glib/glib/gspawn.c
Philip Withnall 6161bbf3e4
gspawn: Add platform-independent top level API file
This file doesn’t contain any real implementation, it just call the
`impl` functions from the platform-specific files
`gspawn-{posix,win32}.c`.

It serves as a location for the doc comments, introspection annotations
and API preconditions, and will be built on every platform. In
particular, this means that we get consistent GIR output for the
`g_spawn_*()` APIs regardless of whether GLib was built on Linux or
Windows.

Signed-off-by: Philip Withnall <pwithnall@gnome.org>

Helps: #3399
2024-07-15 16:40:55 +01:00

749 lines
35 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* gspawn.c - Process launching
*
* Copyright 2000 Red Hat, Inc.
* g_execvpe implementation based on GNU libc execvp:
* Copyright 1991, 92, 95, 96, 97, 98, 99 Free Software Foundation, Inc.
*
* SPDX-License-Identifier: LGPL-2.1-or-later
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include "gspawn.h"
#include "gspawn-private.h"
#include "gmessages.h"
#include "gshell.h"
#define INHERITS_OR_NULL_STDIN (G_SPAWN_STDIN_FROM_DEV_NULL | G_SPAWN_CHILD_INHERITS_STDIN)
#define INHERITS_OR_NULL_STDOUT (G_SPAWN_STDOUT_TO_DEV_NULL | G_SPAWN_CHILD_INHERITS_STDOUT)
#define INHERITS_OR_NULL_STDERR (G_SPAWN_STDERR_TO_DEV_NULL | G_SPAWN_CHILD_INHERITS_STDERR)
/**
* g_spawn_async:
* @working_directory: (type filename) (nullable): child's current working
* directory, or %NULL to inherit parent's
* @argv: (array zero-terminated=1) (element-type filename):
* child's argument vector
* @envp: (array zero-terminated=1) (element-type filename) (nullable):
* child's environment, or %NULL to inherit parent's
* @flags: flags from #GSpawnFlags
* @child_setup: (scope async) (closure user_data) (nullable): function to run
* in the child just before `exec()`
* @user_data: user data for @child_setup
* @child_pid: (out) (optional): return location for child process reference, or %NULL
* @error: return location for error
*
* Executes a child program asynchronously.
*
* See g_spawn_async_with_pipes() for a full description; this function
* simply calls the g_spawn_async_with_pipes() without any pipes.
*
* You should call g_spawn_close_pid() on the returned child process
* reference when you don't need it any more.
*
* If you are writing a GTK application, and the program you are spawning is a
* graphical application too, then to ensure that the spawned program opens its
* windows on the right screen, you may want to use #GdkAppLaunchContext,
* #GAppLaunchContext, or set the %DISPLAY environment variable.
*
* Note that the returned @child_pid on Windows is a handle to the child
* process and not its identifier. Process handles and process identifiers
* are different concepts on Windows.
*
* Returns: %TRUE on success, %FALSE if error is set
**/
gboolean
g_spawn_async (const gchar *working_directory,
gchar **argv,
gchar **envp,
GSpawnFlags flags,
GSpawnChildSetupFunc child_setup,
gpointer user_data,
GPid *child_pid,
GError **error)
{
return g_spawn_async_with_pipes (working_directory,
argv, envp,
flags,
child_setup,
user_data,
child_pid,
NULL, NULL, NULL,
error);
}
/**
* g_spawn_sync:
* @working_directory: (type filename) (nullable): child's current working
* directory, or %NULL to inherit parent's
* @argv: (array zero-terminated=1) (element-type filename):
* child's argument vector, which must be non-empty and %NULL-terminated
* @envp: (array zero-terminated=1) (element-type filename) (nullable):
* child's environment, or %NULL to inherit parent's
* @flags: flags from #GSpawnFlags
* @child_setup: (scope call) (closure user_data) (nullable): function to run
* in the child just before `exec()`
* @user_data: user data for @child_setup
* @standard_output: (out) (array zero-terminated=1) (element-type guint8) (optional): return location for child output, or %NULL
* @standard_error: (out) (array zero-terminated=1) (element-type guint8) (optional): return location for child error messages, or %NULL
* @wait_status: (out) (optional): return location for child wait status, as returned by waitpid(), or %NULL
* @error: return location for error, or %NULL
*
* Executes a child synchronously (waits for the child to exit before returning).
