mirror of
https://gitlab.gnome.org/GNOME/glib.git
synced 2025-01-12 23:46:17 +01:00
934 lines
28 KiB
C
934 lines
28 KiB
C
/* GLIB - Library of useful routines for C programming
|
|
* Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald
|
|
*
|
|
* gthread.c: MT safety related functions
|
|
* Copyright 1998 Sebastian Wilhelmi; University of Karlsruhe
|
|
* Owen Taylor
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 02111-1307, USA.
|
|
*/
|
|
|
|
/* Prelude {{{1 ----------------------------------------------------------- */
|
|
|
|
/*
|
|
* Modified by the GLib Team and others 1997-2000. See the AUTHORS
|
|
* file for a list of people on the GLib Team. See the ChangeLog
|
|
* files for a list of changes. These files are distributed with
|
|
* GLib at ftp://ftp.gtk.org/pub/gtk/.
|
|
*/
|
|
|
|
/*
|
|
* MT safe
|
|
*/
|
|
|
|
/* implement gthread.h's inline functions */
|
|
#define G_IMPLEMENT_INLINES 1
|
|
#define __G_THREAD_C__
|
|
|
|
#include "config.h"
|
|
|
|
#include "gthread.h"
|
|
#include "gthreadprivate.h"
|
|
|
|
#include <string.h>
|
|
|
|
#ifdef HAVE_UNISTD_H
|
|
#include <unistd.h>
|
|
#endif
|
|
|
|
#ifndef G_OS_WIN32
|
|
#include <sys/time.h>
|
|
#include <time.h>
|
|
#else
|
|
#include <windows.h>
|
|
#endif /* G_OS_WIN32 */
|
|
|
|
#include "gslice.h"
|
|
#include "gtestutils.h"
|
|
|
|
/**
|
|
* SECTION:threads
|
|
* @title: Threads
|
|
* @short_description: portable support for threads, mutexes, locks,
|
|
* conditions and thread private data
|
|
* @see_also: #GThreadPool, #GAsyncQueue
|
|
*
|
|
* Threads act almost like processes, but unlike processes all threads
|
|
* of one process share the same memory. This is good, as it provides
|
|
* easy communication between the involved threads via this shared
|
|
* memory, and it is bad, because strange things (so called
|
|
* "Heisenbugs") might happen if the program is not carefully designed.
|
|
* In particular, due to the concurrent nature of threads, no
|
|
* assumptions on the order of execution of code running in different
|
|
* threads can be made, unless order is explicitly forced by the
|
|
* programmer through synchronization primitives.
|
|
*
|
|
* The aim of the thread-related functions in GLib is to provide a
|
|
* portable means for writing multi-threaded software. There are
|
|
* primitives for mutexes to protect the access to portions of memory
|
|
* (#GMutex, #GRecMutex and #GRWLock). There is a facility to use
|
|
* individual bits for locks (g_bit_lock()). There are primitives
|
|
* for condition variables to allow synchronization of threads (#GCond).
|
|
* There are primitives for thread-private data - data that every thread
|
|
* has a private instance of (#GPrivate). There are
|
|
* facilities for one-time initialization (#GOnce, g_once_init_enter()).
|
|
* Finally there are primitives to create and manage threads (#GThread).
|
|
*
|
|
* The GLib threading system used to be initialized with g_thread_init().
|
|
* This is no longer necessary. Since version 2.32, the GLib threading
|
|
* system is automatically initialized at the start of your program,
|
|
* and all thread-creation functions and synchronization primitives
|
|
* are available right away. It is still possible to do thread-unsafe
|
|
* initialization and setup at the beginning of your program, before
|
|
* creating the first threads.
|
|
*
|
|
* GLib is internally completely thread-safe (all global data is
|
|
* automatically locked), but individual data structure instances are
|
|
* not automatically locked for performance reasons. For example,
|
|
* you must coordinate accesses to the same #GHashTable from multiple
|
|
* threads. The two notable exceptions from this rule are #GMainLoop
|
|
* and #GAsyncQueue, which <emphasis>are</emphasis> thread-safe and
|
|
* need no further application-level locking to be accessed from
|
|
* multiple threads. Most refcounting functions such as g_object_ref()
|
|
* are also thread-safe.
|
|
*/
|
|
|
|
/* G_LOCK Documentation {{{1 ---------------------------------------------- */
|
|
|
|
/**
|
|
* G_LOCK_DEFINE:
|
|
* @name: the name of the lock
|
|
*
|
|
* The %G_LOCK_* macros provide a convenient interface to #GMutex.
