mirror of
https://gitlab.gnome.org/GNOME/glib.git
synced 2024-12-26 15:36:14 +01:00
a002781b6d
* glib/grand.c (g_rand_new): fix typo (#if->#ifdef) so it compiles again. -Yosh
409 lines
10 KiB
C
409 lines
10 KiB
C
/* GLIB - Library of useful routines for C programming
|
|
* Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 02111-1307, USA.
|
|
*/
|
|
|
|
/* Originally developed and coded by Makoto Matsumoto and Takuji
|
|
* Nishimura. Please mail <matumoto@math.keio.ac.jp>, if you're using
|
|
* code from this file in your own programs or libraries.
|
|
* Further information on the Mersenne Twister can be found at
|
|
* http://www.math.keio.ac.jp/~matumoto/emt.html
|
|
* This code was adapted to glib by Sebastian Wilhelmi <wilhelmi@ira.uka.de>.
|
|
*/
|
|
|
|
/*
|
|
* Modified by the GLib Team and others 1997-2000. See the AUTHORS
|
|
* file for a list of people on the GLib Team. See the ChangeLog
|
|
* files for a list of changes. These files are distributed with
|
|
* GLib at ftp://ftp.gtk.org/pub/gtk/.
|
|
*/
|
|
|
|
/*
|
|
* MT safe
|
|
*/
|
|
|
|
#include <glib.h>
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
|
|
G_LOCK_DEFINE_STATIC (global_random);
|
|
static GRand* global_random = NULL;
|
|
|
|
/* Period parameters */
|
|
#define N 624
|
|
#define M 397
|
|
#define MATRIX_A 0x9908b0df /* constant vector a */
|
|
#define UPPER_MASK 0x80000000 /* most significant w-r bits */
|
|
#define LOWER_MASK 0x7fffffff /* least significant r bits */
|
|
|
|
/* Tempering parameters */
|
|
#define TEMPERING_MASK_B 0x9d2c5680
|
|
#define TEMPERING_MASK_C 0xefc60000
|
|
#define TEMPERING_SHIFT_U(y) (y >> 11)
|
|
#define TEMPERING_SHIFT_S(y) (y << 7)
|
|
#define TEMPERING_SHIFT_T(y) (y << 15)
|
|
#define TEMPERING_SHIFT_L(y) (y >> 18)
|
|
|
|
struct _GRand
|
|
{
|
|
guint32 mt[N]; /* the array for the state vector */
|
|
guint mti;
|
|
};
|
|
|
|
/**
|
|
* g_rand_new_with_seed:
|
|
* @seed: a value to initialize the random number generator.
|
|
*
|
|
* Creates a new random number generator initialized with @seed.
|
|
*
|
|
* Return value: the new #GRand.
|
|
**/
|
|
GRand*
|
|
g_rand_new_with_seed (guint32 seed)
|
|
{
|
|
GRand *rand = g_new0 (GRand, 1);
|
|
g_rand_set_seed (rand, seed);
|
|
return rand;
|
|
}
|
|
|
|
/**
|
|
* g_rand_new:
|
|
*
|
|
* Creates a new random number generator initialized with a seed taken
|
|
* either from /dev/urandom (if existing) or from the current time (as
|
|
* a fallback).
|
|
*
|
|
* Return value: the new #GRand.
|
|
**/
|
|
GRand*
|
|
g_rand_new (void)
|
|
{
|
|
guint32 seed;
|
|
GTimeVal now;
|
|
#ifdef G_OS_UNIX
|
|
static gboolean dev_urandom_exists = TRUE;
|
|
|
|
if (dev_urandom_exists)
|
|
{
|
|
FILE* dev_urandom = fopen("/dev/urandom", "rb");
|
|
if (dev_urandom)
|
|
{
|
|
if (fread (&seed, sizeof (seed), 1, dev_urandom) != 1)
|
|
dev_urandom_exists = FALSE;
|
|
fclose (dev_urandom);
|
|
}
|
|
else
|
|
dev_urandom_exists = FALSE;
|
|
}
|
|
#else
|
|
static gboolean dev_urandom_exists = FALSE;
|
|
#endif
|
|
|
|
if (!dev_urandom_exists)
|
|
{
|
|
g_get_current_time (&now);
|
|
seed = now.tv_sec ^ now.tv_usec;
|
|
}
|
|
|
|
return g_rand_new_with_seed (seed);
|
|
}
|
|
|
|
/**
|
|
* g_rand_free:
|
|
* @rand: a #GRand.
|
|
*
|
|
* Frees the memory allocated for the #GRand.
|
|
**/
|
|
void
|
|
g_rand_free (GRand* rand)
|
|
{
|
|
g_return_if_fail (rand != NULL);
|
|
|
|
g_free (rand);
|
|
}
|
|
|
|
/**
|
|
* g_rand_set_seed:
|
|
* @rand: a #GRand.
