glib/glib/gtimer.c
2014-02-05 21:23:28 -05:00

551 lines
13 KiB
C

/* GLIB - Library of useful routines for C programming
* Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
/*
* Modified by the GLib Team and others 1997-2000. See the AUTHORS
* file for a list of people on the GLib Team. See the ChangeLog
* files for a list of changes. These files are distributed with
* GLib at ftp://ftp.gtk.org/pub/gtk/.
*/
/*
* MT safe
*/
#include "config.h"
#include "glibconfig.h"
#include <stdlib.h>
#ifdef G_OS_UNIX
#include <unistd.h>
#endif /* G_OS_UNIX */
#ifdef HAVE_SYS_TIME_H
#include <sys/time.h>
#endif
#include <time.h>
#ifndef G_OS_WIN32
#include <errno.h>
#endif /* G_OS_WIN32 */
#ifdef G_OS_WIN32
#include <windows.h>
#endif /* G_OS_WIN32 */
#include "gtimer.h"
#include "gmem.h"
#include "gstrfuncs.h"
#include "gtestutils.h"
#include "gmain.h"
/**
* SECTION:timers
* @title: Timers
* @short_description: keep track of elapsed time
*
* #GTimer records a start time, and counts microseconds elapsed since
* that time. This is done somewhat differently on different platforms,
* and can be tricky to get exactly right, so #GTimer provides a
* portable/convenient interface.
**/
/**
* GTimer:
*
* Opaque datatype that records a start time.
**/
struct _GTimer
{
guint64 start;
guint64 end;
guint active : 1;
};
/**
* g_timer_new:
*
* Creates a new timer, and starts timing (i.e. g_timer_start() is
* implicitly called for you).
*
* Returns: a new #GTimer.
**/
GTimer*
g_timer_new (void)
{
GTimer *timer;
timer = g_new (GTimer, 1);
timer->active = TRUE;
timer->start = g_get_monotonic_time ();
return timer;
}
/**
* g_timer_destroy:
* @timer: a #GTimer to destroy.
*
* Destroys a timer, freeing associated resources.
**/
void
g_timer_destroy (GTimer *timer)
{
g_return_if_fail (timer != NULL);
g_free (timer);
}
/**
* g_timer_start:
* @timer: a #GTimer.
*
* Marks a start time, so that future calls to g_timer_elapsed() will
* report the time since g_timer_start() was called. g_timer_new()
* automatically marks the start time, so no need to call
* g_timer_start() immediately after creating the timer.
**/
void
g_timer_start (GTimer *timer)
{
g_return_if_fail (timer != NULL);
timer->active = TRUE;
timer->start = g_get_monotonic_time ();
}
/**
* g_timer_stop:
* @timer: a #GTimer.
*
* Marks an end time, so calls to g_timer_elapsed() will return the
* difference between this end time and the start time.
**/
void
g_timer_stop (GTimer *timer)
{
g_return_if_fail (timer != NULL);
timer->active = FALSE;
timer->end = g_get_monotonic_time ();
}
/**
* g_timer_reset:
* @timer: a #GTimer.
*
* This function is useless; it's fine to call g_timer_start() on an
* already-started timer to reset the start time, so g_timer_reset()
* serves no purpose.
**/
void
g_timer_reset (GTimer *timer)
{
g_return_if_fail (timer != NULL);
timer->start = g_get_monotonic_time ();
}
/**
* g_timer_continue:
* @timer: a #GTimer.
*
* Resumes a timer that has previously been stopped with
* g_timer_stop(). g_timer_stop() must be called before using this
* function.
*
* Since: 2.4
**/
void
g_timer_continue (GTimer *timer)
{
guint64 elapsed;
g_return_if_fail (timer != NULL);
g_return_if_fail (timer->active == FALSE);
/* Get elapsed time and reset timer start time
* to the current time minus the previously
* elapsed interval.
*/
elapsed = timer->end - timer->start;
timer->start = g_get_monotonic_time ();
timer->start -= elapsed;
timer->active = TRUE;
}
/**
* g_timer_elapsed:
* @timer: a #GTimer.
* @microseconds: return location for the fractional part of seconds
* elapsed, in microseconds (that is, the total number
* of microseconds elapsed, modulo 1000000), or %NULL
*
* If @timer has been started but not stopped, obtains the time since
* the timer was started. If @timer has been stopped, obtains the
* elapsed time between the time it was started and the time it was
* stopped. The return value is the number of seconds elapsed,
* including any fractional part. The @microseconds out parameter is
* essentially useless.
*
* Returns: seconds elapsed as a floating point value, including any
* fractional part.
