mirror of
https://gitlab.gnome.org/GNOME/glib.git
synced 2025-01-01 02:16:14 +01:00
920f54e795
We can use pointer exchange now to avoid doing two operations to switch to the new data pointer. Since we're asserting in case of invalid data, we can just do this check at later point, without involving any different behavior. This changes in the unlikely case that G_DISABLE_ASSERT is defined, as in such case we should undo the operation.
180 lines
5.0 KiB
C
180 lines
5.0 KiB
C
/* GObject - GLib Type, Object, Parameter and Signal Library
|
|
* Copyright (C) 2009 Benjamin Otte <otte@gnome.org>
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General
|
|
* Public License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include "../glib/gvalgrind.h"
|
|
#include <string.h>
|
|
|
|
#include "gatomicarray.h"
|
|
|
|
/* A GAtomicArray is a growable, mutable array of data
|
|
* generally of the form of a header of a specific size and
|
|
* then an array of items of a fixed size.
|
|
*
|
|
* It is possible to do lock-less read transactions from the
|
|
* array without any protection against other reads or writes,
|
|
* but such read operation must be aware that the data in the
|
|
* atomic array can change at any time during the transaction,
|
|
* and only at the end can we verify if the transaction succeeded
|
|
* or not. Thus the reading transaction cannot for instance
|
|
* dereference a pointer in the array inside the transaction.
|
|
*
|
|
* The size of an array however cannot change during a read
|
|
* transaction.
|
|
*
|
|
* Writes to the array is done in a copy-update style, but there
|
|
* is no real protection against multiple writers overwriting each
|
|
* others updates, so writes must be protected by an external lock.
|
|
*/
|
|
|
|
G_LOCK_DEFINE_STATIC (array);
|
|
|
|
typedef struct _FreeListNode FreeListNode;
|
|
struct _FreeListNode {
|
|
FreeListNode *next;
|
|
};
|
|
|
|
/* This is really a list of array memory blocks, using the
|
|
* first item as the next pointer to chain them together.
|
|
* Protected by array lock */
|
|
static FreeListNode *freelist = NULL;
|
|
|
|
/* must hold array lock */
|
|
static gpointer
|
|
freelist_alloc (gsize size, gboolean reuse)
|
|
{
|
|
gpointer mem;
|
|
FreeListNode *free, **prev;
|
|
gsize real_size;
|
|
|
|
if (reuse)
|
|
{
|
|
for (free = freelist, prev = &freelist; free != NULL; prev = &free->next, free = free->next)
|
|
{
|
|
if (G_ATOMIC_ARRAY_DATA_SIZE (free) == size)
|
|
{
|
|
*prev = free->next;
|
|
return (gpointer)free;
|
|
}
|
|
}
|
|
}
|
|
|
|
real_size = sizeof (gsize) + MAX (size, sizeof (FreeListNode));
|
|
mem = g_slice_alloc (real_size);
|
|
mem = ((char *) mem) + sizeof (gsize);
|
|
G_ATOMIC_ARRAY_DATA_SIZE (mem) = size;
|
|
|
|
#if ENABLE_VALGRIND
|
|
VALGRIND_MALLOCLIKE_BLOCK (mem, real_size - sizeof (gsize), FALSE, FALSE);
|
|
#endif
|
|
|
|
return mem;
|
|
}
|
|
|
|
/* must hold array lock */
|
|
static void
|
|
freelist_free (gpointer mem)
|
|
{
|
|
FreeListNode *free;
|
|
|
|
free = mem;
|
|
free->next = freelist;
|
|
freelist = free;
|
|
}
|
|
|
|
void
|
|
_g_atomic_array_init (GAtomicArray *array)
|
|
{
|
|
array->data = NULL;
|
|
}
|
|
|
|
/* Get a copy of the data (if non-NULL) that
|
|
* can be changed and then re-applied with
|
|
* g_atomic_array_update().
|
|
*
|
|
* If additional_element_size is > 0 then
|
|
* then the new memory chunk is that much
|
|
* larger, or there were no data we return
|
|
* a chunk of header_size + additional_element_size.
|
|
* This means you can use this to grow the
|
|
* array part and it handles the first element
|
|
* being added automatically.
|
|
*
|
|
* We don't support shrinking arrays, as if
|
|
* we then re-grow we may reuse an old pointer
|
|
* value and confuse the transaction check.
|
|
*/
|
|
gpointer
|
|
_g_atomic_array_copy (GAtomicArray *array,
|
|
gsize header_size,
|
|
gsize additional_element_size)
|
|
{
|
|
guint8 *new, *old;
|
|
gsize old_size, new_size;
|
|
|
|
G_LOCK (array);
|
|
old = g_atomic_pointer_get (&array->data);
|
|
if (old)
|
|
{
|
|
old_size = G_ATOMIC_ARRAY_DATA_SIZE (old);
|
|
new_size = old_size + additional_element_size;
|
|
/* Don't reuse if copying to same size, as this may end
|
|
up reusing the same pointer for the same array thus
|
|
confusing the transaction check */
|
|
new = freelist_alloc (new_size, additional_element_size != 0);
|
|
memcpy (new, old, old_size);
|
|
}
|
|
else if (additional_element_size != 0)
|
|
{
|
|
new_size = header_size + additional_element_size;
|
|
new = freelist_alloc (new_size, TRUE);
|
|
}
|
|
else
|
|
new = NULL;
|
|
G_UNLOCK (array);
|
|
return new;
|
|
}
|
|
|
|
/* Replace the data in the array with the new data,
|
|
* freeing the old data (for reuse). The new data may
|
|
* not be smaller than the current data.
|
|
*/
|
|
void
|
|
_g_atomic_array_update (GAtomicArray *array,
|
|
gpointer new_data)
|
|
{
|
|
guint8 *old;
|
|
|
|
G_LOCK (array);
|
|
old = g_atomic_pointer_exchange (&array->data, new_data);
|
|
|
|
#ifdef G_DISABLE_ASSERT
|
|
if (old && G_ATOMIC_ARRAY_DATA_SIZE (new_data) < G_ATOMIC_ARRAY_DATA_SIZE (old))
|
|
{
|
|
g_atomic_pointer_set (&array->data, old);
|
|
g_return_if_reached ();
|
|
}
|
|
#else
|
|
g_assert (old == NULL || G_ATOMIC_ARRAY_DATA_SIZE (old) <= G_ATOMIC_ARRAY_DATA_SIZE (new_data));
|
|
#endif
|
|
|
|
if (old)
|
|
freelist_free (old);
|
|
G_UNLOCK (array);
|
|
}
|