|
|
* @seed: a value to reinitialize the random number generator.
|
|
*
|
|
* Sets the seed for the random number generator #GRand to @seed.
|
|
**/
|
|
void
|
|
g_rand_set_seed (GRand* rand, guint32 seed)
|
|
{
|
|
g_return_if_fail (rand != NULL);
|
|
|
|
/* setting initial seeds to mt[N] using */
|
|
/* the generator Line 25 of Table 1 in */
|
|
/* [KNUTH 1981, The Art of Computer Programming */
|
|
/* Vol. 2 (2nd Ed.), pp102] */
|
|
|
|
if (seed == 0) /* This would make the PRNG procude only zeros */
|
|
seed = 0x6b842128; /* Just set it to another number */
|
|
|
|
rand->mt[0]= seed & 0xffffffff;
|
|
for (rand->mti=1; rand->mti<N; rand->mti++)
|
|
rand->mt[rand->mti] = (69069 * rand->mt[rand->mti-1]) & 0xffffffff;
|
|
}
|
|
|
|
/**
|
|
* g_rand_int:
|
|
* @rand: a #GRand.
|
|
*
|
|
* Return the next random #guint32 from @rand equaly distributed over
|
|
* the range [0..2^32-1].
|
|
*
|
|
* Return value: A random number.
|
|
**/
|
|
guint32
|
|
g_rand_int (GRand* rand)
|
|
{
|
|
guint32 y;
|
|
static const guint32 mag01[2]={0x0, MATRIX_A};
|
|
/* mag01[x] = x * MATRIX_A for x=0,1 */
|
|
|
|
g_return_val_if_fail (rand != NULL, 0);
|
|
|
|
if (rand->mti >= N) { /* generate N words at one time */
|
|
int kk;
|
|
|
|
for (kk=0;kk<N-M;kk++) {
|
|
y = (rand->mt[kk]&UPPER_MASK)|(rand->mt[kk+1]&LOWER_MASK);
|
|
rand->mt[kk] = rand->mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1];
|
|
}
|
|
for (;kk<N-1;kk++) {
|
|
y = (rand->mt[kk]&UPPER_MASK)|(rand->mt[kk+1]&LOWER_MASK);
|
|
rand->mt[kk] = rand->mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1];
|
|
}
|
|
y = (rand->mt[N-1]&UPPER_MASK)|(rand->mt[0]&LOWER_MASK);
|
|
rand->mt[N-1] = rand->mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1];
|
|
|
|
rand->mti = 0;
|
|
}
|
|
|
|
y = rand->mt[rand->mti++];
|
|
y ^= TEMPERING_SHIFT_U(y);
|
|
y ^= TEMPERING_SHIFT_S(y) & TEMPERING_MASK_B;
|
|
y ^= TEMPERING_SHIFT_T(y) & TEMPERING_MASK_C;
|
|
y ^= TEMPERING_SHIFT_L(y);
|
|
|
|
return y;
|
|
}
|
|
|
|
/* transform [0..2^32] -> [0..1] */
|
|
#define G_RAND_DOUBLE_TRANSFORM 2.3283064365386962890625e-10
|
|
|
|
/**
|
|
* g_rand_int_range:
|
|
* @rand: a #GRand.
|
|
* @begin: lower closed bound of the interval.
|
|
* @end: upper open bound of the interval.
|
|
*
|
|
* Return the next random #gint32 from @rand equaly distributed over
|
|
* the range [@begin..@end-1].
|
|
*
|
|
* Return value: A random number.
|
|
**/
|
|
gint32
|
|
g_rand_int_range (GRand* rand, gint32 begin, gint32 end)
|
|
{
|
|
guint32 dist = end - begin;
|
|
guint32 random;
|
|
|
|
g_return_val_if_fail (rand != NULL, begin);
|
|
g_return_val_if_fail (end > begin, begin);
|
|
|
|
/* All tricks doing modulo calculations do not have a perfect
|
|
* distribution -> We must use the slower way through gdouble for
|
|
* maximal quality. */
|
|
|
|
if (dist <= 0x10000L) /* 2^16 */
|
|
{
|
|
/* This method, which only calls g_rand_int once is only good
|
|
* for (end - begin) <= 2^16, because we only have 32 bits set
|
|
* from the one call to g_rand_int (). */
|
|
|
|
/* we are using (trans + trans * trans), because g_rand_int only
|
|
* covers [0..2^32-1] and thus g_rand_int * trans only covers
|
|
* [0..1-2^-32], but the biggest double < 1 is 1-2^-52.