*
* All output from the child is stored in @standard_output and @standard_error,
* if those parameters are non-%NULL. Note that you must set the
* %G_SPAWN_STDOUT_TO_DEV_NULL and %G_SPAWN_STDERR_TO_DEV_NULL flags when
* passing %NULL for @standard_output and @standard_error.
*
* If @wait_status is non-%NULL, the platform-specific status of
* the child is stored there; see the documentation of
* g_spawn_check_wait_status() for how to use and interpret this.
* On Unix platforms, note that it is usually not equal
* to the integer passed to `exit()` or returned from `main()`.
*
* Note that it is invalid to pass %G_SPAWN_DO_NOT_REAP_CHILD in
* @flags, and on POSIX platforms, the same restrictions as for
* g_child_watch_source_new() apply.
*
* If an error occurs, no data is returned in @standard_output,
* @standard_error, or @wait_status.
*
* This function calls g_spawn_async_with_pipes() internally; see that
* function for full details on the other parameters and details on
* how these functions work on Windows.
*
* Returns: %TRUE on success, %FALSE if an error was set
*/
gboolean
g_spawn_sync (const gchar *working_directory,
gchar **argv,
gchar **envp,
GSpawnFlags flags,
GSpawnChildSetupFunc child_setup,
gpointer user_data,
gchar **standard_output,
gchar **standard_error,
gint *wait_status,
GError **error)
{
g_return_val_if_fail (argv != NULL, FALSE);
g_return_val_if_fail (argv[0] != NULL, FALSE);
g_return_val_if_fail (!(flags & G_SPAWN_DO_NOT_REAP_CHILD), FALSE);
g_return_val_if_fail (standard_output == NULL ||
!(flags & G_SPAWN_STDOUT_TO_DEV_NULL), FALSE);
g_return_val_if_fail (standard_error == NULL ||
!(flags & G_SPAWN_STDERR_TO_DEV_NULL), FALSE);
return g_spawn_sync_impl (working_directory, argv, envp, flags, child_setup,
user_data, standard_output, standard_error,
wait_status, error);
}
/**
* g_spawn_async_with_pipes:
* @working_directory: (type filename) (nullable): child's current working
* directory, or %NULL to inherit parent's, in the GLib file name encoding
* @argv: (array zero-terminated=1) (element-type filename): child's argument
* vector, in the GLib file name encoding; it must be non-empty and %NULL-terminated
* @envp: (array zero-terminated=1) (element-type filename) (nullable):
* child's environment, or %NULL to inherit parent's, in the GLib file
* name encoding
* @flags: flags from #GSpawnFlags
* @child_setup: (scope async) (closure user_data) (nullable): function to run
* in the child just before `exec()`
* @user_data: user data for @child_setup
* @child_pid: (out) (optional): return location for child process ID, or %NULL
* @standard_input: (out) (optional): return location for file descriptor to write to child's stdin, or %NULL
* @standard_output: (out) (optional): return location for file descriptor to read child's stdout, or %NULL
* @standard_error: (out) (optional): return location for file descriptor to read child's stderr, or %NULL
* @error: return location for error
*
* Identical to g_spawn_async_with_pipes_and_fds() but with `n_fds` set to zero,
* so no FD assignments are used.
