mirror of
https://gitlab.gnome.org/GNOME/glib.git
synced 2024-12-26 23:46:15 +01:00
6406217f50
../glib/gsequence.c: In function 'g_sequence_move_range': ../glib/gsequence.c:640:24: warning: 'dest_seq' may be used uninitialized in this function [-Wmaybe-uninitialized] 640 | if (dest && dest_seq == src_seq && | ~~~~~~~~~^~~~~~~~~~
2086 lines
51 KiB
C
2086 lines
51 KiB
C
/* GLIB - Library of useful routines for C programming
|
|
* Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007
|
|
* Soeren Sandmann (sandmann@daimi.au.dk)
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include "gsequence.h"
|
|
|
|
#include "gmem.h"
|
|
#include "gtestutils.h"
|
|
#include "gslice.h"
|
|
/**
|
|
* SECTION:sequence
|
|
* @title: Sequences
|
|
* @short_description: scalable lists
|
|
*
|
|
* The #GSequence data structure has the API of a list, but is
|
|
* implemented internally with a balanced binary tree. This means that
|
|
* most of the operations (access, search, insertion, deletion, ...) on
|
|
* #GSequence are O(log(n)) in average and O(n) in worst case for time
|
|
* complexity. But, note that maintaining a balanced sorted list of n
|
|
* elements is done in time O(n log(n)).
|
|
* The data contained in each element can be either integer values, by using
|
|
* of the [Type Conversion Macros][glib-Type-Conversion-Macros], or simply
|
|
* pointers to any type of data.
|
|
*
|
|
* A #GSequence is accessed through "iterators", represented by a
|
|
* #GSequenceIter. An iterator represents a position between two
|
|
* elements of the sequence. For example, the "begin" iterator
|
|
* represents the gap immediately before the first element of the
|
|
* sequence, and the "end" iterator represents the gap immediately
|
|
* after the last element. In an empty sequence, the begin and end
|
|
* iterators are the same.
|
|
*
|
|
* Some methods on #GSequence operate on ranges of items. For example
|
|
* g_sequence_foreach_range() will call a user-specified function on
|
|
* each element with the given range. The range is delimited by the
|
|
* gaps represented by the passed-in iterators, so if you pass in the
|
|
* begin and end iterators, the range in question is the entire
|
|
* sequence.
|
|
*
|
|
* The function g_sequence_get() is used with an iterator to access the
|
|
* element immediately following the gap that the iterator represents.
|
|
* The iterator is said to "point" to that element.
|
|
*
|
|
* Iterators are stable across most operations on a #GSequence. For
|
|
* example an iterator pointing to some element of a sequence will
|
|
* continue to point to that element even after the sequence is sorted.
|
|
* Even moving an element to another sequence using for example
|
|
* g_sequence_move_range() will not invalidate the iterators pointing
|
|
* to it. The only operation that will invalidate an iterator is when
|
|
* the element it points to is removed from any sequence.
|
|
*
|
|
* To sort the data, either use g_sequence_insert_sorted() or
|
|
* g_sequence_insert_sorted_iter() to add data to the #GSequence or, if
|
|
* you want to add a large amount of data, it is more efficient to call
|
|
* g_sequence_sort() or g_sequence_sort_iter() after doing unsorted
|
|
* insertions.
|
|
*/
|
|
|
|
/**
|
|
* GSequenceIter:
|
|
*
|
|
* The #GSequenceIter struct is an opaque data type representing an
|
|
* iterator pointing into a #GSequence.
|
|
*/
|
|
|
|
/**
|
|
* GSequenceIterCompareFunc:
|
|
* @a: a #GSequenceIter
|
|
* @b: a #GSequenceIter
|
|
* @data: user data
|
|
*
|
|
* A #GSequenceIterCompareFunc is a function used to compare iterators.
|
|
* It must return zero if the iterators compare equal, a negative value
|
|
* if @a comes before @b, and a positive value if @b comes before @a.
|
|
*
|
|
* Returns: zero if the iterators are equal, a negative value if @a
|
|
* comes before @b, and a positive value if @b comes before @a.
|
|
*/
|
|
|
|
typedef struct _GSequenceNode GSequenceNode;
|
|
|
|
/**
|
|
* GSequence:
|
|
*
|
|
* The #GSequence struct is an opaque data type representing a
|
|
* [sequence][glib-Sequences] data type.
|
|
*/
|
|
struct _GSequence
|
|
{
|
|
GSequenceNode * end_node;
|
|
GDestroyNotify data_destroy_notify;
|
|
gboolean access_prohibited;
|
|
|
|
/* The 'real_sequence' is used when temporary sequences are created
|
|
* to hold nodes that are being rearranged. The 'real_sequence' of such
|
|
* a temporary sequence points to the sequence that is actually being
|
|
* manipulated. The only reason we need this is so that when the
|
|
* sort/sort_changed/search_iter() functions call out to the application
|
|
* g_sequence_iter_get_sequence() will return the correct sequence.
|
|
*/
|
|
GSequence * real_sequence;
|
|
};
|
|
|
|
struct _GSequenceNode
|
|
{
|
|
gint n_nodes;
|
|
guint32 priority;
|
|
GSequenceNode * parent;
|
|
GSequenceNode * left;
|
|
GSequenceNode * right;
|
|
gpointer data; /* For the end node, this field points
|
|
* to the sequence
|
|
*/
|
|
};
|
|
|
|
/*
|
|
* Declaration of GSequenceNode methods
|
|
*/
|
|
static GSequenceNode *node_new (gpointer data);
|
|
static GSequenceNode *node_get_first (GSequenceNode *node);
|
|
static GSequenceNode *node_get_last (GSequenceNode *node);
|
|
static GSequenceNode *node_get_prev (GSequenceNode *node);
|
|
static GSequenceNode *node_get_next (GSequenceNode *node);
|
|
static gint node_get_pos (GSequenceNode *node);
|
|
static GSequenceNode *node_get_by_pos (GSequenceNode *node,
|
|
gint pos);
|
|
static GSequenceNode *node_find (GSequenceNode *haystack,
|
|
GSequenceNode *needle,
|
|
GSequenceNode *end,
|
|
GSequenceIterCompareFunc cmp,
|
|
gpointer user_data);
|
|
static GSequenceNode *node_find_closest (GSequenceNode *haystack,
|
|
GSequenceNode *needle,
|
|
GSequenceNode *end,
|
|
GSequenceIterCompareFunc cmp,
|
|
gpointer user_data);
|
|
static gint node_get_length (GSequenceNode *node);
|
|
static void node_free (GSequenceNode *node,
|
|
GSequence *seq);
|
|
static void node_cut (GSequenceNode *split);
|
|
static void node_insert_before (GSequenceNode *node,
|
|
GSequenceNode *new);
|
|
static void node_unlink (GSequenceNode *node);
|
|
static void node_join (GSequenceNode *left,
|
|
GSequenceNode *right);
|
|
static void node_insert_sorted (GSequenceNode *node,
|
|
GSequenceNode *new,
|
|
GSequenceNode *end,
|
|
GSequenceIterCompareFunc cmp_func,
|
|
gpointer cmp_data);
|
|
|
|
|
|
/*
|
|
* Various helper functions
|
|
*/
|
|
static void
|
|
check_seq_access (GSequence *seq)
|
|
{
|
|
if (G_UNLIKELY (seq->access_prohibited))
|
|
{
|
|
g_warning ("Accessing a sequence while it is "
|
|
"being sorted or searched is not allowed");
|
|
}
|
|
}
|
|
|
|
static GSequence *
|
|
get_sequence (GSequenceNode *node)
|
|
{
|
|
return (GSequence *)node_get_last (node)->data;
|
|
}
|
|
|
|
static gboolean
|
|
seq_is_end (GSequence *seq,
|
|
GSequenceIter *iter)
|
|
{
|
|
return seq->end_node == iter;
|
|
}
|
|
|
|
static gboolean
|
|
is_end (GSequenceIter *iter)
|
|
{
|
|
GSequenceIter *parent = iter->parent;
|
|
|
|
if (iter->right)
|
|
return FALSE;
|
|
|
|
if (!parent)
|
|
return TRUE;
|
|
|
|
while (parent->right == iter)
|
|
{
|
|
iter = parent;
|
|
parent = iter->parent;
|
|
|
|
if (!parent)
|
|
return TRUE;
|
|
}
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
typedef struct
|
|
{
|
|
GCompareDataFunc cmp_func;
|
|
gpointer cmp_data;
|
|
GSequenceNode *end_node;
|
|
} SortInfo;
|
|
|
|
/* This function compares two iters using a normal compare
|
|
* function and user_data passed in in a SortInfo struct
|
|
*/
|
|
static gint
|
|
iter_compare (GSequenceIter *node1,
|
|
GSequenceIter *node2,
|
|
gpointer data)
|
|
{
|
|
const SortInfo *info = data;
|
|
gint retval;
|
|
|
|
if (node1 == info->end_node)
|
|
return 1;
|
|
|
|
if (node2 == info->end_node)
|
|
return -1;
|
|
|
|
retval = info->cmp_func (node1->data, node2->data, info->cmp_data);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* Public API
|
|
*/
|
|
|
|
/**
|
|
* g_sequence_new:
|
|
* @data_destroy: (nullable): a #GDestroyNotify function, or %NULL
|
|
*
|
|
* Creates a new GSequence. The @data_destroy function, if non-%NULL will
|
|
* be called on all items when the sequence is destroyed and on items that
|
|
* are removed from the sequence.