|
|
* #G_LOCK_DEFINE defines a lock. It can appear in any place where
|
|
* variable definitions may appear in programs, i.e. in the first block
|
|
* of a function or outside of functions. The @name parameter will be
|
|
* mangled to get the name of the #GMutex. This means that you
|
|
* can use names of existing variables as the parameter - e.g. the name
|
|
* of the variable you intend to protect with the lock. Look at our
|
|
* <function>give_me_next_number()</function> example using the
|
|
* %G_LOCK_* macros:
|
|
*
|
|
* <example>
|
|
* <title>Using the %G_LOCK_* convenience macros</title>
|
|
* <programlisting>
|
|
* G_LOCK_DEFINE (current_number);
|
|
*
|
|
* int
|
|
* give_me_next_number (void)
|
|
* {
|
|
* static int current_number = 0;
|
|
* int ret_val;
|
|
*
|
|
* G_LOCK (current_number);
|
|
* ret_val = current_number = calc_next_number (current_number);
|
|
* G_UNLOCK (current_number);
|
|
*
|
|
* return ret_val;
|
|
* }
|
|
* </programlisting>
|
|
* </example>
|
|
*/
|
|
|
|
/**
|
|
* G_LOCK_DEFINE_STATIC:
|
|
* @name: the name of the lock
|
|
*
|
|
* This works like #G_LOCK_DEFINE, but it creates a static object.
|
|
*/
|
|
|
|
/**
|
|
* G_LOCK_EXTERN:
|
|
* @name: the name of the lock
|
|
*
|
|
* This declares a lock, that is defined with #G_LOCK_DEFINE in another
|
|
* module.
|
|
*/
|
|
|
|
/**
|
|
* G_LOCK:
|
|
* @name: the name of the lock
|
|
*
|
|
* Works like g_mutex_lock(), but for a lock defined with
|
|
* #G_LOCK_DEFINE.
|
|
*/
|
|
|
|
/**
|
|
* G_TRYLOCK:
|
|
* @name: the name of the lock
|
|
* @Returns: %TRUE, if the lock could be locked.
|
|
*
|
|
* Works like g_mutex_trylock(), but for a lock defined with
|
|
* #G_LOCK_DEFINE.
|
|
*/
|
|
|
|
/**
|
|
* G_UNLOCK:
|
|
* @name: the name of the lock
|
|
*
|
|
* Works like g_mutex_unlock(), but for a lock defined with
|
|
* #G_LOCK_DEFINE.
|
|
*/
|
|
|
|
/* GMutex Documentation {{{1 ------------------------------------------ */
|
|
|
|
/**
|
|
* GMutex:
|
|
*
|
|
* The #GMutex struct is an opaque data structure to represent a mutex
|
|
* (mutual exclusion). It can be used to protect data against shared
|
|
* access. Take for example the following function:
|
|
*
|
|
* <example>
|
|
* <title>A function which will not work in a threaded environment</title>
|
|
* <programlisting>
|
|
* int
|
|
* give_me_next_number (void)
|
|
* {
|
|
* static int current_number = 0;
|
|
*
|
|
* /<!-- -->* now do a very complicated calculation to calculate the new
|
|
* * number, this might for example be a random number generator
|
|
* *<!-- -->/
|
|
* current_number = calc_next_number (current_number);
|
|
*
|
|
* return current_number;
|
|
* }
|
|
* </programlisting>
|
|
* </example>
|
|
*
|
|
* It is easy to see that this won't work in a multi-threaded
|
|
* application. There current_number must be protected against shared
|
|
* access. A #GMutex can be used as a solution to this problem:
|
|
*
|
|
* <example>
|
|
* <title>Using GMutex to protected a shared variable</title>
|
|
* <programlisting>
|
|
* int
|
|
* give_me_next_number (void)
|
|
* {
|
|
* static GMutex mutex;
|
|
* static int current_number = 0;
|
|
* int ret_val;
|
|
*
|
|
* g_mutex_lock (&mutex);
|
|
* ret_val = current_number = calc_next_number (current_number);
|
|
* g_mutex_unlock (&mutex);
|
|
*
|
|
* return ret_val;
|
|
* }
|
|
* </programlisting>
|
|
* </example>
|
|
*
|
|
* Notice that the #GMutex is not initialised to any particular value.