*
* Returns: %TRUE on success, %FALSE if an error was set
*/
gboolean
g_spawn_async_with_pipes (const gchar *working_directory,
gchar **argv,
gchar **envp,
GSpawnFlags flags,
GSpawnChildSetupFunc child_setup,
gpointer user_data,
GPid *child_pid,
gint *standard_input,
gint *standard_output,
gint *standard_error,
GError **error)
{
return g_spawn_async_with_pipes_and_fds (working_directory,
(const gchar * const *) argv,
(const gchar * const *) envp,
flags,
child_setup, user_data,
-1, -1, -1,
NULL, NULL, 0,
child_pid,
standard_input,
standard_output,
standard_error,
error);
}
/**
* g_spawn_async_with_pipes_and_fds:
* @working_directory: (type filename) (nullable): child's current working
* directory, or %NULL to inherit parent's, in the GLib file name encoding
* @argv: (array zero-terminated=1) (element-type filename): child's argument
* vector, in the GLib file name encoding; it must be non-empty and %NULL-terminated
* @envp: (array zero-terminated=1) (element-type filename) (nullable):
* child's environment, or %NULL to inherit parent's, in the GLib file
* name encoding
* @flags: flags from #GSpawnFlags
* @child_setup: (scope async) (closure user_data) (nullable): function to run
* in the child just before `exec()`
* @user_data: user data for @child_setup
* @stdin_fd: file descriptor to use for child's stdin, or `-1`
* @stdout_fd: file descriptor to use for child's stdout, or `-1`
* @stderr_fd: file descriptor to use for child's stderr, or `-1`
* @source_fds: (array length=n_fds) (nullable): array of FDs from the parent
* process to make available in the child process
* @target_fds: (array length=n_fds) (nullable): array of FDs to remap
* @source_fds to in the child process
* @n_fds: number of FDs in @source_fds and @target_fds
* @child_pid_out: (out) (optional): return location for child process ID, or %NULL
* @stdin_pipe_out: (out) (optional): return location for file descriptor to write to child's stdin, or %NULL
* @stdout_pipe_out: (out) (optional): return location for file descriptor to read child's stdout, or %NULL
* @stderr_pipe_out: (out) (optional): return location for file descriptor to read child's stderr, or %NULL
* @error: return location for error
*
* Executes a child program asynchronously (your program will not
* block waiting for the child to exit).
*
* The child program is specified by the only argument that must be
* provided, @argv. @argv should be a %NULL-terminated array of strings,
* to be passed as the argument vector for the child. The first string
* in @argv is of course the name of the program to execute. By default,
* the name of the program must be a full path. If @flags contains the
* %G_SPAWN_SEARCH_PATH flag, the `PATH` environment variable is used to
* search for the executable. If @flags contains the
* %G_SPAWN_SEARCH_PATH_FROM_ENVP flag, the `PATH` variable from @envp
* is used to search for the executable. If both the
* %G_SPAWN_SEARCH_PATH and %G_SPAWN_SEARCH_PATH_FROM_ENVP flags are
* set, the `PATH` variable from @envp takes precedence over the
* environment variable.
*
* If the program name is not a full path and %G_SPAWN_SEARCH_PATH flag
* is not used, then the program will be run from the current directory
* (or @working_directory, if specified); this might be unexpected or even
* dangerous in some cases when the current directory is world-writable.
*
* On Windows, note that all the string or string vector arguments to
* this function and the other `g_spawn*()` functions are in UTF-8, the
* GLib file name encoding. Unicode characters that are not part of
* the system codepage passed in these arguments will be correctly
* available in the spawned program only if it uses wide character API
* to retrieve its command line. For C programs built with Microsoft's
* tools it is enough to make the program have a `wmain()` instead of
* `main()`. `wmain()` has a wide character argument vector as parameter.
*
* At least currently, mingw doesn't support `wmain()`, so if you use
* mingw to develop the spawned program, it should call
* g_win32_get_command_line() to get arguments in UTF-8.