|
|
*
|
|
* Returns: (transfer full): a new #GSequence
|
|
*
|
|
* Since: 2.14
|
|
**/
|
|
GSequence *
|
|
g_sequence_new (GDestroyNotify data_destroy)
|
|
{
|
|
GSequence *seq = g_new (GSequence, 1);
|
|
seq->data_destroy_notify = data_destroy;
|
|
|
|
seq->end_node = node_new (seq);
|
|
|
|
seq->access_prohibited = FALSE;
|
|
|
|
seq->real_sequence = seq;
|
|
|
|
return seq;
|
|
}
|
|
|
|
/**
|
|
* g_sequence_free:
|
|
* @seq: a #GSequence
|
|
*
|
|
* Frees the memory allocated for @seq. If @seq has a data destroy
|
|
* function associated with it, that function is called on all items
|
|
* in @seq.
|
|
*
|
|
* Since: 2.14
|
|
*/
|
|
void
|
|
g_sequence_free (GSequence *seq)
|
|
{
|
|
g_return_if_fail (seq != NULL);
|
|
|
|
check_seq_access (seq);
|
|
|
|
node_free (seq->end_node, seq);
|
|
|
|
g_free (seq);
|
|
}
|
|
|
|
/**
|
|
* g_sequence_foreach_range:
|
|
* @begin: a #GSequenceIter
|
|
* @end: a #GSequenceIter
|
|
* @func: a #GFunc
|
|
* @user_data: user data passed to @func
|
|
*
|
|
* Calls @func for each item in the range (@begin, @end) passing
|
|
* @user_data to the function. @func must not modify the sequence
|
|
* itself.
|
|
*
|
|
* Since: 2.14
|
|
*/
|
|
void
|
|
g_sequence_foreach_range (GSequenceIter *begin,
|
|
GSequenceIter *end,
|
|
GFunc func,
|
|
gpointer user_data)
|
|
{
|
|
GSequence *seq;
|
|
GSequenceIter *iter;
|
|
|
|
g_return_if_fail (func != NULL);
|
|
g_return_if_fail (begin != NULL);
|
|
g_return_if_fail (end != NULL);
|
|
|
|
seq = get_sequence (begin);
|
|
|
|
seq->access_prohibited = TRUE;
|
|
|
|
iter = begin;
|
|
while (iter != end)
|
|
{
|
|
GSequenceIter *next = node_get_next (iter);
|
|
|
|
func (iter->data, user_data);
|
|
|
|
iter = next;
|
|
}
|
|
|
|
seq->access_prohibited = FALSE;
|
|
}
|
|
|
|
/**
|
|
* g_sequence_foreach:
|
|
* @seq: a #GSequence
|
|
* @func: the function to call for each item in @seq
|
|
* @user_data: user data passed to @func
|
|
*
|
|
* Calls @func for each item in the sequence passing @user_data
|
|
* to the function. @func must not modify the sequence itself.
|
|
*
|
|
* Since: 2.14
|
|
*/
|
|
void
|
|
g_sequence_foreach (GSequence *seq,
|
|
GFunc func,
|
|
gpointer user_data)
|
|
{
|
|
GSequenceIter *begin, *end;
|
|
|
|
check_seq_access (seq);
|
|
|
|
begin = g_sequence_get_begin_iter (seq);
|
|
end = g_sequence_get_end_iter (seq);
|
|
|
|
g_sequence_foreach_range (begin, end, func, user_data);
|
|
}
|
|
|
|
/**
|
|
* g_sequence_range_get_midpoint:
|
|
* @begin: a #GSequenceIter
|
|
* @end: a #GSequenceIter
|
|
*
|
|
* Finds an iterator somewhere in the range (@begin, @end). This
|
|
* iterator will be close to the middle of the range, but is not
|
|
* guaranteed to be exactly in the middle.
|
|
*
|
|
* The @begin and @end iterators must both point to the same sequence
|
|
* and @begin must come before or be equal to @end in the sequence.
|
|
*
|
|
* Returns: (transfer none): a #GSequenceIter pointing somewhere in the
|
|
* (@begin, @end) range
|
|
*
|
|
* Since: 2.14
|
|
*/
|
|
GSequenceIter *
|
|
g_sequence_range_get_midpoint (GSequenceIter *begin,
|
|
GSequenceIter *end)
|
|
{
|
|
int begin_pos, end_pos, mid_pos;
|
|
|
|
g_return_val_if_fail (begin != NULL, NULL);
|
|
g_return_val_if_fail (end != NULL, NULL);
|
|
g_return_val_if_fail (get_sequence (begin) == get_sequence (end), NULL);
|
|
|
|
begin_pos = node_get_pos (begin);
|
|
end_pos = node_get_pos (end);
|
|
|
|
g_return_val_if_fail (end_pos >= begin_pos, NULL);
|
|
|
|
mid_pos = begin_pos + (end_pos - begin_pos) / 2;
|
|
|
|
return node_get_by_pos (begin, mid_pos);
|
|
}
|
|
|
|
/**
|
|
* g_sequence_iter_compare:
|
|
* @a: a #GSequenceIter
|
|
* @b: a #GSequenceIter
|
|
*
|
|
* Returns a negative number if @a comes before @b, 0 if they are equal,
|
|
* and a positive number if @a comes after @b.
|
|
*
|
|
* The @a and @b iterators must point into the same sequence.
|
|
*
|
|
* Returns: a negative number if @a comes before @b, 0 if they are
|
|
* equal, and a positive number if @a comes after @b
|
|
*
|
|
* Since: 2.14
|
|
*/
|
|
gint
|
|
g_sequence_iter_compare (GSequenceIter *a,
|
|
GSequenceIter *b)
|
|
{
|
|
gint a_pos, b_pos;
|
|
GSequence *seq_a, *seq_b;
|
|
|
|
g_return_val_if_fail (a != NULL, 0);
|
|
g_return_val_if_fail (b != NULL, 0);
|
|
|
|
seq_a = get_sequence (a);
|
|
seq_b = get_sequence (b);
|
|
g_return_val_if_fail (seq_a == seq_b, 0);
|
|
|
|
check_seq_access (seq_a);
|
|
check_seq_access (seq_b);
|
|
|
|
a_pos = node_get_pos (a);
|
|
b_pos = node_get_pos (b);
|
|
|
|
if (a_pos == b_pos)
|
|
return 0;
|
|
else if (a_pos > b_pos)
|
|
return 1;
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
/**
|
|
* g_sequence_append:
|
|
* @seq: a #GSequence
|
|
* @data: the data for the new item
|
|
*
|
|
* Adds a new item to the end of @seq.
|
|
*
|
|
* Returns: (transfer none): an iterator pointing to the new item
|
|
*
|
|
* Since: 2.14
|
|
*/
|
|
GSequenceIter *
|
|
g_sequence_append (GSequence *seq,
|
|
gpointer data)
|
|
{
|
|
GSequenceNode *node;
|
|
|
|
g_return_val_if_fail (seq != NULL, NULL);
|
|
|
|
check_seq_access (seq);
|
|
|
|
node = node_new (data);
|
|
node_insert_before (seq->end_node, node);
|
|
|
|
return node;
|
|
}
|
|
|
|
/**
|
|
* g_sequence_prepend:
|
|
* @seq: a #GSequence
|
|
* @data: the data for the new item
|
|
*
|
|
* Adds a new item to the front of @seq
|
|
*
|
|
* Returns: (transfer none): an iterator pointing to the new item
|
|
*
|
|
* Since: 2.14
|
|
*/
|
|
GSequenceIter *
|
|
g_sequence_prepend (GSequence *seq,
|
|
gpointer data)
|
|
{
|
|
GSequenceNode *node, *first;
|
|
|
|
g_return_val_if_fail (seq != NULL, NULL);
|
|
|
|
check_seq_access (seq);
|
|
|
|
node = node_new (data);
|
|
first = node_get_first (seq->end_node);
|
|
|
|
node_insert_before (first, node);
|
|
|
|
return node;
|
|
}
|
|
|
|
/**
|
|
* g_sequence_insert_before:
|
|
* @iter: a #GSequenceIter
|
|
* @data: the data for the new item
|
|
*
|
|
* Inserts a new item just before the item pointed to by @iter.