|
|
* Its placement in static storage ensures that it will be initialised
|
|
* to all-zeros, which is appropriate.
|
|
*
|
|
* If a #GMutex is placed in other contexts (eg: embedded in a struct)
|
|
* then it must be explicitly initialised using g_mutex_init().
|
|
*
|
|
* A #GMutex should only be accessed via <function>g_mutex_</function>
|
|
* functions.
|
|
*/
|
|
|
|
/* GRecMutex Documentation {{{1 -------------------------------------- */
|
|
|
|
/**
|
|
* GRecMutex:
|
|
*
|
|
* The GRecMutex struct is an opaque data structure to represent a
|
|
* recursive mutex. It is similar to a #GMutex with the difference
|
|
* that it is possible to lock a GRecMutex multiple times in the same
|
|
* thread without deadlock. When doing so, care has to be taken to
|
|
* unlock the recursive mutex as often as it has been locked.
|
|
*
|
|
* If a #GRecMutex is allocated in static storage then it can be used
|
|
* without initialisation. Otherwise, you should call
|
|
* g_rec_mutex_init() on it and g_rec_mutex_clear() when done.
|
|
*
|
|
* A GRecMutex should only be accessed with the
|
|
* <function>g_rec_mutex_</function> functions.
|
|
*
|
|
* Since: 2.32
|
|
*/
|
|
|
|
/* GRWLock Documentation {{{1 ---------------------------------------- */
|
|
|
|
/**
|
|
* GRWLock:
|
|
*
|
|
* The GRWLock struct is an opaque data structure to represent a
|
|
* reader-writer lock. It is similar to a #GMutex in that it allows
|
|
* multiple threads to coordinate access to a shared resource.
|
|
*
|
|
* The difference to a mutex is that a reader-writer lock discriminates
|
|
* between read-only ('reader') and full ('writer') access. While only
|
|
* one thread at a time is allowed write access (by holding the 'writer'
|
|
* lock via g_rw_lock_writer_lock()), multiple threads can gain
|
|
* simultaneous read-only access (by holding the 'reader' lock via
|
|
* g_rw_lock_reader_lock()).
|
|
*
|
|
* <example>
|
|
* <title>An array with access functions</title>
|
|
* <programlisting>
|
|
* GRWLock lock;
|
|
* GPtrArray *array;
|
|
*
|
|
* gpointer
|
|
* my_array_get (guint index)
|
|
* {
|
|
* gpointer retval = NULL;
|
|
*
|
|
* if (!array)
|
|
* return NULL;
|
|
*
|
|
* g_rw_lock_reader_lock (&lock);
|
|
* if (index < array->len)
|
|
* retval = g_ptr_array_index (array, index);
|
|
* g_rw_lock_reader_unlock (&lock);
|
|
*
|
|
* return retval;
|
|
* }
|
|
*
|
|
* void
|
|
* my_array_set (guint index, gpointer data)
|
|
* {
|
|
* g_rw_lock_writer_lock (&lock);
|
|
*
|
|
* if (!array)
|
|
* array = g_ptr_array_new (<!-- -->);
|
|
*
|
|
* if (index >= array->len)
|
|
* g_ptr_array_set_size (array, index+1);
|
|
* g_ptr_array_index (array, index) = data;
|
|
*
|
|
* g_rw_lock_writer_unlock (&lock);
|
|
* }
|
|
* </programlisting>
|
|
* <para>
|
|
* This example shows an array which can be accessed by many readers
|
|
* (the <function>my_array_get()</function> function) simultaneously,
|
|
* whereas the writers (the <function>my_array_set()</function>
|
|
* function) will only be allowed once at a time and only if no readers
|
|
* currently access the array. This is because of the potentially
|
|
* dangerous resizing of the array. Using these functions is fully
|
|
* multi-thread safe now.
|
|
* </para>
|
|
* </example>
|
|
*
|
|
* If a #GRWLock is allocated in static storage then it can be used
|
|
* without initialisation. Otherwise, you should call
|
|
* g_rw_lock_init() on it and g_rw_lock_clear() when done.
|
|
*
|
|
* A GRWLock should only be accessed with the
|
|
* <function>g_rw_lock_</function> functions.