**/
gdouble
g_timer_elapsed (GTimer *timer,
gulong *microseconds)
{
gdouble total;
gint64 elapsed;
g_return_val_if_fail (timer != NULL, 0);
if (timer->active)
timer->end = g_get_monotonic_time ();
elapsed = timer->end - timer->start;
total = elapsed / 1e6;
if (microseconds)
*microseconds = elapsed % 1000000;
return total;
}
/**
* g_usleep:
* @microseconds: number of microseconds to pause
*
* Pauses the current thread for the given number of microseconds.
*
* There are 1 million microseconds per second (represented by the
* #G_USEC_PER_SEC macro). g_usleep() may have limited precision,
* depending on hardware and operating system; don't rely on the exact
* length of the sleep.
*/
void
g_usleep (gulong microseconds)
{
#ifdef G_OS_WIN32
Sleep (microseconds / 1000);
#else
struct timespec request, remaining;
request.tv_sec = microseconds / G_USEC_PER_SEC;
request.tv_nsec = 1000 * (microseconds % G_USEC_PER_SEC);
while (nanosleep (&request, &remaining) == -1 && errno == EINTR)
request = remaining;
#endif
}
/**
* g_time_val_add:
* @time_: a #GTimeVal
* @microseconds: number of microseconds to add to @time
*
* Adds the given number of microseconds to @time_. @microseconds can
* also be negative to decrease the value of @time_.
**/
void
g_time_val_add (GTimeVal *time_, glong microseconds)
{
g_return_if_fail (time_->tv_usec >= 0 && time_->tv_usec < G_USEC_PER_SEC);
if (microseconds >= 0)
{
time_->tv_usec += microseconds % G_USEC_PER_SEC;
time_->tv_sec += microseconds / G_USEC_PER_SEC;
if (time_->tv_usec >= G_USEC_PER_SEC)
{
time_->tv_usec -= G_USEC_PER_SEC;
time_->tv_sec++;
}
}
else
{
microseconds *= -1;
time_->tv_usec -= microseconds % G_USEC_PER_SEC;
time_->tv_sec -= microseconds / G_USEC_PER_SEC;
if (time_->tv_usec < 0)
{
time_->tv_usec += G_USEC_PER_SEC;
time_->tv_sec--;
}
}
}
/* converts a broken down date representation, relative to UTC,
* to a timestamp; it uses timegm() if it's available.
*/
static time_t
mktime_utc (struct tm *tm)
{
time_t retval;
#ifndef HAVE_TIMEGM
static const gint days_before[] =
{
0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
};
#endif
#ifndef HAVE_TIMEGM
if (tm->tm_mon < 0 || tm->tm_mon > 11)
return (time_t) -1;
retval = (tm->tm_year - 70) * 365;
retval += (tm->tm_year - 68) / 4;
retval += days_before[tm->tm_mon] + tm->tm_mday - 1;
if (tm->tm_year % 4 == 0 && tm->tm_mon < 2)
retval -= 1;
retval = ((((retval * 24) + tm->tm_hour) * 60) + tm->tm_min) * 60 + tm->tm_sec;
#else
retval = timegm (tm);
#endif /* !HAVE_TIMEGM */
return retval;
}
/**
* g_time_val_from_iso8601:
* @iso_date: an ISO 8601 encoded date string
* @time_: (out): a #GTimeVal
*
* Converts a string containing an ISO 8601 encoded date and time
* to a #GTimeVal and puts it into @time_.
*
* @iso_date must include year, month, day, hours, minutes, and
* seconds. It can optionally include fractions of a second and a time
* zone indicator. (In the absence of any time zone indication, the
* timestamp is assumed to be in local time.)
*
* Return value: %TRUE if the conversion was successful.
*
* Since: 2.12
*/
gboolean
g_time_val_from_iso8601 (const gchar *iso_date,
GTimeVal *time_)
{
struct tm tm = {0};
long val;
g_return_val_if_fail (iso_date != NULL, FALSE);
g_return_val_if_fail (time_ != NULL, FALSE);
/* Ensure that the first character is a digit, the first digit
* of the date, otherwise we don't have an ISO 8601 date
*/
while (g_ascii_isspace (*iso_date))
iso_date++;
if (*iso_date == '\0')
return FALSE;
if (!g_ascii_isdigit (*iso_date) && *iso_date != '-' && *iso_date != '+')
return FALSE;
val = strtoul (iso_date, (char **)&iso_date, 10);
if (*iso_date == '-')
{
/* YYYY-MM-DD */
tm.tm_year = val - 1900;
iso_date++;
tm.tm_mon = strtoul (iso_date, (char **)&iso_date, 10) - 1;
if (*iso_date++ != '-')
return FALSE;
tm.tm_mday = strtoul (iso_date, (char **)&iso_date, 10);
}
else
{
/* YYYYMMDD */
tm.tm_mday = val % 100;
tm.tm_mon = (val % 10000) / 100 - 1;
tm.tm_year = val / 10000 - 1900;
}
if (*iso_date != 'T')
return FALSE;
iso_date++;
/* If there is a 'T' then there has to be a time */
if (!g_ascii_isdigit (*iso_date))
return FALSE;
val = strtoul (iso_date, (char **)&iso_date, 10);
if (*iso_date == ':')
{
/* hh:mm:ss */
tm.tm_hour = val;
iso_date++;
tm.tm_min = strtoul (iso_date, (char **)&iso_date, 10);
if (*iso_date++ != ':')
return FALSE;
tm.tm_sec = strtoul (iso_date, (char **)&iso_date, 10);
}
else
{
/* hhmmss */
tm.tm_sec = val % 100;
tm.tm_min = (val % 10000) / 100;
tm.tm_hour = val / 10000;
}
time_->tv_usec = 0;
if (*iso_date == ',' || *iso_date == '.')