|
|
*
|
|
* Returns: (transfer none): an iterator pointing to the new item
|
|
*
|
|
* Since: 2.14
|
|
*/
|
|
GSequenceIter *
|
|
g_sequence_insert_before (GSequenceIter *iter,
|
|
gpointer data)
|
|
{
|
|
GSequence *seq;
|
|
GSequenceNode *node;
|
|
|
|
g_return_val_if_fail (iter != NULL, NULL);
|
|
|
|
seq = get_sequence (iter);
|
|
check_seq_access (seq);
|
|
|
|
node = node_new (data);
|
|
|
|
node_insert_before (iter, node);
|
|
|
|
return node;
|
|
}
|
|
|
|
/**
|
|
* g_sequence_remove:
|
|
* @iter: a #GSequenceIter
|
|
*
|
|
* Removes the item pointed to by @iter. It is an error to pass the
|
|
* end iterator to this function.
|
|
*
|
|
* If the sequence has a data destroy function associated with it, this
|
|
* function is called on the data for the removed item.
|
|
*
|
|
* Since: 2.14
|
|
*/
|
|
void
|
|
g_sequence_remove (GSequenceIter *iter)
|
|
{
|
|
GSequence *seq;
|
|
|
|
g_return_if_fail (iter != NULL);
|
|
|
|
seq = get_sequence (iter);
|
|
g_return_if_fail (!seq_is_end (seq, iter));
|
|
|
|
check_seq_access (seq);
|
|
|
|
node_unlink (iter);
|
|
node_free (iter, seq);
|
|
}
|
|
|
|
/**
|
|
* g_sequence_remove_range:
|
|
* @begin: a #GSequenceIter
|
|
* @end: a #GSequenceIter
|
|
*
|
|
* Removes all items in the (@begin, @end) range.
|
|
*
|
|
* If the sequence has a data destroy function associated with it, this
|
|
* function is called on the data for the removed items.
|
|
*
|
|
* Since: 2.14
|
|
*/
|
|
void
|
|
g_sequence_remove_range (GSequenceIter *begin,
|
|
GSequenceIter *end)
|
|
{
|
|
GSequence *seq_begin, *seq_end;
|
|
|
|
seq_begin = get_sequence (begin);
|
|
seq_end = get_sequence (end);
|
|
g_return_if_fail (seq_begin == seq_end);
|
|
/* check_seq_access() calls are done by g_sequence_move_range() */
|
|
|
|
g_sequence_move_range (NULL, begin, end);
|
|
}
|
|
|
|
/**
|
|
* g_sequence_move_range:
|
|
* @dest: a #GSequenceIter
|
|
* @begin: a #GSequenceIter
|
|
* @end: a #GSequenceIter
|
|
*
|
|
* Inserts the (@begin, @end) range at the destination pointed to by @dest.
|
|
* The @begin and @end iters must point into the same sequence. It is
|
|
* allowed for @dest to point to a different sequence than the one pointed
|
|
* into by @begin and @end.
|
|
*
|
|
* If @dest is %NULL, the range indicated by @begin and @end is
|
|
* removed from the sequence. If @dest points to a place within
|
|
* the (@begin, @end) range, the range does not move.
|
|
*
|
|
* Since: 2.14
|
|
*/
|
|
void
|
|
g_sequence_move_range (GSequenceIter *dest,
|
|
GSequenceIter *begin,
|
|
GSequenceIter *end)
|
|
{
|
|
GSequence *src_seq, *end_seq, *dest_seq = NULL;
|
|
GSequenceNode *first;
|
|
|
|
g_return_if_fail (begin != NULL);
|
|
g_return_if_fail (end != NULL);
|
|
|
|
src_seq = get_sequence (begin);
|
|
check_seq_access (src_seq);
|
|
|
|
end_seq = get_sequence (end);
|
|
check_seq_access (end_seq);
|
|
|
|
if (dest)
|
|
{
|
|
dest_seq = get_sequence (dest);
|
|
check_seq_access (dest_seq);
|
|
}
|
|
|
|
g_return_if_fail (src_seq == end_seq);
|
|
|
|
/* Dest points to begin or end? */
|
|
if (dest == begin || dest == end)
|
|
return;
|
|
|
|
/* begin comes after end? */
|
|
if (g_sequence_iter_compare (begin, end) >= 0)
|
|
return;
|
|
|
|
/* dest points somewhere in the (begin, end) range? */
|
|
if (dest && dest_seq == src_seq &&
|
|
g_sequence_iter_compare (dest, begin) > 0 &&
|
|
g_sequence_iter_compare (dest, end) < 0)
|
|
{
|
|
return;
|
|
}
|
|
|
|
first = node_get_first (begin);
|
|
|
|
node_cut (begin);
|
|
|
|
node_cut (end);
|
|
|
|
if (first != begin)
|
|
node_join (first, end);
|
|
|
|
if (dest)
|
|
{
|
|
first = node_get_first (dest);
|
|
|
|
node_cut (dest);
|
|
|
|
node_join (begin, dest);
|
|
|
|
if (dest != first)
|
|
node_join (first, begin);
|
|
}
|
|
else
|
|
{
|
|
node_free (begin, src_seq);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* g_sequence_sort:
|
|
* @seq: a #GSequence
|
|
* @cmp_func: the function used to sort the sequence
|
|
* @cmp_data: user data passed to @cmp_func
|
|
*
|
|
* Sorts @seq using @cmp_func.
|
|
*
|
|
* @cmp_func is passed two items of @seq and should
|
|
* return 0 if they are equal, a negative value if the
|
|
* first comes before the second, and a positive value
|
|
* if the second comes before the first.
|
|
*
|
|
* Since: 2.14
|
|
*/
|
|
void
|
|
g_sequence_sort (GSequence *seq,
|
|
GCompareDataFunc cmp_func,
|
|
gpointer cmp_data)
|
|
{
|
|
SortInfo info;
|
|
|
|
info.cmp_func = cmp_func;
|
|
info.cmp_data = cmp_data;
|
|
info.end_node = seq->end_node;
|
|
|
|
check_seq_access (seq);
|
|
|
|
g_sequence_sort_iter (seq, iter_compare, &info);
|
|
}
|
|
|
|
/**
|
|
* g_sequence_insert_sorted:
|
|
* @seq: a #GSequence
|
|
* @data: the data to insert
|
|
* @cmp_func: the function used to compare items in the sequence
|
|
* @cmp_data: user data passed to @cmp_func.
|
|
*
|
|
* Inserts @data into @seq using @cmp_func to determine the new
|
|
* position. The sequence must already be sorted according to @cmp_func;
|
|
* otherwise the new position of @data is undefined.
|
|
*
|
|
* @cmp_func is called with two items of the @seq, and @cmp_data.
|
|
* It should return 0 if the items are equal, a negative value
|
|
* if the first item comes before the second, and a positive value
|
|
* if the second item comes before the first.
|
|
*
|
|
* Note that when adding a large amount of data to a #GSequence,
|
|
* it is more efficient to do unsorted insertions and then call
|
|
* g_sequence_sort() or g_sequence_sort_iter().
|
|
*
|
|
* Returns: (transfer none): a #GSequenceIter pointing to the new item.
|
|
*
|
|
* Since: 2.14
|
|
*/
|
|
GSequenceIter *
|
|
g_sequence_insert_sorted (GSequence *seq,
|
|
gpointer data,
|
|
GCompareDataFunc cmp_func,
|
|
gpointer cmp_data)
|
|
{
|
|
SortInfo info;
|
|
|
|
g_return_val_if_fail (seq != NULL, NULL);
|
|
g_return_val_if_fail (cmp_func != NULL, NULL);
|
|
|
|
info.cmp_func = cmp_func;
|
|
info.cmp_data = cmp_data;
|
|
info.end_node = seq->end_node;
|
|
check_seq_access (seq);
|
|
|
|
return g_sequence_insert_sorted_iter (seq, data, iter_compare, &info);
|
|
}
|
|
|
|
/**
|
|
* g_sequence_sort_changed:
|
|
* @iter: A #GSequenceIter
|
|
* @cmp_func: the function used to compare items in the sequence
|
|
* @cmp_data: user data passed to @cmp_func.
|
|
*
|
|
* Moves the data pointed to by @iter to a new position as indicated by
|
|
* @cmp_func. This
|
|
* function should be called for items in a sequence already sorted according
|
|
* to @cmp_func whenever some aspect of an item changes so that @cmp_func
|
|
* may return different values for that item.
|
|
*
|
|
* @cmp_func is called with two items of the @seq, and @cmp_data.
|
|
* It should return 0 if the items are equal, a negative value if
|
|
* the first item comes before the second, and a positive value if
|
|
* the second item comes before the first.