|
|
*
|
|
* Since: 2.32
|
|
*/
|
|
|
|
/* GCond Documentation {{{1 ------------------------------------------ */
|
|
|
|
/**
|
|
* GCond:
|
|
*
|
|
* The #GCond struct is an opaque data structure that represents a
|
|
* condition. Threads can block on a #GCond if they find a certain
|
|
* condition to be false. If other threads change the state of this
|
|
* condition they signal the #GCond, and that causes the waiting
|
|
* threads to be woken up.
|
|
*
|
|
* <example>
|
|
* <title>
|
|
* Using GCond to block a thread until a condition is satisfied
|
|
* </title>
|
|
* <programlisting>
|
|
* GCond* data_cond = NULL; /<!-- -->* Must be initialized somewhere *<!-- -->/
|
|
* GMutex* data_mutex = NULL; /<!-- -->* Must be initialized somewhere *<!-- -->/
|
|
* gpointer current_data = NULL;
|
|
*
|
|
* void
|
|
* push_data (gpointer data)
|
|
* {
|
|
* g_mutex_lock (data_mutex);
|
|
* current_data = data;
|
|
* g_cond_signal (data_cond);
|
|
* g_mutex_unlock (data_mutex);
|
|
* }
|
|
*
|
|
* gpointer
|
|
* pop_data (void)
|
|
* {
|
|
* gpointer data;
|
|
*
|
|
* g_mutex_lock (data_mutex);
|
|
* while (!current_data)
|
|
* g_cond_wait (data_cond, data_mutex);
|
|
* data = current_data;
|
|
* current_data = NULL;
|
|
* g_mutex_unlock (data_mutex);
|
|
*
|
|
* return data;
|
|
* }
|
|
* </programlisting>
|
|
* </example>
|
|
*
|
|
* Whenever a thread calls pop_data() now, it will wait until
|
|
* current_data is non-%NULL, i.e. until some other thread
|
|
* has called push_data().
|
|
*
|
|
* <note><para>It is important to use the g_cond_wait() and
|
|
* g_cond_timed_wait() functions only inside a loop which checks for the
|
|
* condition to be true. It is not guaranteed that the waiting thread
|
|
* will find the condition fulfilled after it wakes up, even if the
|
|
* signaling thread left the condition in that state: another thread may
|
|
* have altered the condition before the waiting thread got the chance
|
|
* to be woken up, even if the condition itself is protected by a
|
|
* #GMutex, like above.</para></note>
|
|
*
|
|
* If a #GCond is allocated in static storage then it can be used
|
|
* without initialisation. Otherwise, you should call g_cond_init() on
|
|
* it and g_cond_clear() when done.
|
|
*
|
|
* A #GCond should only be accessed via the <function>g_cond_</function>
|
|
* functions.
|
|
*/
|
|
|
|
/* GThread Documentation {{{1 ---------------------------------------- */
|
|
|
|
/**
|
|
* GThread:
|
|
*
|
|
* The #GThread struct represents a running thread. This struct
|
|
* is returned by g_thread_new() or g_thread_new_full(). You can
|
|
* obtain the #GThread struct representing the current thead by
|
|
* calling g_thread_self().
|
|
*
|
|
* The structure is opaque -- none of its fields may be directly
|
|
* accessed.
|
|
*/
|
|
|
|
/**
|
|
* GThreadFunc:
|
|
* @data: data passed to the thread
|
|
*
|
|
* Specifies the type of the @func functions passed to
|
|
* g_thread_new() or g_thread_new_full().
|
|
*
|
|
* If the thread is joinable, the return value of this function
|
|
* is returned by a g_thread_join() call waiting for the thread.
|
|
* If the thread is not joinable, the return value is ignored.
|
|
*
|
|
* Returns: the return value of the thread
|
|
*/
|
|
|
|
/**
|
|
* g_thread_supported:
|
|
*
|
|
* This macro returns %TRUE if the thread system is initialized,
|
|
* and %FALSE if it is not.
|
|
*
|
|
* For language bindings, g_thread_get_initialized() provides
|
|
* the same functionality as a function.
|
|
*
|
|
* Returns: %TRUE, if the thread system is initialized
|
|
*/
|
|
|
|
/* GThreadError {{{1 ------------------------------------------------------- */
|
|
/**
|
|
* GThreadError:
|
|
* @G_THREAD_ERROR_AGAIN: a thread couldn't be created due to resource
|
|
* shortage. Try again later.
|
|
*
|
|
* Possible errors of thread related functions.
|
|
**/
|
|
|
|
/**
|
|
* G_THREAD_ERROR:
|
|
*
|
|
* The error domain of the GLib thread subsystem.
