRWLockShared (gpointer mutex)
{
GThreadSRWLock *lock = g_thread_xp_get_srwlock (mutex);
EnterCriticalSection (&lock->atomicity);
lock->num_readers--;
if (lock->num_readers == 0 && lock->queued_writer)
SetEvent (lock->queued_writer->event);
LeaveCriticalSection (&lock->atomicity);
}
/* {{{2 CONDITION_VARIABLE emulation */
typedef struct
{
volatile GThreadXpWaiter *first;
volatile GThreadXpWaiter **last_ptr;
} GThreadXpCONDITION_VARIABLE;
static void __stdcall
g_thread_xp_InitializeConditionVariable (gpointer cond)
{
*(GThreadXpCONDITION_VARIABLE * volatile *) cond = NULL;
}
static void __stdcall
g_thread_xp_DeleteConditionVariable (gpointer cond)
{
GThreadXpCONDITION_VARIABLE *cv = *(GThreadXpCONDITION_VARIABLE * volatile *) cond;
if (cv)
free (cv);
}
static GThreadXpCONDITION_VARIABLE * __stdcall
g_thread_xp_get_condition_variable (GThreadXpCONDITION_VARIABLE * volatile *cond)
{
GThreadXpCONDITION_VARIABLE *result;
/* It looks like we're missing some barriers here, but this code only
* ever runs on Windows XP, which in turn only ever runs on hardware
* with a relatively rigid memory model. The 'volatile' will take
* care of the compiler.
*/
result = *cond;
if G_UNLIKELY (result == NULL)
{
result = malloc (sizeof (GThreadXpCONDITION_VARIABLE));
if (result == NULL)
g_thread_abort (errno, "malloc");
result->first = NULL;
result->last_ptr = &result->first;
if (InterlockedCompareExchangePointer (cond, result, NULL) != NULL)
{
free (result);
result = *cond;
}
}
return result;
}
static BOOL __stdcall
g_thread_xp_SleepConditionVariableSRW (gpointer cond,
gpointer mutex,
DWORD timeout,
ULONG flags)
{
GThreadXpCONDITION_VARIABLE *cv = g_thread_xp_get_condition_variable (cond);
GThreadXpWaiter *waiter = g_thread_xp_waiter_get ();
DWORD status;
waiter->next = NULL;
EnterCriticalSection (&g_thread_xp_lock);
waiter->my_owner = cv->last_ptr;
*cv->last_ptr = waiter;
cv->last_ptr = &waiter->next;
LeaveCriticalSection (&g_thread_xp_lock);
g_mutex_unlock (mutex);
status = WaitForSingleObject (waiter->event, timeout);
if (status != WAIT_TIMEOUT && status != WAIT_OBJECT_0)
g_thread_abort (GetLastError (), "WaitForSingleObject");
g_mutex_lock (mutex);
if (status == WAIT_TIMEOUT)
{
EnterCriticalSection (&g_thread_xp_lock);
if (waiter->my_owner)
{
*waiter->my_owner = waiter->next;
waiter->my_owner = NULL;
}
LeaveCriticalSection (&g_thread_xp_lock);
}
return status == WAIT_OBJECT_0;
}
static void __stdcall
g_thread_xp_WakeConditionVariable (gpointer cond)
{
GThreadXpCONDITION_VARIABLE *cv = g_thread_xp_get_condition_variable (cond);
volatile GThreadXpWaiter *waiter;
EnterCriticalSection (&g_thread_xp_lock);
waiter = cv->first;
if (waiter != NULL)
{
cv->first = waiter->next;
if (cv->first != NULL)
cv->first->my_owner = &cv->first;
else
cv->last_ptr = &cv->first;
}
if (waiter != NULL)
SetEvent (waiter->event);
LeaveCriticalSection (&g_thread_xp_lock);
}
static void __stdcall