*
* On Windows the low-level child process creation API `CreateProcess()`
* doesn't use argument vectors, but a command line. The C runtime
* library's `spawn*()` family of functions (which g_spawn_async_with_pipes()
* eventually calls) paste the argument vector elements together into
* a command line, and the C runtime startup code does a corresponding
* reconstruction of an argument vector from the command line, to be
* passed to `main()`. Complications arise when you have argument vector
* elements that contain spaces or double quotes. The `spawn*()` functions
* don't do any quoting or escaping, but on the other hand the startup
* code does do unquoting and unescaping in order to enable receiving
* arguments with embedded spaces or double quotes. To work around this
* asymmetry, g_spawn_async_with_pipes() will do quoting and escaping on
* argument vector elements that need it before calling the C runtime
* `spawn()` function.
*
* The returned @child_pid on Windows is a handle to the child
* process, not its identifier. Process handles and process
* identifiers are different concepts on Windows.
*
* @envp is a %NULL-terminated array of strings, where each string
* has the form `KEY=VALUE`. This will become the child's environment.
* If @envp is %NULL, the child inherits its parent's environment.
*
* @flags should be the bitwise OR of any flags you want to affect the
* function's behaviour. The %G_SPAWN_DO_NOT_REAP_CHILD means that the
* child will not automatically be reaped; you must use a child watch
* (g_child_watch_add()) to be notified about the death of the child process,
* otherwise it will stay around as a zombie process until this process exits.
* Eventually you must call g_spawn_close_pid() on the @child_pid, in order to
* free resources which may be associated with the child process. (On Unix,
* using a child watch is equivalent to calling waitpid() or handling
* the `SIGCHLD` signal manually. On Windows, calling g_spawn_close_pid()
* is equivalent to calling `CloseHandle()` on the process handle returned
* in @child_pid). See g_child_watch_add().
*
* Open UNIX file descriptors marked as `FD_CLOEXEC` will be automatically
* closed in the child process. %G_SPAWN_LEAVE_DESCRIPTORS_OPEN means that
* other open file descriptors will be inherited by the child; otherwise all
* descriptors except stdin/stdout/stderr will be closed before calling `exec()`
* in the child. %G_SPAWN_SEARCH_PATH means that @argv[0] need not be an
* absolute path, it will be looked for in the `PATH` environment
* variable. %G_SPAWN_SEARCH_PATH_FROM_ENVP means need not be an
* absolute path, it will be looked for in the `PATH` variable from
* @envp. If both %G_SPAWN_SEARCH_PATH and %G_SPAWN_SEARCH_PATH_FROM_ENVP
* are used, the value from @envp takes precedence over the environment.
*
* %G_SPAWN_CHILD_INHERITS_STDIN means that the child will inherit the parent's
* standard input (by default, the child's standard input is attached to
* `/dev/null`). %G_SPAWN_STDIN_FROM_DEV_NULL explicitly imposes the default
* behavior. Both flags cannot be enabled at the same time and, in both cases,
* the @stdin_pipe_out argument is ignored.
*
* %G_SPAWN_STDOUT_TO_DEV_NULL means that the child's standard output
* will be discarded (by default, it goes to the same location as the parent's
* standard output). %G_SPAWN_CHILD_INHERITS_STDOUT explicitly imposes the
* default behavior. Both flags cannot be enabled at the same time and, in
* both cases, the @stdout_pipe_out argument is ignored.
*
* %G_SPAWN_STDERR_TO_DEV_NULL means that the child's standard error
* will be discarded (by default, it goes to the same location as the parent's
* standard error). %G_SPAWN_CHILD_INHERITS_STDERR explicitly imposes the
* default behavior. Both flags cannot be enabled at the same time and, in
* both cases, the @stderr_pipe_out argument is ignored.
*
* It is valid to pass the same FD in multiple parameters (e.g. you can pass
* a single FD for both @stdout_fd and @stderr_fd, and include it in
* @source_fds too).
*
* @source_fds and @target_fds allow zero or more FDs from this process to be
* remapped to different FDs in the spawned process. If @n_fds is greater than
* zero, @source_fds and @target_fds must both be non-%NULL and the same length.