|
|
**/
|
|
GQuark
|
|
g_thread_error_quark (void)
|
|
{
|
|
return g_quark_from_static_string ("g_thread_error");
|
|
}
|
|
|
|
/* Local Data {{{1 -------------------------------------------------------- */
|
|
|
|
static GMutex g_once_mutex;
|
|
static GCond g_once_cond;
|
|
static GSList *g_once_init_list = NULL;
|
|
|
|
static void g_thread_cleanup (gpointer data);
|
|
static GPrivate g_thread_specific_private = G_PRIVATE_INIT (g_thread_cleanup);
|
|
|
|
G_LOCK_DEFINE_STATIC (g_thread_new);
|
|
|
|
/* GOnce {{{1 ------------------------------------------------------------- */
|
|
|
|
/**
|
|
* GOnce:
|
|
* @status: the status of the #GOnce
|
|
* @retval: the value returned by the call to the function, if @status
|
|
* is %G_ONCE_STATUS_READY
|
|
*
|
|
* A #GOnce struct controls a one-time initialization function. Any
|
|
* one-time initialization function must have its own unique #GOnce
|
|
* struct.
|
|
*
|
|
* Since: 2.4
|
|
*/
|
|
|
|
/**
|
|
* G_ONCE_INIT:
|
|
*
|
|
* A #GOnce must be initialized with this macro before it can be used.
|
|
*
|
|
* |[
|
|
* GOnce my_once = G_ONCE_INIT;
|
|
* ]|
|
|
*
|
|
* Since: 2.4
|
|
*/
|
|
|
|
/**
|
|
* GOnceStatus:
|
|
* @G_ONCE_STATUS_NOTCALLED: the function has not been called yet.
|
|
* @G_ONCE_STATUS_PROGRESS: the function call is currently in progress.
|
|
* @G_ONCE_STATUS_READY: the function has been called.
|
|
*
|
|
* The possible statuses of a one-time initialization function
|
|
* controlled by a #GOnce struct.
|
|
*
|
|
* Since: 2.4
|
|
*/
|
|
|
|
/**
|
|
* g_once:
|
|
* @once: a #GOnce structure
|
|
* @func: the #GThreadFunc function associated to @once. This function
|
|
* is called only once, regardless of the number of times it and
|
|
* its associated #GOnce struct are passed to g_once().
|
|
* @arg: data to be passed to @func
|
|
*
|
|
* The first call to this routine by a process with a given #GOnce
|
|
* struct calls @func with the given argument. Thereafter, subsequent
|
|
* calls to g_once() with the same #GOnce struct do not call @func
|
|
* again, but return the stored result of the first call. On return
|
|
* from g_once(), the status of @once will be %G_ONCE_STATUS_READY.
|
|
*
|
|
* For example, a mutex or a thread-specific data key must be created
|
|
* exactly once. In a threaded environment, calling g_once() ensures
|
|
* that the initialization is serialized across multiple threads.
|
|
*
|
|
* Calling g_once() recursively on the same #GOnce struct in
|
|
* @func will lead to a deadlock.