|
|
*
|
|
* Since: 2.14
|
|
*/
|
|
void
|
|
g_sequence_sort_changed (GSequenceIter *iter,
|
|
GCompareDataFunc cmp_func,
|
|
gpointer cmp_data)
|
|
{
|
|
GSequence *seq;
|
|
SortInfo info;
|
|
|
|
g_return_if_fail (iter != NULL);
|
|
|
|
seq = get_sequence (iter);
|
|
/* check_seq_access() call is done by g_sequence_sort_changed_iter() */
|
|
g_return_if_fail (!seq_is_end (seq, iter));
|
|
|
|
info.cmp_func = cmp_func;
|
|
info.cmp_data = cmp_data;
|
|
info.end_node = seq->end_node;
|
|
|
|
g_sequence_sort_changed_iter (iter, iter_compare, &info);
|
|
}
|
|
|
|
/**
|
|
* g_sequence_search:
|
|
* @seq: a #GSequence
|
|
* @data: data for the new item
|
|
* @cmp_func: the function used to compare items in the sequence
|
|
* @cmp_data: user data passed to @cmp_func
|
|
*
|
|
* Returns an iterator pointing to the position where @data would
|
|
* be inserted according to @cmp_func and @cmp_data.
|
|
*
|
|
* @cmp_func is called with two items of the @seq, and @cmp_data.
|
|
* It should return 0 if the items are equal, a negative value if
|
|
* the first item comes before the second, and a positive value if
|
|
* the second item comes before the first.
|
|
*
|
|
* If you are simply searching for an existing element of the sequence,
|
|
* consider using g_sequence_lookup().
|
|
*
|
|
* This function will fail if the data contained in the sequence is
|
|
* unsorted.
|
|
*
|
|
* Returns: (transfer none): an #GSequenceIter pointing to the position where @data
|
|
* would have been inserted according to @cmp_func and @cmp_data
|
|
*
|
|
* Since: 2.14
|
|
*/
|
|
GSequenceIter *
|
|
g_sequence_search (GSequence *seq,
|
|
gpointer data,
|
|
GCompareDataFunc cmp_func,
|
|
gpointer cmp_data)
|
|
{
|
|
SortInfo info;
|
|
|
|
g_return_val_if_fail (seq != NULL, NULL);
|
|
|
|
info.cmp_func = cmp_func;
|
|
info.cmp_data = cmp_data;
|
|
info.end_node = seq->end_node;
|
|
check_seq_access (seq);
|
|
|
|
return g_sequence_search_iter (seq, data, iter_compare, &info);
|
|
}
|
|
|
|
/**
|
|
* g_sequence_lookup:
|
|
* @seq: a #GSequence
|
|
* @data: data to look up
|
|
* @cmp_func: the function used to compare items in the sequence
|
|
* @cmp_data: user data passed to @cmp_func
|
|
*
|
|
* Returns an iterator pointing to the position of the first item found
|
|
* equal to @data according to @cmp_func and @cmp_data. If more than one
|
|
* item is equal, it is not guaranteed that it is the first which is
|
|
* returned. In that case, you can use g_sequence_iter_next() and
|
|
* g_sequence_iter_prev() to get others.
|
|
*
|
|
* @cmp_func is called with two items of the @seq, and @cmp_data.
|
|
* It should return 0 if the items are equal, a negative value if
|
|
* the first item comes before the second, and a positive value if
|
|
* the second item comes before the first.
|
|
*
|
|
* This function will fail if the data contained in the sequence is
|
|
* unsorted.
|
|
*
|
|
* Returns: (transfer none) (nullable): an #GSequenceIter pointing to the position of the
|
|
* first item found equal to @data according to @cmp_func and
|
|
* @cmp_data, or %NULL if no such item exists
|
|
*
|
|
* Since: 2.28
|
|
*/
|
|
GSequenceIter *
|
|
g_sequence_lookup (GSequence *seq,
|
|
gpointer data,
|
|
GCompareDataFunc cmp_func,
|
|
gpointer cmp_data)
|
|
{
|
|
SortInfo info;
|
|
|
|
g_return_val_if_fail (seq != NULL, NULL);
|
|
|
|
info.cmp_func = cmp_func;
|
|
info.cmp_data = cmp_data;
|
|
info.end_node = seq->end_node;
|
|
check_seq_access (seq);
|
|
|
|
return g_sequence_lookup_iter (seq, data, iter_compare, &info);
|
|
}
|
|
|
|
/**
|
|
* g_sequence_sort_iter:
|
|
* @seq: a #GSequence
|
|
* @cmp_func: the function used to compare iterators in the sequence
|
|
* @cmp_data: user data passed to @cmp_func
|
|
*
|
|
* Like g_sequence_sort(), but uses a #GSequenceIterCompareFunc instead
|
|
* of a #GCompareDataFunc as the compare function
|
|
*
|
|
* @cmp_func is called with two iterators pointing into @seq. It should
|
|
* return 0 if the iterators are equal, a negative value if the first
|
|
* iterator comes before the second, and a positive value if the second
|
|
* iterator comes before the first.
|
|
*
|
|
* Since: 2.14
|
|
*/
|
|
void
|
|
g_sequence_sort_iter (GSequence *seq,
|
|
GSequenceIterCompareFunc cmp_func,
|
|
gpointer cmp_data)
|
|
{
|
|
GSequence *tmp;
|
|
GSequenceNode *begin, *end;
|
|
|
|
g_return_if_fail (seq != NULL);
|
|
g_return_if_fail (cmp_func != NULL);
|
|
|
|
check_seq_access (seq);
|
|
|
|
begin = g_sequence_get_begin_iter (seq);
|
|
end = g_sequence_get_end_iter (seq);
|
|
|
|
tmp = g_sequence_new (NULL);
|
|
tmp->real_sequence = seq;
|
|
|
|
g_sequence_move_range (g_sequence_get_begin_iter (tmp), begin, end);
|
|
|
|
seq->access_prohibited = TRUE;
|
|
tmp->access_prohibited = TRUE;
|
|
|
|
while (!g_sequence_is_empty (tmp))
|
|
{
|
|
GSequenceNode *node = g_sequence_get_begin_iter (tmp);
|
|
|
|
node_insert_sorted (seq->end_node, node, seq->end_node,
|
|
cmp_func, cmp_data);
|
|
}
|
|
|
|
tmp->access_prohibited = FALSE;
|
|
seq->access_prohibited = FALSE;
|
|
|
|
g_sequence_free (tmp);
|
|
}
|
|
|
|
/**
|
|
* g_sequence_sort_changed_iter:
|
|
* @iter: a #GSequenceIter
|
|
* @iter_cmp: the function used to compare iterators in the sequence
|
|
* @cmp_data: user data passed to @cmp_func
|
|
*
|
|
* Like g_sequence_sort_changed(), but uses
|
|
* a #GSequenceIterCompareFunc instead of a #GCompareDataFunc as
|
|
* the compare function.
|
|
*
|
|
* @iter_cmp is called with two iterators pointing into the #GSequence that
|
|
* @iter points into. It should
|
|
* return 0 if the iterators are equal, a negative value if the first
|
|
* iterator comes before the second, and a positive value if the second
|
|
* iterator comes before the first.
|
|
*
|
|
* Since: 2.14
|
|
*/
|
|
void
|
|
g_sequence_sort_changed_iter (GSequenceIter *iter,
|
|
GSequenceIterCompareFunc iter_cmp,
|
|
gpointer cmp_data)
|
|
{
|
|
GSequence *seq, *tmp_seq;
|
|
GSequenceIter *next, *prev;
|
|
|
|
g_return_if_fail (iter != NULL);
|
|
g_return_if_fail (iter_cmp != NULL);
|
|
|
|
seq = get_sequence (iter);
|
|
g_return_if_fail (!seq_is_end (seq, iter));
|
|
|
|
check_seq_access (seq);
|
|
|
|
/* If one of the neighbours is equal to iter, then
|
|
* don't move it. This ensures that sort_changed() is
|
|
* a stable operation.
|
|
*/
|
|
|
|
next = node_get_next (iter);
|
|
prev = node_get_prev (iter);
|
|
|
|
if (prev != iter && iter_cmp (prev, iter, cmp_data) == 0)
|
|
return;
|
|
|
|
if (!is_end (next) && iter_cmp (next, iter, cmp_data) == 0)
|
|
return;
|
|
|
|
seq->access_prohibited = TRUE;
|
|
|
|
tmp_seq = g_sequence_new (NULL);
|
|
tmp_seq->real_sequence = seq;
|
|
|
|
node_unlink (iter);
|
|
node_insert_before (tmp_seq->end_node, iter);
|
|
|
|
node_insert_sorted (seq->end_node, iter, seq->end_node,
|
|
iter_cmp, cmp_data);
|
|
|
|
g_sequence_free (tmp_seq);
|
|
|
|
seq->access_prohibited = FALSE;
|
|
}
|
|
|
|
/**
|
|
* g_sequence_insert_sorted_iter:
|
|
* @seq: a #GSequence
|
|
* @data: data for the new item
|
|
* @iter_cmp: the function used to compare iterators in the sequence
|
|
* @cmp_data: user data passed to @iter_cmp
|
|
*
|
|
* Like g_sequence_insert_sorted(), but uses
|
|
* a #GSequenceIterCompareFunc instead of a #GCompareDataFunc as
|
|
* the compare function.