{
glong mul = 100000;
while (g_ascii_isdigit (*++iso_date))
{
time_->tv_usec += (*iso_date - '0') * mul;
mul /= 10;
}
}
/* Now parse the offset and convert tm to a time_t */
if (*iso_date == 'Z')
{
iso_date++;
time_->tv_sec = mktime_utc (&tm);
}
else if (*iso_date == '+' || *iso_date == '-')
{
gint sign = (*iso_date == '+') ? -1 : 1;
val = strtoul (iso_date + 1, (char **)&iso_date, 10);
if (*iso_date == ':')
val = 60 * val + strtoul (iso_date + 1, (char **)&iso_date, 10);
else
val = 60 * (val / 100) + (val % 100);
time_->tv_sec = mktime_utc (&tm) + (time_t) (60 * val * sign);
}
else
{
/* No "Z" or offset, so local time */
tm.tm_isdst = -1; /* locale selects DST */
time_->tv_sec = mktime (&tm);
}
while (g_ascii_isspace (*iso_date))
iso_date++;
return *iso_date == '\0';
}
/**
* g_time_val_to_iso8601:
* @time_: a #GTimeVal
*
* Converts @time_ into an RFC 3339 encoded string, relative to the
* Coordinated Universal Time (UTC). This is one of the many formats
* allowed by ISO 8601.
*
* ISO 8601 allows a large number of date/time formats, with or without
* punctuation and optional elements. The format returned by this function
* is a complete date and time, with optional punctuation included, the
* UTC time zone represented as "Z", and the @tv_usec part included if
* and only if it is nonzero, i.e. either
* "YYYY-MM-DDTHH:MM:SSZ" or "YYYY-MM-DDTHH:MM:SS.fffffZ".
*
* This corresponds to the Internet date/time format defined by
* [RFC 3339](https://www.ietf.org/rfc/rfc3339.txt),
* and to either of the two most-precise formats defined by
* the W3C Note
* [Date and Time Formats](http://www.w3.org/TR/NOTE-datetime-19980827).
* Both of these documents are profiles of ISO 8601.
*
* Use g_date_time_format() or g_strdup_printf() if a different
* variation of ISO 8601 format is required.
*
* Return value: a newly allocated string containing an ISO 8601 date
*
* Since: 2.12
*/
gchar *
g_time_val_to_iso8601 (GTimeVal *time_)
{
gchar *retval;
struct tm *tm;
#ifdef HAVE_GMTIME_R
struct tm tm_;
#endif
time_t secs;
g_return_val_if_fail (time_->tv_usec >= 0 && time_->tv_usec < G_USEC_PER_SEC, NULL);
secs = time_->tv_sec;
#ifdef _WIN32
tm = gmtime (&secs);
#else
#ifdef HAVE_GMTIME_R
tm = gmtime_r (&secs, &tm_);
#else
tm = gmtime (&secs);
#endif
#endif
if (time_->tv_usec != 0)
{
/* ISO 8601 date and time format, with fractionary seconds:
* YYYY-MM-DDTHH:MM:SS.MMMMMMZ
*/
retval = g_strdup_printf ("%4d-%02d-%02dT%02d:%02d:%02d.%06ldZ",
tm->tm_year + 1900,
tm->tm_mon + 1,
tm->tm_mday,
tm->tm_hour,
tm->tm_min,
tm->tm_sec,
time_->tv_usec);
}
else
{
/* ISO 8601 date and time format:
* YYYY-MM-DDTHH:MM:SSZ
*/
retval = g_strdup_printf ("%4d-%02d-%02dT%02d:%02d:%02dZ",
tm->tm_year + 1900,
tm->tm_mon + 1,
tm->tm_mday,
tm->tm_hour,
tm->tm_min,
tm->tm_sec);
}
return retval;
}