|
|
*
|
|
* |[
|
|
* gpointer
|
|
* get_debug_flags (void)
|
|
* {
|
|
* static GOnce my_once = G_ONCE_INIT;
|
|
*
|
|
* g_once (&my_once, parse_debug_flags, NULL);
|
|
*
|
|
* return my_once.retval;
|
|
* }
|
|
* ]|
|
|
*
|
|
* Since: 2.4
|
|
*/
|
|
gpointer
|
|
g_once_impl (GOnce *once,
|
|
GThreadFunc func,
|
|
gpointer arg)
|
|
{
|
|
g_mutex_lock (&g_once_mutex);
|
|
|
|
while (once->status == G_ONCE_STATUS_PROGRESS)
|
|
g_cond_wait (&g_once_cond, &g_once_mutex);
|
|
|
|
if (once->status != G_ONCE_STATUS_READY)
|
|
{
|
|
once->status = G_ONCE_STATUS_PROGRESS;
|
|
g_mutex_unlock (&g_once_mutex);
|
|
|
|
once->retval = func (arg);
|
|
|
|
g_mutex_lock (&g_once_mutex);
|
|
once->status = G_ONCE_STATUS_READY;
|
|
g_cond_broadcast (&g_once_cond);
|
|
}
|
|
|
|
g_mutex_unlock (&g_once_mutex);
|
|
|
|
return once->retval;
|
|
}
|
|
|
|
/**
|
|
* g_once_init_enter:
|
|
* @value_location: location of a static initializable variable
|
|
* containing 0
|
|
*
|
|
* Function to be called when starting a critical initialization
|
|
* section. The argument @value_location must point to a static
|
|
* 0-initialized variable that will be set to a value other than 0 at
|
|
* the end of the initialization section. In combination with
|
|
* g_once_init_leave() and the unique address @value_location, it can
|
|
* be ensured that an initialization section will be executed only once
|
|
* during a program's life time, and that concurrent threads are
|
|
* blocked until initialization completed. To be used in constructs
|
|
* like this:
|
|
*
|
|
* |[
|
|
* static gsize initialization_value = 0;
|
|
*
|
|
* if (g_once_init_enter (&initialization_value))
|
|
* {
|
|
* gsize setup_value = 42; /** initialization code here **/
|
|
*
|
|
* g_once_init_leave (&initialization_value, setup_value);
|
|
* }
|
|
*
|
|
* /** use initialization_value here **/
|
|
* ]|
|
|
*
|
|
* Returns: %TRUE if the initialization section should be entered,
|
|
* %FALSE and blocks otherwise
|
|
*
|
|
* Since: 2.14
|
|
*/
|
|
gboolean
|
|
(g_once_init_enter) (volatile void *pointer)
|
|
{
|
|
volatile gsize *value_location = pointer;
|
|
gboolean need_init = FALSE;
|
|
g_mutex_lock (&g_once_mutex);
|
|
if (g_atomic_pointer_get (value_location) == NULL)
|
|
{
|
|
if (!g_slist_find (g_once_init_list, (void*) value_location))
|
|
{
|
|
need_init = TRUE;
|
|
g_once_init_list = g_slist_prepend (g_once_init_list, (void*) value_location);
|
|
}
|
|
else
|
|
do
|
|
g_cond_wait (&g_once_cond, &g_once_mutex);
|
|
while (g_slist_find (g_once_init_list, (void*) value_location));
|
|
}
|
|
g_mutex_unlock (&g_once_mutex);
|
|
return need_init;
|
|
}
|
|
|
|
/**
|
|
* g_once_init_leave:
|
|
* @value_location: location of a static initializable variable
|
|
* containing 0
|
|
* @result: new non-0 value for *@value_location
|
|
*
|
|
* Counterpart to g_once_init_enter(). Expects a location of a static
|
|
* 0-initialized initialization variable, and an initialization value
|
|
* other than 0. Sets the variable to the initialization value, and
|
|
* releases concurrent threads blocking in g_once_init_enter() on this
|
|
* initialization variable.
|
|
*
|
|
* Since: 2.14
|
|
*/
|
|
void
|
|
(g_once_init_leave) (volatile void *pointer,
|
|
gsize result)
|
|
{
|
|
volatile gsize *value_location = pointer;
|
|
|
|
g_return_if_fail (g_atomic_pointer_get (value_location) == NULL);
|
|
g_return_if_fail (result != 0);
|
|
g_return_if_fail (g_once_init_list != NULL);
|
|
|
|
g_atomic_pointer_set (value_location, result);
|
|
g_mutex_lock (&g_once_mutex);
|
|
g_once_init_list = g_slist_remove (g_once_init_list, (void*) value_location);
|
|
g_cond_broadcast (&g_once_cond);
|
|
g_mutex_unlock (&g_once_mutex);
|
|
}
|
|
|
|
/* GThread {{{1 -------------------------------------------------------- */
|
|
|
|
static void
|
|
g_thread_cleanup (gpointer data)
|
|
{
|
|
if (data)
|
|
{
|
|
GRealThread* thread = data;
|
|
|
|
/* We only free the thread structure if it isn't joinable.
|
|
* If it is, the structure is freed in g_thread_join()
|
|
*/
|
|
if (!thread->thread.joinable)
|
|
g_system_thread_free (thread);
|
|
}
|
|
}
|
|
|
|
gpointer
|
|
g_thread_proxy (gpointer data)
|
|
{
|
|
GRealThread* thread = data;
|
|
|
|
g_assert (data);
|
|
|
|
if (thread->name)
|
|
g_system_thread_set_name (thread->name);
|
|
|
|
/* This has to happen before G_LOCK, as that might call g_thread_self */
|
|
g_private_set (&g_thread_specific_private, data);
|
|
|
|
/* The lock makes sure that thread->system_thread is written,
|
|
* before thread->thread.func is called. See g_thread_new_internal().