* Each FD in @source_fds is remapped to the FD number at the same index in
* @target_fds. The source and target FD may be equal to simply propagate an FD
* to the spawned process. FD remappings are processed after standard FDs, so
* any target FDs which equal @stdin_fd, @stdout_fd or @stderr_fd will overwrite
* them in the spawned process.
*
* @source_fds is supported on Windows since 2.72.
*
* %G_SPAWN_FILE_AND_ARGV_ZERO means that the first element of @argv is
* the file to execute, while the remaining elements are the actual
* argument vector to pass to the file. Normally g_spawn_async_with_pipes()
* uses @argv[0] as the file to execute, and passes all of @argv to the child.
*
* @child_setup and @user_data are a function and user data. On POSIX
* platforms, the function is called in the child after GLib has
* performed all the setup it plans to perform (including creating
* pipes, closing file descriptors, etc.) but before calling `exec()`.
* That is, @child_setup is called just before calling `exec()` in the
* child. Obviously actions taken in this function will only affect
* the child, not the parent.
*
* On Windows, there is no separate `fork()` and `exec()` functionality.
* Child processes are created and run with a single API call,
* `CreateProcess()`. There is no sensible thing @child_setup
* could be used for on Windows so it is ignored and not called.
*
* If non-%NULL, @child_pid will on Unix be filled with the child's
* process ID. You can use the process ID to send signals to the child,
* or to use g_child_watch_add() (or `waitpid()`) if you specified the
* %G_SPAWN_DO_NOT_REAP_CHILD flag. On Windows, @child_pid will be
* filled with a handle to the child process only if you specified the
* %G_SPAWN_DO_NOT_REAP_CHILD flag. You can then access the child
* process using the Win32 API, for example wait for its termination
* with the `WaitFor*()` functions, or examine its exit code with
* `GetExitCodeProcess()`. You should close the handle with `CloseHandle()`
* or g_spawn_close_pid() when you no longer need it.
*
* If non-%NULL, the @stdin_pipe_out, @stdout_pipe_out, @stderr_pipe_out
* locations will be filled with file descriptors for writing to the child's
* standard input or reading from its standard output or standard error.
* The caller of g_spawn_async_with_pipes() must close these file descriptors
* when they are no longer in use. If these parameters are %NULL, the
* corresponding pipe won't be created.
*
* If @stdin_pipe_out is %NULL, the child's standard input is attached to
* `/dev/null` unless %G_SPAWN_CHILD_INHERITS_STDIN is set.
*
* If @stderr_pipe_out is NULL, the child's standard error goes to the same
* location as the parent's standard error unless %G_SPAWN_STDERR_TO_DEV_NULL
* is set.
*
* If @stdout_pipe_out is NULL, the child's standard output goes to the same
* location as the parent's standard output unless %G_SPAWN_STDOUT_TO_DEV_NULL
* is set.
*
* @error can be %NULL to ignore errors, or non-%NULL to report errors.
* If an error is set, the function returns %FALSE. Errors are reported
* even if they occur in the child (for example if the executable in
* `@argv[0]` is not found). Typically the `message` field of returned
* errors should be displayed to users. Possible errors are those from
* the %G_SPAWN_ERROR domain.
*
* If an error occurs, @child_pid, @stdin_pipe_out, @stdout_pipe_out,
* and @stderr_pipe_out will not be filled with valid values.
*
* If @child_pid is not %NULL and an error does not occur then the returned
* process reference must be closed using g_spawn_close_pid().
*
* On modern UNIX platforms, GLib can use an efficient process launching
* codepath driven internally by `posix_spawn()`. This has the advantage of
* avoiding the fork-time performance costs of cloning the parent process
* address space, and avoiding associated memory overcommit checks that are
* not relevant in the context of immediately executing a distinct process.
* This optimized codepath will be used provided that the following conditions
* are met:
*
* 1. %G_SPAWN_DO_NOT_REAP_CHILD is set
* 2. %G_SPAWN_LEAVE_DESCRIPTORS_OPEN is set
* 3. %G_SPAWN_SEARCH_PATH_FROM_ENVP is not set
* 4. @working_directory is %NULL
* 5. @child_setup is %NULL
* 6. The program is of a recognised binary format, or has a shebang.