|
|
*
|
|
* @iter_cmp is called with two iterators pointing into @seq.
|
|
* It should return 0 if the iterators are equal, a negative
|
|
* value if the first iterator comes before the second, and a
|
|
* positive value if the second iterator comes before the first.
|
|
*
|
|
* Note that when adding a large amount of data to a #GSequence,
|
|
* it is more efficient to do unsorted insertions and then call
|
|
* g_sequence_sort() or g_sequence_sort_iter().
|
|
*
|
|
* Returns: (transfer none): a #GSequenceIter pointing to the new item
|
|
*
|
|
* Since: 2.14
|
|
*/
|
|
GSequenceIter *
|
|
g_sequence_insert_sorted_iter (GSequence *seq,
|
|
gpointer data,
|
|
GSequenceIterCompareFunc iter_cmp,
|
|
gpointer cmp_data)
|
|
{
|
|
GSequenceNode *new_node;
|
|
GSequence *tmp_seq;
|
|
|
|
g_return_val_if_fail (seq != NULL, NULL);
|
|
g_return_val_if_fail (iter_cmp != NULL, NULL);
|
|
|
|
check_seq_access (seq);
|
|
|
|
seq->access_prohibited = TRUE;
|
|
|
|
/* Create a new temporary sequence and put the new node into
|
|
* that. The reason for this is that the user compare function
|
|
* will be called with the new node, and if it dereferences,
|
|
* "is_end" will be called on it. But that will crash if the
|
|
* node is not actually in a sequence.
|
|
*
|
|
* node_insert_sorted() makes sure the node is unlinked before
|
|
* it is inserted.
|
|
*
|
|
* The reason we need the "iter" versions at all is that that
|
|
* is the only kind of compare functions GtkTreeView can use.
|
|
*/
|
|
tmp_seq = g_sequence_new (NULL);
|
|
tmp_seq->real_sequence = seq;
|
|
|
|
new_node = g_sequence_append (tmp_seq, data);
|
|
|
|
node_insert_sorted (seq->end_node, new_node,
|
|
seq->end_node, iter_cmp, cmp_data);
|
|
|
|
g_sequence_free (tmp_seq);
|
|
|
|
seq->access_prohibited = FALSE;
|
|
|
|
return new_node;
|
|
}
|
|
|
|
/**
|
|
* g_sequence_search_iter:
|
|
* @seq: a #GSequence
|
|
* @data: data for the new item
|
|
* @iter_cmp: the function used to compare iterators in the sequence
|
|
* @cmp_data: user data passed to @iter_cmp
|
|
*
|
|
* Like g_sequence_search(), but uses a #GSequenceIterCompareFunc
|
|
* instead of a #GCompareDataFunc as the compare function.
|
|
*
|
|
* @iter_cmp is called with two iterators pointing into @seq.
|
|
* It should return 0 if the iterators are equal, a negative value
|
|
* if the first iterator comes before the second, and a positive
|
|
* value if the second iterator comes before the first.
|
|
*
|
|
* If you are simply searching for an existing element of the sequence,
|
|
* consider using g_sequence_lookup_iter().
|
|
*
|
|
* This function will fail if the data contained in the sequence is
|
|
* unsorted.
|
|
*
|
|
* Returns: (transfer none): a #GSequenceIter pointing to the position in @seq
|
|
* where @data would have been inserted according to @iter_cmp
|
|
* and @cmp_data
|
|
*
|
|
* Since: 2.14
|
|
*/
|
|
GSequenceIter *
|
|
g_sequence_search_iter (GSequence *seq,
|
|
gpointer data,
|
|
GSequenceIterCompareFunc iter_cmp,
|
|
gpointer cmp_data)
|
|
{
|
|
GSequenceNode *node;
|
|
GSequenceNode *dummy;
|
|
GSequence *tmp_seq;
|
|
|
|
g_return_val_if_fail (seq != NULL, NULL);
|
|
|
|
check_seq_access (seq);
|
|
|
|
seq->access_prohibited = TRUE;
|
|
|
|
tmp_seq = g_sequence_new (NULL);
|
|
tmp_seq->real_sequence = seq;
|
|
|
|
dummy = g_sequence_append (tmp_seq, data);
|
|
|
|
node = node_find_closest (seq->end_node, dummy,
|
|
seq->end_node, iter_cmp, cmp_data);
|
|
|
|
g_sequence_free (tmp_seq);
|
|
|
|
seq->access_prohibited = FALSE;
|
|
|
|
return node;
|
|
}
|
|
|
|
/**
|
|
* g_sequence_lookup_iter:
|
|
* @seq: a #GSequence
|
|
* @data: data to look up
|
|
* @iter_cmp: the function used to compare iterators in the sequence
|
|
* @cmp_data: user data passed to @iter_cmp
|
|
*
|
|
* Like g_sequence_lookup(), but uses a #GSequenceIterCompareFunc
|
|
* instead of a #GCompareDataFunc as the compare function.
|
|
*
|
|
* @iter_cmp is called with two iterators pointing into @seq.
|
|
* It should return 0 if the iterators are equal, a negative value
|
|
* if the first iterator comes before the second, and a positive
|
|
* value if the second iterator comes before the first.
|
|
*
|
|
* This function will fail if the data contained in the sequence is
|
|
* unsorted.
|
|
*
|
|
* Returns: (transfer none) (nullable): an #GSequenceIter pointing to the position of
|
|
* the first item found equal to @data according to @iter_cmp
|
|
* and @cmp_data, or %NULL if no such item exists
|
|
*
|
|
* Since: 2.28
|
|
*/
|
|
GSequenceIter *
|
|
g_sequence_lookup_iter (GSequence *seq,
|
|
gpointer data,
|
|
GSequenceIterCompareFunc iter_cmp,
|
|
gpointer cmp_data)
|
|
{
|
|
GSequenceNode *node;
|
|
GSequenceNode *dummy;
|
|
GSequence *tmp_seq;
|
|
|
|
g_return_val_if_fail (seq != NULL, NULL);
|
|
|
|
check_seq_access (seq);
|
|
|
|
seq->access_prohibited = TRUE;
|
|
|
|
tmp_seq = g_sequence_new (NULL);
|
|
tmp_seq->real_sequence = seq;
|
|
|
|
dummy = g_sequence_append (tmp_seq, data);
|
|
|
|
node = node_find (seq->end_node, dummy,
|
|
seq->end_node, iter_cmp, cmp_data);
|
|
|
|
g_sequence_free (tmp_seq);
|
|
|
|
seq->access_prohibited = FALSE;
|
|
|
|
return node;
|
|
}
|
|
|
|
/**
|
|
* g_sequence_iter_get_sequence:
|
|
* @iter: a #GSequenceIter
|
|
*
|
|
* Returns the #GSequence that @iter points into.
|
|
*
|
|
* Returns: (transfer none): the #GSequence that @iter points into
|
|
*
|
|
* Since: 2.14
|
|
*/
|
|
GSequence *
|
|
g_sequence_iter_get_sequence (GSequenceIter *iter)
|
|
{
|
|
GSequence *seq;
|
|
|
|
g_return_val_if_fail (iter != NULL, NULL);
|
|
|
|
seq = get_sequence (iter);
|
|
|
|
/* For temporary sequences, this points to the sequence that
|
|
* is actually being manipulated
|
|
*/
|
|
return seq->real_sequence;
|
|
}
|
|
|
|
/**
|
|
* g_sequence_get:
|
|
* @iter: a #GSequenceIter
|
|
*
|
|
* Returns the data that @iter points to.
|
|
*
|
|
* Returns: (transfer none): the data that @iter points to
|
|
*
|
|
* Since: 2.14
|
|
*/
|
|
gpointer
|
|
g_sequence_get (GSequenceIter *iter)
|
|
{
|
|
g_return_val_if_fail (iter != NULL, NULL);
|
|
g_return_val_if_fail (!is_end (iter), NULL);
|
|
|
|
return iter->data;
|
|
}
|
|
|
|
/**
|
|
* g_sequence_set:
|
|
* @iter: a #GSequenceIter
|
|
* @data: new data for the item
|
|
*
|
|
* Changes the data for the item pointed to by @iter to be @data. If
|
|
* the sequence has a data destroy function associated with it, that
|
|
* function is called on the existing data that @iter pointed to.