g_thread_xp_WakeAllConditionVariable (gpointer cond)
{
GThreadXpCONDITION_VARIABLE *cv = g_thread_xp_get_condition_variable (cond);
volatile GThreadXpWaiter *waiter;
EnterCriticalSection (&g_thread_xp_lock);
waiter = cv->first;
cv->first = NULL;
cv->last_ptr = &cv->first;
while (waiter != NULL)
{
volatile GThreadXpWaiter *next;
next = waiter->next;
SetEvent (waiter->event);
waiter->my_owner = NULL;
waiter = next;
}
LeaveCriticalSection (&g_thread_xp_lock);
}
/* {{{2 XP Setup */
static void
g_thread_xp_init (void)
{
static const GThreadImplVtable g_thread_xp_impl_vtable = {
g_thread_xp_CallThisOnThreadExit,
g_thread_xp_InitializeSRWLock,
g_thread_xp_DeleteSRWLock,
g_thread_xp_AcquireSRWLockExclusive,
g_thread_xp_TryAcquireSRWLockExclusive,
g_thread_xp_ReleaseSRWLockExclusive,
g_thread_xp_AcquireSRWLockShared,
g_thread_xp_TryAcquireSRWLockShared,
g_thread_xp_ReleaseSRWLockShared,
g_thread_xp_InitializeConditionVariable,
g_thread_xp_DeleteConditionVariable,
g_thread_xp_SleepConditionVariableSRW,
g_thread_xp_WakeAllConditionVariable,
g_thread_xp_WakeConditionVariable
};
InitializeCriticalSection (&g_thread_xp_lock);
g_thread_xp_waiter_tls = TlsAlloc ();
g_thread_impl_vtable = g_thread_xp_impl_vtable;
}
/* {{{1 Epilogue */
static gboolean
g_thread_lookup_native_funcs (void)
{
GThreadImplVtable native_vtable = { 0, };
HMODULE kernel32;
kernel32 = GetModuleHandle ("KERNEL32.DLL");
if (kernel32 == NULL)
return FALSE;
#define GET_FUNC(name) if ((native_vtable.name = (void *) GetProcAddress (kernel32, #name)) == NULL) return FALSE
GET_FUNC(InitializeSRWLock);
GET_FUNC(AcquireSRWLockExclusive);
GET_FUNC(TryAcquireSRWLockExclusive);
GET_FUNC(ReleaseSRWLockExclusive);
GET_FUNC(AcquireSRWLockShared);
GET_FUNC(TryAcquireSRWLockShared);
GET_FUNC(ReleaseSRWLockShared);
GET_FUNC(InitializeConditionVariable);
GET_FUNC(SleepConditionVariableSRW);
GET_FUNC(WakeAllConditionVariable);
GET_FUNC(WakeConditionVariable);
#undef GET_FUNC
g_thread_impl_vtable = native_vtable;
return TRUE;
}
G_GNUC_INTERNAL void
g_thread_win32_init (void)
{
if (!g_thread_lookup_native_funcs ())
g_thread_xp_init ();
InitializeCriticalSection (&g_private_lock);
}
G_GNUC_INTERNAL void
g_thread_win32_thread_detach (void)
{
gboolean dtors_called;
do
{
GPrivateDestructor *dtor;
/* We go by the POSIX book on this one.
*
* If we call a destructor then there is a chance that some new
* TLS variables got set by code called in that destructor.
*
* Loop until nothing is left.
*/
dtors_called = FALSE;
for (dtor = g_private_destructors; dtor; dtor = dtor->next)
{
gpointer value;
value = TlsGetValue (dtor->index);
if (value != NULL && dtor->notify != NULL)
{
/* POSIX says to clear this before the call */
TlsSetValue (dtor->index, NULL);
dtor->notify (value);
dtors_called = TRUE;
}
}
}
while (dtors_called);
if (g_thread_impl_vtable.CallThisOnThreadExit)
g_thread_impl_vtable.CallThisOnThreadExit ();
}
/* vim:set foldmethod=marker: */