|
|
*/
|
|
G_LOCK (g_thread_new);
|
|
G_UNLOCK (g_thread_new);
|
|
|
|
thread->retval = thread->thread.func (thread->thread.data);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* g_thread_new:
|
|
* @name: a name for the new thread
|
|
* @func: a function to execute in the new thread
|
|
* @data: an argument to supply to the new thread
|
|
* @joinable: should this thread be joinable?
|
|
* @error: return location for error
|
|
*
|
|
* This function creates a new thread. The new thread starts by invoking
|
|
* @func with the argument data. The thread will run until @func returns
|
|
* or until g_thread_exit() is called from the new thread.
|
|
*
|
|
* The @name can be useful for discriminating threads in
|
|
* a debugger. Some systems restrict the length of @name to
|
|
* 16 bytes.
|
|
*
|
|
* If @joinable is %TRUE, you can wait for this thread's termination
|
|
* calling g_thread_join(). Resources for a joinable thread are not
|
|
* fully released until g_thread_join() is called for that thread.
|
|
* Otherwise the thread will just disappear when it terminates.
|
|
*
|
|
* @error can be %NULL to ignore errors, or non-%NULL to report errors.
|
|
* The error is set, if and only if the function returns %NULL.
|
|
*
|
|
* Returns: the new #GThread, or %NULL if an error occurred
|
|
*
|
|
* Since: 2.32
|
|
*/
|
|
GThread *
|
|
g_thread_new (const gchar *name,
|
|
GThreadFunc func,
|
|
gpointer data,
|
|
gboolean joinable,
|
|
GError **error)
|
|
{
|
|
return g_thread_new_internal (name, g_thread_proxy, func, data, joinable, 0, error);
|
|
}
|
|
|
|
/**
|
|
* g_thread_new_full:
|
|
* @name: a name for the new thread
|
|
* @func: a function to execute in the new thread
|
|
* @data: an argument to supply to the new thread
|
|
* @joinable: should this thread be joinable?
|
|
* @stack_size: a stack size for the new thread
|
|
* @error: return location for error
|
|
*
|
|
* This function creates a new thread. The new thread starts by
|
|
* invoking @func with the argument data. The thread will run
|
|
* until @func returns or until g_thread_exit() is called.
|
|
*
|
|
* The @name can be useful for discriminating threads in
|
|
* a debugger. Some systems restrict the length of @name to
|
|
* 16 bytes.
|
|
*
|
|
* If the underlying thread implementation supports it, the thread
|
|
* gets a stack size of @stack_size or the default value for the
|
|
* current platform, if @stack_size is 0. Note that you should only
|
|
* use a non-zero @stack_size if you really can't use the default.
|
|
* In most cases, using g_thread_new() (which doesn't take a
|
|
* @stack_size) is better.
|
|
*
|
|
* If @joinable is %TRUE, you can wait for this thread's termination
|
|
* calling g_thread_join(). Resources for a joinable thread are not
|
|
* fully released until g_thread_join() is called for that thread.
|
|
* Otherwise the thread will just disappear when it terminates.
|
|
*
|
|
* @error can be %NULL to ignore errors, or non-%NULL to report errors.
|
|
* The error is set, if and only if the function returns %NULL.
|
|
*
|
|
* Returns: the new #GThread, or %NULL if an error occurred
|
|
*
|
|
* Since: 2.32
|
|
*/
|
|
GThread *
|
|
g_thread_new_full (const gchar *name,
|
|
GThreadFunc func,
|
|
gpointer data,
|
|
gboolean joinable,
|
|
gsize stack_size,
|
|
GError **error)
|
|
{
|
|
return g_thread_new_internal (name, g_thread_proxy, func, data, joinable, stack_size, error);
|
|
}
|
|
|
|
GThread *
|
|
g_thread_new_internal (const gchar *name,
|
|
GThreadFunc proxy,
|
|
GThreadFunc func,
|
|
gpointer data,
|
|
gboolean joinable,
|
|
gsize stack_size,
|
|
GError **error)
|
|
{
|
|
GRealThread *result;
|
|
GError *local_error = NULL;
|
|
|
|
g_return_val_if_fail (func != NULL, NULL);
|
|
|
|
result = g_system_thread_new ();
|
|
|
|
result->thread.joinable = joinable;
|
|
result->thread.func = func;
|
|
result->thread.data = data;
|
|
result->name = name;
|
|
G_LOCK (g_thread_new);
|
|
g_system_thread_create (proxy, result, stack_size, joinable,
|
|
&result->system_thread, &local_error);
|
|
G_UNLOCK (g_thread_new);
|
|
|
|
if (local_error)
|
|
{
|
|
g_propagate_error (error, local_error);
|
|
g_system_thread_free (result);
|
|
return NULL;
|
|
}
|
|
|
|
return (GThread*) result;
|
|
}
|
|
|
|
/**
|
|
* g_thread_exit:
|
|
* @retval: the return value of this thread
|
|
*
|
|
* Terminates the current thread.