|
|
*
|
|
* Since: 2.14
|
|
*/
|
|
void
|
|
g_sequence_set (GSequenceIter *iter,
|
|
gpointer data)
|
|
{
|
|
GSequence *seq;
|
|
|
|
g_return_if_fail (iter != NULL);
|
|
|
|
seq = get_sequence (iter);
|
|
g_return_if_fail (!seq_is_end (seq, iter));
|
|
|
|
/* If @data is identical to iter->data, it is destroyed
|
|
* here. This will work right in case of ref-counted objects. Also
|
|
* it is similar to what ghashtables do.
|
|
*
|
|
* For non-refcounted data it's a little less convenient, but
|
|
* code relying on self-setting not destroying would be
|
|
* pretty dubious anyway ...
|
|
*/
|
|
|
|
if (seq->data_destroy_notify)
|
|
seq->data_destroy_notify (iter->data);
|
|
|
|
iter->data = data;
|
|
}
|
|
|
|
/**
|
|
* g_sequence_get_length:
|
|
* @seq: a #GSequence
|
|
*
|
|
* Returns the positive length (>= 0) of @seq. Note that this method is
|
|
* O(h) where `h' is the height of the tree. It is thus more efficient
|
|
* to use g_sequence_is_empty() when comparing the length to zero.
|
|
*
|
|
* Returns: the length of @seq
|
|
*
|
|
* Since: 2.14
|
|
*/
|
|
gint
|
|
g_sequence_get_length (GSequence *seq)
|
|
{
|
|
return node_get_length (seq->end_node) - 1;
|
|
}
|
|
|
|
/**
|
|
* g_sequence_is_empty:
|
|
* @seq: a #GSequence
|
|
*
|
|
* Returns %TRUE if the sequence contains zero items.
|
|
*
|
|
* This function is functionally identical to checking the result of
|
|
* g_sequence_get_length() being equal to zero. However this function is
|
|
* implemented in O(1) running time.
|
|
*
|
|
* Returns: %TRUE if the sequence is empty, otherwise %FALSE.
|
|
*
|
|
* Since: 2.48
|
|
*/
|
|
gboolean
|
|
g_sequence_is_empty (GSequence *seq)
|
|
{
|
|
return (seq->end_node->parent == NULL) && (seq->end_node->left == NULL);
|
|
}
|
|
|
|
/**
|
|
* g_sequence_get_end_iter:
|
|
* @seq: a #GSequence
|
|
*
|
|
* Returns the end iterator for @seg
|
|
*
|
|
* Returns: (transfer none): the end iterator for @seq
|
|
*
|
|
* Since: 2.14
|
|
*/
|
|
GSequenceIter *
|
|
g_sequence_get_end_iter (GSequence *seq)
|
|
{
|
|
g_return_val_if_fail (seq != NULL, NULL);
|
|
|
|
return seq->end_node;
|
|
}
|
|
|
|
/**
|
|
* g_sequence_get_begin_iter:
|
|
* @seq: a #GSequence
|
|
*
|
|
* Returns the begin iterator for @seq.
|
|
*
|
|
* Returns: (transfer none): the begin iterator for @seq.
|
|
*
|
|
* Since: 2.14
|
|
*/
|
|
GSequenceIter *
|
|
g_sequence_get_begin_iter (GSequence *seq)
|
|
{
|
|
g_return_val_if_fail (seq != NULL, NULL);
|
|
|
|
return node_get_first (seq->end_node);
|
|
}
|
|
|
|
static int
|
|
clamp_position (GSequence *seq,
|
|
int pos)
|
|
{
|
|
gint len = g_sequence_get_length (seq);
|
|
|
|
if (pos > len || pos < 0)
|
|
pos = len;
|
|
|
|
return pos;
|
|
}
|
|
|
|
/**
|
|
* g_sequence_get_iter_at_pos:
|
|
* @seq: a #GSequence
|
|
* @pos: a position in @seq, or -1 for the end
|
|
*
|
|
* Returns the iterator at position @pos. If @pos is negative or larger
|
|
* than the number of items in @seq, the end iterator is returned.
|
|
*
|
|
* Returns: (transfer none): The #GSequenceIter at position @pos
|
|
*
|
|
* Since: 2.14
|
|
*/
|
|
GSequenceIter *
|
|
g_sequence_get_iter_at_pos (GSequence *seq,
|
|
gint pos)
|
|
{
|
|
g_return_val_if_fail (seq != NULL, NULL);
|
|
|
|
pos = clamp_position (seq, pos);
|
|
|
|
return node_get_by_pos (seq->end_node, pos);
|
|
}
|
|
|
|
/**
|
|
* g_sequence_move:
|
|
* @src: a #GSequenceIter pointing to the item to move
|
|
* @dest: a #GSequenceIter pointing to the position to which
|
|
* the item is moved
|
|
*
|
|
* Moves the item pointed to by @src to the position indicated by @dest.
|
|
* After calling this function @dest will point to the position immediately
|
|
* after @src. It is allowed for @src and @dest to point into different
|
|
* sequences.
|
|
*
|
|
* Since: 2.14
|
|
**/
|
|
void
|
|
g_sequence_move (GSequenceIter *src,
|
|
GSequenceIter *dest)
|
|
{
|
|
g_return_if_fail (src != NULL);
|
|
g_return_if_fail (dest != NULL);
|
|
g_return_if_fail (!is_end (src));
|
|
|
|
if (src == dest)
|
|
return;
|
|
|
|
node_unlink (src);
|
|
node_insert_before (dest, src);
|
|
}
|
|
|
|
/* GSequenceIter */
|
|
|
|
/**
|
|
* g_sequence_iter_is_end:
|
|
* @iter: a #GSequenceIter
|
|
*
|
|
* Returns whether @iter is the end iterator
|
|
*
|
|
* Returns: Whether @iter is the end iterator
|
|
*
|
|
* Since: 2.14
|
|
*/
|
|
gboolean
|
|
g_sequence_iter_is_end (GSequenceIter *iter)
|
|
{
|
|
g_return_val_if_fail (iter != NULL, FALSE);
|
|
|
|
return is_end (iter);
|
|
}
|
|
|
|
/**
|
|
* g_sequence_iter_is_begin:
|
|
* @iter: a #GSequenceIter
|
|
*
|
|
* Returns whether @iter is the begin iterator
|
|
*
|
|
* Returns: whether @iter is the begin iterator
|
|
*
|
|
* Since: 2.14
|
|
*/
|
|
gboolean
|
|
g_sequence_iter_is_begin (GSequenceIter *iter)
|
|
{
|
|
g_return_val_if_fail (iter != NULL, FALSE);
|
|
|
|
return (node_get_prev (iter) == iter);
|
|
}
|
|
|
|
/**
|
|
* g_sequence_iter_get_position:
|
|
* @iter: a #GSequenceIter
|
|
*
|
|
* Returns the position of @iter
|
|
*
|
|
* Returns: the position of @iter
|
|
*
|
|
* Since: 2.14
|
|
*/
|
|
gint
|
|
g_sequence_iter_get_position (GSequenceIter *iter)
|
|
{
|
|
g_return_val_if_fail (iter != NULL, -1);
|
|
|
|
return node_get_pos (iter);
|
|
}
|
|
|
|
/**
|
|
* g_sequence_iter_next:
|
|
* @iter: a #GSequenceIter
|
|
*
|
|
* Returns an iterator pointing to the next position after @iter.
|
|
* If @iter is the end iterator, the end iterator is returned.
|
|
*
|
|
* Returns: (transfer none): a #GSequenceIter pointing to the next position after @iter
|
|
*
|
|
* Since: 2.14
|
|
*/
|
|
GSequenceIter *
|
|
g_sequence_iter_next (GSequenceIter *iter)
|
|
{
|
|
g_return_val_if_fail (iter != NULL, NULL);
|
|
|
|
return node_get_next (iter);
|
|
}
|
|
|
|
/**
|
|
* g_sequence_iter_prev:
|
|
* @iter: a #GSequenceIter
|
|
*
|
|
* Returns an iterator pointing to the previous position before @iter.
|
|
* If @iter is the begin iterator, the begin iterator is returned.
|
|
*
|
|
* Returns: (transfer none): a #GSequenceIter pointing to the previous position
|
|
* before @iter
|
|
*
|
|
* Since: 2.14
|
|
*/
|
|
GSequenceIter *
|
|
g_sequence_iter_prev (GSequenceIter *iter)
|
|
{
|
|
g_return_val_if_fail (iter != NULL, NULL);
|
|
|
|
return node_get_prev (iter);
|
|
}
|
|
|
|
/**
|
|
* g_sequence_iter_move:
|
|
* @iter: a #GSequenceIter
|
|
* @delta: A positive or negative number indicating how many positions away
|
|
* from @iter the returned #GSequenceIter will be
|
|
*
|
|
* Returns the #GSequenceIter which is @delta positions away from @iter.