* Otherwise, GLib will have to execute the program through the
* shell, which is not done using the optimized codepath.
*
* If you are writing a GTK application, and the program you are spawning is a
* graphical application too, then to ensure that the spawned program opens its
* windows on the right screen, you may want to use #GdkAppLaunchContext,
* #GAppLaunchContext, or set the `DISPLAY` environment variable.
*
* Returns: %TRUE on success, %FALSE if an error was set
*
* Since: 2.68
*/
gboolean
g_spawn_async_with_pipes_and_fds (const gchar *working_directory,
const gchar * const *argv,
const gchar * const *envp,
GSpawnFlags flags,
GSpawnChildSetupFunc child_setup,
gpointer user_data,
gint stdin_fd,
gint stdout_fd,
gint stderr_fd,
const gint *source_fds,
const gint *target_fds,
gsize n_fds,
GPid *child_pid_out,
gint *stdin_pipe_out,
gint *stdout_pipe_out,
gint *stderr_pipe_out,
GError **error)
{
g_return_val_if_fail (argv != NULL, FALSE);
g_return_val_if_fail (argv[0] != NULL, FALSE);
/* cant both inherit and set pipes to /dev/null */
g_return_val_if_fail ((flags & INHERITS_OR_NULL_STDIN) != INHERITS_OR_NULL_STDIN, FALSE);
g_return_val_if_fail ((flags & INHERITS_OR_NULL_STDOUT) != INHERITS_OR_NULL_STDOUT, FALSE);
g_return_val_if_fail ((flags & INHERITS_OR_NULL_STDERR) != INHERITS_OR_NULL_STDERR, FALSE);
/* cant use pipes and stdin/stdout/stderr FDs */
g_return_val_if_fail (stdin_pipe_out == NULL || stdin_fd < 0, FALSE);
g_return_val_if_fail (stdout_pipe_out == NULL || stdout_fd < 0, FALSE);
g_return_val_if_fail (stderr_pipe_out == NULL || stderr_fd < 0, FALSE);
return g_spawn_async_with_pipes_and_fds_impl (working_directory, argv,
envp, flags, child_setup,
user_data, stdin_fd, stdout_fd,
stderr_fd,
source_fds, target_fds, n_fds,
child_pid_out, stdin_pipe_out,
stdout_pipe_out,
stderr_pipe_out, error);
}
/**
* g_spawn_async_with_fds:
* @working_directory: (type filename) (nullable): child's current working directory, or %NULL to inherit parent's, in the GLib file name encoding
* @argv: (array zero-terminated=1): child's argument vector, in the GLib file name encoding;
* it must be non-empty and %NULL-terminated
* @envp: (array zero-terminated=1) (nullable): child's environment, or %NULL to inherit parent's, in the GLib file name encoding
* @flags: flags from #GSpawnFlags
* @child_setup: (scope async) (closure user_data) (nullable): function to run
* in the child just before `exec()`
* @user_data: user data for @child_setup
* @child_pid: (out) (optional): return location for child process ID, or %NULL
* @stdin_fd: file descriptor to use for child's stdin, or `-1`
* @stdout_fd: file descriptor to use for child's stdout, or `-1`
* @stderr_fd: file descriptor to use for child's stderr, or `-1`
* @error: return location for error
*
* Executes a child program asynchronously.
*
* Identical to g_spawn_async_with_pipes_and_fds() but with `n_fds` set to zero,
* so no FD assignments are used.