|
|
*
|
|
* If another thread is waiting for that thread using g_thread_join()
|
|
* and the current thread is joinable, the waiting thread will be woken
|
|
* up and get @retval as the return value of g_thread_join(). If the
|
|
* current thread is not joinable, @retval is ignored.
|
|
*
|
|
* Calling <literal>g_thread_exit (retval)</literal> is equivalent to
|
|
* returning @retval from the function @func, as given to g_thread_new().
|
|
*
|
|
* <note><para>Never call g_thread_exit() from within a thread of a
|
|
* #GThreadPool, as that will mess up the bookkeeping and lead to funny
|
|
* and unwanted results.</para></note>
|
|
*/
|
|
void
|
|
g_thread_exit (gpointer retval)
|
|
{
|
|
GRealThread* real = (GRealThread*) g_thread_self ();
|
|
real->retval = retval;
|
|
|
|
g_system_thread_exit ();
|
|
}
|
|
|
|
/**
|
|
* g_thread_join:
|
|
* @thread: a joinable #GThread
|
|
*
|
|
* Waits until @thread finishes, i.e. the function @func, as
|
|
* given to g_thread_new(), returns or g_thread_exit() is called.
|
|
* If @thread has already terminated, then g_thread_join()
|
|
* returns immediately. @thread must be joinable.
|
|
*
|
|
* Any thread can wait for any other (joinable) thread by calling
|
|
* g_thread_join(), not just its 'creator'. Calling g_thread_join()
|
|
* from multiple threads for the same @thread leads to undefined
|
|
* behaviour.
|
|
*
|
|
* The value returned by @func or given to g_thread_exit() is
|
|
* returned by this function.
|
|
*
|
|
* All resources of @thread including the #GThread struct are
|
|
* released before g_thread_join() returns.
|
|
*
|
|
* Returns: the return value of the thread
|
|
*/
|
|
gpointer
|
|
g_thread_join (GThread *thread)
|
|
{
|
|
GRealThread *real = (GRealThread*) thread;
|
|
gpointer retval;
|
|
|
|
g_return_val_if_fail (thread, NULL);
|
|
g_return_val_if_fail (thread->joinable, NULL);
|
|
|
|
g_system_thread_wait (real);
|
|
|
|
retval = real->retval;
|
|
|
|
/* Just to make sure, this isn't used any more */
|
|
thread->joinable = 0;
|
|
|
|
/* the thread structure for non-joinable threads is freed upon
|
|
* thread end. We free the memory here. This will leave a loose end,
|
|
* if a joinable thread is not joined.
|
|
*/
|
|
g_system_thread_free (real);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* g_thread_self:
|
|
*
|
|
* This functions returns the #GThread corresponding to the
|
|
* current thread.
|
|
*
|
|
* Returns: the #GThread representing the current thread
|
|
*/
|
|
GThread*
|
|
g_thread_self (void)
|
|
{
|
|
GRealThread* thread = g_private_get (&g_thread_specific_private);
|
|
|
|
if (!thread)
|
|
{
|
|
/* If no thread data is available, provide and set one.
|
|
* This can happen for the main thread and for threads
|
|
* that are not created by GLib.
|
|
*/
|
|
thread = g_new0 (GRealThread, 1);
|
|
thread->thread.joinable = FALSE; /* This is a safe guess */
|
|
thread->thread.func = NULL;
|
|
thread->thread.data = NULL;
|
|
|
|
g_private_set (&g_thread_specific_private, thread);
|
|
}
|
|
|
|
return (GThread*)thread;
|
|
}
|
|
|
|
/* Epilogue {{{1 */
|
|
/* vim: set foldmethod=marker: */
|