|
|
* If @iter is closer than -@delta positions to the beginning of the sequence,
|
|
* the begin iterator is returned. If @iter is closer than @delta positions
|
|
* to the end of the sequence, the end iterator is returned.
|
|
*
|
|
* Returns: (transfer none): a #GSequenceIter which is @delta positions away from @iter
|
|
*
|
|
* Since: 2.14
|
|
*/
|
|
GSequenceIter *
|
|
g_sequence_iter_move (GSequenceIter *iter,
|
|
gint delta)
|
|
{
|
|
gint new_pos;
|
|
gint len;
|
|
|
|
g_return_val_if_fail (iter != NULL, NULL);
|
|
|
|
len = g_sequence_get_length (get_sequence (iter));
|
|
|
|
new_pos = node_get_pos (iter) + delta;
|
|
|
|
if (new_pos < 0)
|
|
new_pos = 0;
|
|
else if (new_pos > len)
|
|
new_pos = len;
|
|
|
|
return node_get_by_pos (iter, new_pos);
|
|
}
|
|
|
|
/**
|
|
* g_sequence_swap:
|
|
* @a: a #GSequenceIter
|
|
* @b: a #GSequenceIter
|
|
*
|
|
* Swaps the items pointed to by @a and @b. It is allowed for @a and @b
|
|
* to point into difference sequences.
|
|
*
|
|
* Since: 2.14
|
|
*/
|
|
void
|
|
g_sequence_swap (GSequenceIter *a,
|
|
GSequenceIter *b)
|
|
{
|
|
GSequenceNode *leftmost, *rightmost, *rightmost_next;
|
|
int a_pos, b_pos;
|
|
|
|
g_return_if_fail (!g_sequence_iter_is_end (a));
|
|
g_return_if_fail (!g_sequence_iter_is_end (b));
|
|
|
|
if (a == b)
|
|
return;
|
|
|
|
a_pos = g_sequence_iter_get_position (a);
|
|
b_pos = g_sequence_iter_get_position (b);
|
|
|
|
if (a_pos > b_pos)
|
|
{
|
|
leftmost = b;
|
|
rightmost = a;
|
|
}
|
|
else
|
|
{
|
|
leftmost = a;
|
|
rightmost = b;
|
|
}
|
|
|
|
rightmost_next = node_get_next (rightmost);
|
|
|
|
/* The situation is now like this:
|
|
*
|
|
* ..., leftmost, ......., rightmost, rightmost_next, ...
|
|
*
|
|
*/
|
|
g_sequence_move (rightmost, leftmost);
|
|
g_sequence_move (leftmost, rightmost_next);
|
|
}
|
|
|
|
/*
|
|
* Implementation of a treap
|
|
*
|
|
*
|
|
*/
|
|
static guint32
|
|
hash_uint32 (guint32 key)
|
|
{
|
|
/* This hash function is based on one found on Thomas Wang's
|
|
* web page at
|
|
*
|
|
* http://www.concentric.net/~Ttwang/tech/inthash.htm
|
|
*
|
|
*/
|
|
key = (key << 15) - key - 1;
|
|
key = key ^ (key >> 12);
|
|
key = key + (key << 2);
|
|
key = key ^ (key >> 4);
|
|
key = key + (key << 3) + (key << 11);
|
|
key = key ^ (key >> 16);
|
|
|
|
return key;
|
|
}
|
|
|
|
static inline guint
|
|
get_priority (GSequenceNode *node)
|
|
{
|
|
return node->priority;
|
|
}
|
|
|
|
static guint
|
|
make_priority (guint32 key)
|
|
{
|
|
key = hash_uint32 (key);
|
|
|
|
/* We rely on 0 being less than all other priorities */
|
|
return key? key : 1;
|
|
}
|
|
|
|
static GSequenceNode *
|
|
find_root (GSequenceNode *node)
|
|
{
|
|
while (node->parent)
|
|
node = node->parent;
|
|
|
|
return node;
|
|
}
|
|
|
|
static GSequenceNode *
|
|
node_new (gpointer data)
|
|
{
|
|
GSequenceNode *node = g_slice_new0 (GSequenceNode);
|
|
|
|
/*
|
|
* Make a random number quickly. Some binary magic is used to avoid
|
|
* the costs of proper RNG, such as locking around global GRand.
|
|
*
|
|
* Using just the node pointer alone is not enough, because in this
|
|
* case freeing and re-allocating sequence causes node's priorities
|
|
* to no longer be random. This happens for two reasons:
|
|
* 1) Nodes are freed from the root and the treap's property is that
|
|
* node's priority is >= than its children's priorities.
|
|
* 2) g_slice_new0() will reuse freed nodes in the order similar to
|
|
* the order of freeing.
|
|
* As a result, there are severe problems where building the treap is
|
|
* much slower (100x and more after a few sequence new/free
|
|
* iterations) and treap becomes more like a list (tree height
|
|
* approaches tree's number of elements), which increases costs of
|
|
* using the built treap.
|
|
*
|
|
* Note that for performance reasons, counter completely ignores
|
|
* multi-threading issues. This is fine because it's merely a source
|
|
* of additional randomness. Even if it fails to ++ sometimes, this
|
|
* won't really matter for its goal.
|
|
*
|
|
* Note that 64-bit counter is used to avoid undefined behavior on
|
|
* overflow.
|
|
*
|
|
* See https://gitlab.gnome.org/GNOME/glib/-/issues/2468
|
|
*/
|
|
static guint64 counter = 0;
|
|
guint32 hash_key = (guint32) GPOINTER_TO_UINT (node);
|
|
hash_key ^= (guint32) counter;
|
|
counter++;
|
|
|
|
node->n_nodes = 1;
|
|
node->priority = make_priority (hash_key);
|
|
node->data = data;
|
|
node->left = NULL;
|
|
node->right = NULL;
|
|
node->parent = NULL;
|
|
|
|
return node;
|
|
}
|
|
|
|
static GSequenceNode *
|
|
node_get_first (GSequenceNode *node)
|
|
{
|
|
node = find_root (node);
|
|
|
|
while (node->left)
|
|
node = node->left;
|
|
|
|
return node;
|
|
}
|
|
|
|
static GSequenceNode *
|
|
node_get_last (GSequenceNode *node)
|
|
{
|
|
node = find_root (node);
|
|
|
|
while (node->right)
|
|
node = node->right;
|
|
|
|
return node;
|
|
}
|
|
|
|
#define NODE_LEFT_CHILD(n) (((n)->parent) && ((n)->parent->left) == (n))
|
|
#define NODE_RIGHT_CHILD(n) (((n)->parent) && ((n)->parent->right) == (n))
|
|
|
|
static GSequenceNode *
|
|
node_get_next (GSequenceNode *node)
|
|
{
|
|
GSequenceNode *n = node;
|
|
|
|
if (n->right)
|
|
{
|
|
n = n->right;
|
|
while (n->left)
|
|
n = n->left;
|
|
}
|
|
else
|
|
{
|
|
while (NODE_RIGHT_CHILD (n))
|
|
n = n->parent;
|
|
|
|
if (n->parent)
|
|
n = n->parent;
|
|
else
|
|
n = node;
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
static GSequenceNode *
|
|
node_get_prev (GSequenceNode *node)
|
|
{
|
|
GSequenceNode *n = node;
|
|
|
|
if (n->left)
|
|
{
|
|
n = n->left;
|
|
while (n->right)
|
|
n = n->right;
|
|
}
|
|
else
|
|
{
|
|
while (NODE_LEFT_CHILD (n))
|
|
n = n->parent;
|
|
|
|
if (n->parent)
|
|
n = n->parent;
|
|
else
|
|
n = node;
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
#define N_NODES(n) ((n)? (n)->n_nodes : 0)
|
|
|
|
static gint
|
|
node_get_pos (GSequenceNode *node)
|
|
{
|
|
int n_smaller = 0;
|
|
|
|
if (node->left)
|
|
n_smaller = node->left->n_nodes;
|
|
|
|
while (node)
|
|
{
|
|
if (NODE_RIGHT_CHILD (node))
|
|
n_smaller += N_NODES (node->parent->left) + 1;
|
|
|
|
node = node->parent;
|
|
}
|
|
|
|
return n_smaller;
|
|
}
|
|
|
|
static GSequenceNode *
|
|
node_get_by_pos (GSequenceNode *node,
|
|
gint pos)
|
|
{
|
|
int i;
|
|
|
|
node = find_root (node);
|
|
|
|
while ((i = N_NODES (node->left)) != pos)
|
|
{
|
|
if (i < pos)
|
|
{
|
|
node = node->right;
|
|
pos -= (i + 1);
|
|
}
|
|
else
|
|
{
|
|
node = node->left;
|
|
}
|
|
}
|
|
|
|
return node;
|
|
}
|
|
|
|
static GSequenceNode *
|
|
node_find (GSequenceNode *haystack,
|
|
GSequenceNode *needle,
|
|
GSequenceNode *end,
|
|
GSequenceIterCompareFunc iter_cmp,
|
|
gpointer cmp_data)
|
|
{
|
|
gint c;
|
|
|
|
haystack = find_root (haystack);
|
|
|
|
do
|
|
{
|
|
/* iter_cmp can't be passed the end node, since the function may
|
|
* be user-supplied
|
|
*/
|
|
if (haystack == end)
|
|
c = 1;
|
|
else
|
|
c = iter_cmp (haystack, needle, cmp_data);
|
|
|
|
if (c == 0)
|
|
break;
|
|
|
|
if (c > 0)
|
|
haystack = haystack->left;
|
|
else
|
|
haystack = haystack->right;
|
|
}
|
|
while (haystack != NULL);
|
|
|
|
return haystack;
|
|
}
|
|
|
|
static GSequenceNode *
|
|
node_find_closest (GSequenceNode *haystack,
|
|
GSequenceNode *needle,
|
|
GSequenceNode *end,
|
|
GSequenceIterCompareFunc iter_cmp,
|
|
gpointer cmp_data)
|
|
{
|
|
GSequenceNode *best;
|
|
gint c;
|
|
|
|
haystack = find_root (haystack);
|
|
|
|
do
|
|
{
|
|
best = haystack;
|
|
|
|
/* iter_cmp can't be passed the end node, since the function may
|
|
* be user-supplied
|
|
*/
|
|
if (haystack == end)
|
|
c = 1;
|
|
else
|
|
c = iter_cmp (haystack, needle, cmp_data);
|
|
|
|
/* In the following we don't break even if c == 0. Instead we go on
|
|
* searching along the 'bigger' nodes, so that we find the last one
|
|
* that is equal to the needle.