*
* Returns: %TRUE on success, %FALSE if an error was set
*
* Since: 2.58
*/
gboolean
g_spawn_async_with_fds (const gchar *working_directory,
gchar **argv,
gchar **envp,
GSpawnFlags flags,
GSpawnChildSetupFunc child_setup,
gpointer user_data,
GPid *child_pid,
gint stdin_fd,
gint stdout_fd,
gint stderr_fd,
GError **error)
{
g_return_val_if_fail (stdout_fd < 0 ||
!(flags & G_SPAWN_STDOUT_TO_DEV_NULL), FALSE);
g_return_val_if_fail (stderr_fd < 0 ||
!(flags & G_SPAWN_STDERR_TO_DEV_NULL), FALSE);
/* can't inherit stdin if we have an input pipe. */
g_return_val_if_fail (stdin_fd < 0 ||
!(flags & G_SPAWN_CHILD_INHERITS_STDIN), FALSE);
return g_spawn_async_with_pipes_and_fds (working_directory,
(const gchar * const *) argv,
(const gchar * const *) envp,
flags, child_setup, user_data,
stdin_fd, stdout_fd, stderr_fd,
NULL, NULL, 0,
child_pid,
NULL, NULL, NULL,
error);
}
/**
* g_spawn_command_line_sync:
* @command_line: (type filename): a command line
* @standard_output: (out) (array zero-terminated=1) (element-type guint8) (optional): return location for child output
* @standard_error: (out) (array zero-terminated=1) (element-type guint8) (optional): return location for child errors
* @wait_status: (out) (optional): return location for child wait status, as returned by waitpid()
* @error: return location for errors
*
* A simple version of g_spawn_sync() with little-used parameters
* removed, taking a command line instead of an argument vector.
*
* See g_spawn_sync() for full details.
*
* The @command_line argument will be parsed by g_shell_parse_argv().
*
* Unlike g_spawn_sync(), the %G_SPAWN_SEARCH_PATH flag is enabled.
* Note that %G_SPAWN_SEARCH_PATH can have security implications, so
* consider using g_spawn_sync() directly if appropriate.
*
* Possible errors are those from g_spawn_sync() and those
* from g_shell_parse_argv().
*
* If @wait_status is non-%NULL, the platform-specific status of
* the child is stored there; see the documentation of
* g_spawn_check_wait_status() for how to use and interpret this.
* On Unix platforms, note that it is usually not equal
* to the integer passed to `exit()` or returned from `main()`.
*
* On Windows, please note the implications of g_shell_parse_argv()
* parsing @command_line. Parsing is done according to Unix shell rules, not
* Windows command interpreter rules.
* Space is a separator, and backslashes are
* special. Thus you cannot simply pass a @command_line containing
* canonical Windows paths, like "c:\\program files\\app\\app.exe", as
* the backslashes will be eaten, and the space will act as a
* separator. You need to enclose such paths with single quotes, like
* "'c:\\program files\\app\\app.exe' 'e:\\folder\\argument.txt'".
*
* Returns: %TRUE on success, %FALSE if an error was set
**/
gboolean
g_spawn_command_line_sync (const gchar *command_line,
gchar **standard_output,
gchar **standard_error,
gint *wait_status,
GError **error)
{
gboolean retval;
gchar **argv = NULL;
g_return_val_if_fail (command_line != NULL, FALSE);
/* This will return a runtime error if @command_line is the empty string. */
if (!g_shell_parse_argv (command_line,
NULL, &argv,
error))
return FALSE;
retval = g_spawn_sync (NULL,
argv,
NULL,
G_SPAWN_SEARCH_PATH,
NULL,
NULL,
standard_output,
standard_error,
wait_status,
error);
g_strfreev (argv);
return retval;
}
/**
* g_spawn_command_line_async:
* @command_line: (type filename): a command line
* @error: return location for errors
*
* A simple version of g_spawn_async() that parses a command line with
* g_shell_parse_argv() and passes it to g_spawn_async().
*
* Runs a command line in the background. Unlike g_spawn_async(), the
* %G_SPAWN_SEARCH_PATH flag is enabled, other flags are not. Note
* that %G_SPAWN_SEARCH_PATH can have security implications, so
* consider using g_spawn_async() directly if appropriate. Possible
* errors are those from g_shell_parse_argv() and g_spawn_async().
*
* The same concerns on Windows apply as for g_spawn_command_line_sync().