|
|
*/
|
|
|
|
gdouble double_rand = g_rand_int (rand) *
|
|
(G_RAND_DOUBLE_TRANSFORM +
|
|
G_RAND_DOUBLE_TRANSFORM * G_RAND_DOUBLE_TRANSFORM);
|
|
|
|
random = (gint32) (double_rand * dist);
|
|
}
|
|
else
|
|
{
|
|
/* Now we use g_rand_double_range (), which will set 52 bits for
|
|
us, so that it is safe to round and still get a decent
|
|
distribution */
|
|
random = (gint32) g_rand_double_range (rand, 0, dist);
|
|
}
|
|
|
|
return begin + random;
|
|
}
|
|
|
|
/**
|
|
* g_rand_double:
|
|
* @rand: a #GRand.
|
|
*
|
|
* Return the next random #gdouble from @rand equaly distributed over
|
|
* the range [0..1).
|
|
*
|
|
* Return value: A random number.
|
|
**/
|
|
gdouble
|
|
g_rand_double (GRand* rand)
|
|
{
|
|
/* We set all 52 bits after the point for this, not only the first
|
|
32. Thats why we need two calls to g_rand_int */
|
|
gdouble retval = g_rand_int (rand) * G_RAND_DOUBLE_TRANSFORM;
|
|
retval = (retval + g_rand_int (rand)) * G_RAND_DOUBLE_TRANSFORM;
|
|
|
|
/* The following might happen due to very bad rounding luck, but
|
|
* actually this should be more than rare, we just try again then */
|
|
if (retval >= 1.0)
|
|
return g_rand_double (rand);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* g_rand_double_range:
|
|
* @rand: a #GRand.
|
|
* @begin: lower closed bound of the interval.
|
|
* @end: upper open bound of the interval.
|
|
*
|
|
* Return the next random #gdouble from @rand equaly distributed over
|
|
* the range [@begin..@end).
|
|
*
|
|
* Return value: A random number.
|
|
**/
|
|
gdouble
|
|
g_rand_double_range (GRand* rand, gdouble begin, gdouble end)
|
|
{
|
|
return g_rand_double (rand) * (end - begin) + begin;
|
|
}
|
|
|
|
/**
|
|
* g_random_int:
|
|
*
|
|
* Return a random #guint32 equaly distributed over the range
|
|
* [0..2^32-1].
|
|
*
|
|
* Return value: A random number.
|
|
**/
|
|
guint32
|
|
g_random_int (void)
|
|
{
|
|
guint32 result;
|
|
G_LOCK (global_random);
|
|
if (!global_random)
|
|
global_random = g_rand_new ();
|
|
|
|
result = g_rand_int (global_random);
|
|
G_UNLOCK (global_random);
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* g_random_int_range:
|
|
* @begin: lower closed bound of the interval.
|
|
* @end: upper open bound of the interval.
|
|
*
|
|
* Return a random #gint32 equaly distributed over the range
|
|
* [@begin..@end-1].
|
|
*
|
|
* Return value: A random number.
|
|
**/
|
|
gint32
|
|
g_random_int_range (gint32 begin, gint32 end)
|
|
{
|
|
gint32 result;
|
|
G_LOCK (global_random);
|
|
if (!global_random)
|
|
global_random = g_rand_new ();
|
|
|
|
result = g_rand_int_range (global_random, begin, end);
|
|
G_UNLOCK (global_random);
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* g_random_double:
|
|
*
|
|
* Return a random #gdouble equaly distributed over the range [0..1).
|
|
*
|
|
* Return value: A random number.
|
|
**/
|
|
gdouble
|
|
g_random_double (void)
|
|
{
|
|
double result;
|
|
G_LOCK (global_random);
|
|
if (!global_random)
|
|
global_random = g_rand_new ();
|
|
|
|
result = g_rand_double (global_random);
|
|
G_UNLOCK (global_random);
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* g_random_double_range:
|
|
* @begin: lower closed bound of the interval.
|
|
* @end: upper open bound of the interval.
|
|
*
|
|
* Return a random #gdouble equaly distributed over the range [@begin..@end).
|
|
*
|
|
* Return value: A random number.
|
|
**/
|
|
gdouble
|
|
g_random_double_range (gdouble begin, gdouble end)
|
|
{
|
|
double result;
|
|
G_LOCK (global_random);
|
|
if (!global_random)
|
|
global_random = g_rand_new ();
|
|
|
|
result = g_rand_double_range (global_random, begin, end);
|
|
G_UNLOCK (global_random);
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* g_random_set_seed:
|
|
* @seed: a value to reinitialize the global random number generator.
|
|
*
|
|
* Sets the seed for the global random number generator, which is used
|
|
* by te g_random_* functions, to @seed.
|
|
**/
|
|
void
|
|
g_random_set_seed (guint32 seed)
|
|
{
|
|
G_LOCK (global_random);
|
|
if (!global_random)
|
|
global_random = g_rand_new_with_seed (seed);
|
|
else
|
|
g_rand_set_seed (global_random, seed);
|
|
G_UNLOCK (global_random);
|
|
}
|
|
|