|
|
*/
|
|
if (c > 0)
|
|
haystack = haystack->left;
|
|
else
|
|
haystack = haystack->right;
|
|
}
|
|
while (haystack != NULL);
|
|
|
|
/* If the best node is smaller or equal to the data, then move one step
|
|
* to the right to make sure the best one is strictly bigger than the data
|
|
*/
|
|
if (best != end && c <= 0)
|
|
best = node_get_next (best);
|
|
|
|
return best;
|
|
}
|
|
|
|
static gint
|
|
node_get_length (GSequenceNode *node)
|
|
{
|
|
node = find_root (node);
|
|
|
|
return node->n_nodes;
|
|
}
|
|
|
|
static void
|
|
real_node_free (GSequenceNode *node,
|
|
GSequence *seq)
|
|
{
|
|
if (node)
|
|
{
|
|
real_node_free (node->left, seq);
|
|
real_node_free (node->right, seq);
|
|
|
|
if (seq && seq->data_destroy_notify && node != seq->end_node)
|
|
seq->data_destroy_notify (node->data);
|
|
|
|
g_slice_free (GSequenceNode, node);
|
|
}
|
|
}
|
|
|
|
static void
|
|
node_free (GSequenceNode *node,
|
|
GSequence *seq)
|
|
{
|
|
node = find_root (node);
|
|
|
|
real_node_free (node, seq);
|
|
}
|
|
|
|
static void
|
|
node_update_fields (GSequenceNode *node)
|
|
{
|
|
int n_nodes = 1;
|
|
|
|
n_nodes += N_NODES (node->left);
|
|
n_nodes += N_NODES (node->right);
|
|
|
|
node->n_nodes = n_nodes;
|
|
}
|
|
|
|
static void
|
|
node_rotate (GSequenceNode *node)
|
|
{
|
|
GSequenceNode *tmp, *old;
|
|
|
|
g_assert (node->parent);
|
|
g_assert (node->parent != node);
|
|
|
|
if (NODE_LEFT_CHILD (node))
|
|
{
|
|
/* rotate right */
|
|
tmp = node->right;
|
|
|
|
node->right = node->parent;
|
|
node->parent = node->parent->parent;
|
|
if (node->parent)
|
|
{
|
|
if (node->parent->left == node->right)
|
|
node->parent->left = node;
|
|
else
|
|
node->parent->right = node;
|
|
}
|
|
|
|
g_assert (node->right);
|
|
|
|
node->right->parent = node;
|
|
node->right->left = tmp;
|
|
|
|
if (node->right->left)
|
|
node->right->left->parent = node->right;
|
|
|
|
old = node->right;
|
|
}
|
|
else
|
|
{
|
|
/* rotate left */
|
|
tmp = node->left;
|
|
|
|
node->left = node->parent;
|
|
node->parent = node->parent->parent;
|
|
if (node->parent)
|
|
{
|
|
if (node->parent->right == node->left)
|
|
node->parent->right = node;
|
|
else
|
|
node->parent->left = node;
|
|
}
|
|
|
|
g_assert (node->left);
|
|
|
|
node->left->parent = node;
|
|
node->left->right = tmp;
|
|
|
|
if (node->left->right)
|
|
node->left->right->parent = node->left;
|
|
|
|
old = node->left;
|
|
}
|
|
|
|
node_update_fields (old);
|
|
node_update_fields (node);
|
|
}
|
|
|
|
static void
|
|
node_update_fields_deep (GSequenceNode *node)
|
|
{
|
|
if (node)
|
|
{
|
|
node_update_fields (node);
|
|
|
|
node_update_fields_deep (node->parent);
|
|
}
|
|
}
|
|
|
|
static void
|
|
rotate_down (GSequenceNode *node,
|
|
guint priority)
|
|
{
|
|
guint left, right;
|
|
|
|
left = node->left ? get_priority (node->left) : 0;
|
|
right = node->right ? get_priority (node->right) : 0;
|
|
|
|
while (priority < left || priority < right)
|
|
{
|
|
if (left > right)
|
|
node_rotate (node->left);
|
|
else
|
|
node_rotate (node->right);
|
|
|
|
left = node->left ? get_priority (node->left) : 0;
|
|
right = node->right ? get_priority (node->right) : 0;
|
|
}
|
|
}
|
|
|
|
static void
|
|
node_cut (GSequenceNode *node)
|
|
{
|
|
while (node->parent)
|
|
node_rotate (node);
|
|
|
|
if (node->left)
|
|
node->left->parent = NULL;
|
|
|
|
node->left = NULL;
|
|
node_update_fields (node);
|
|
|
|
rotate_down (node, get_priority (node));
|
|
}
|
|
|
|
static void
|
|
node_join (GSequenceNode *left,
|
|
GSequenceNode *right)
|
|
{
|
|
GSequenceNode *fake = node_new (NULL);
|
|
|
|
fake->left = find_root (left);
|
|
fake->right = find_root (right);
|
|
fake->left->parent = fake;
|
|
fake->right->parent = fake;
|
|
|
|
node_update_fields (fake);
|
|
|
|
node_unlink (fake);
|
|
|
|
node_free (fake, NULL);
|
|
}
|
|
|
|
static void
|
|
node_insert_before (GSequenceNode *node,
|
|
GSequenceNode *new)
|
|
{
|
|
new->left = node->left;
|
|
if (new->left)
|
|
new->left->parent = new;
|
|
|
|
new->parent = node;
|
|
node->left = new;
|
|
|
|
node_update_fields_deep (new);
|
|
|
|
while (new->parent && get_priority (new) > get_priority (new->parent))
|
|
node_rotate (new);
|
|
|
|
rotate_down (new, get_priority (new));
|
|
}
|
|
|
|
static void
|
|
node_unlink (GSequenceNode *node)
|
|
{
|
|
rotate_down (node, 0);
|
|
|
|
if (NODE_RIGHT_CHILD (node))
|
|
node->parent->right = NULL;
|
|
else if (NODE_LEFT_CHILD (node))
|
|
node->parent->left = NULL;
|
|
|
|
if (node->parent)
|
|
node_update_fields_deep (node->parent);
|
|
|
|
node->parent = NULL;
|
|
}
|
|
|
|
static void
|
|
node_insert_sorted (GSequenceNode *node,
|
|
GSequenceNode *new,
|
|
GSequenceNode *end,
|
|
GSequenceIterCompareFunc iter_cmp,
|
|
gpointer cmp_data)
|
|
{
|
|
GSequenceNode *closest;
|
|
|
|
closest = node_find_closest (node, new, end, iter_cmp, cmp_data);
|
|
|
|
node_unlink (new);
|
|
|
|
node_insert_before (closest, new);
|
|
}
|