*
* Returns: %TRUE on success, %FALSE if error is set
**/
gboolean
g_spawn_command_line_async (const gchar *command_line,
GError **error)
{
gboolean retval;
gchar **argv = NULL;
g_return_val_if_fail (command_line != NULL, FALSE);
/* This will return a runtime error if @command_line is the empty string. */
if (!g_shell_parse_argv (command_line,
NULL, &argv,
error))
return FALSE;
retval = g_spawn_async (NULL,
argv,
NULL,
G_SPAWN_SEARCH_PATH,
NULL,
NULL,
NULL,
error);
g_strfreev (argv);
return retval;
}
/**
* g_spawn_check_wait_status:
* @wait_status: A platform-specific wait status as returned from g_spawn_sync()
* @error: a #GError
*
* Set @error if @wait_status indicates the child exited abnormally
* (e.g. with a nonzero exit code, or via a fatal signal).
*
* The g_spawn_sync() and g_child_watch_add() family of APIs return the
* status of subprocesses encoded in a platform-specific way.
* On Unix, this is guaranteed to be in the same format waitpid() returns,
* and on Windows it is guaranteed to be the result of GetExitCodeProcess().
*
* Prior to the introduction of this function in GLib 2.34, interpreting
* @wait_status required use of platform-specific APIs, which is problematic
* for software using GLib as a cross-platform layer.
*
* Additionally, many programs simply want to determine whether or not
* the child exited successfully, and either propagate a #GError or
* print a message to standard error. In that common case, this function
* can be used. Note that the error message in @error will contain
* human-readable information about the wait status.
*
* The @domain and @code of @error have special semantics in the case
* where the process has an "exit code", as opposed to being killed by
* a signal. On Unix, this happens if WIFEXITED() would be true of
* @wait_status. On Windows, it is always the case.
*
* The special semantics are that the actual exit code will be the
* code set in @error, and the domain will be %G_SPAWN_EXIT_ERROR.
* This allows you to differentiate between different exit codes.
*
* If the process was terminated by some means other than an exit
* status (for example if it was killed by a signal), the domain will be
* %G_SPAWN_ERROR and the code will be %G_SPAWN_ERROR_FAILED.
*
* This function just offers convenience; you can of course also check
* the available platform via a macro such as %G_OS_UNIX, and use
* WIFEXITED() and WEXITSTATUS() on @wait_status directly. Do not attempt
* to scan or parse the error message string; it may be translated and/or
* change in future versions of GLib.
*
* Prior to version 2.70, g_spawn_check_exit_status() provides the same
* functionality, although under a misleading name.
*
* Returns: %TRUE if child exited successfully, %FALSE otherwise (and
* @error will be set)
*
* Since: 2.70
*/
gboolean
g_spawn_check_wait_status (gint wait_status,
GError **error)
{
return g_spawn_check_wait_status_impl (wait_status, error);
}
/**
* g_spawn_check_exit_status:
* @wait_status: A status as returned from g_spawn_sync()
* @error: a #GError
*
* An old name for g_spawn_check_wait_status(), deprecated because its
* name is misleading.
*
* Despite the name of the function, @wait_status must be the wait status
* as returned by g_spawn_sync(), g_subprocess_get_status(), `waitpid()`,
* etc. On Unix platforms, it is incorrect for it to be the exit status
* as passed to `exit()` or returned by g_subprocess_get_exit_status() or
* `WEXITSTATUS()`.
*
* Returns: %TRUE if child exited successfully, %FALSE otherwise (and
* @error will be set)
*
* Since: 2.34
*
* Deprecated: 2.70: Use g_spawn_check_wait_status() instead, and check whether your code is conflating wait and exit statuses.
*/
gboolean
g_spawn_check_exit_status (gint wait_status,
GError **error)
{
return g_spawn_check_wait_status (wait_status, error);
}
/**
* g_spawn_close_pid:
* @pid: The process reference to close
*
* On some platforms, notably Windows, the #GPid type represents a resource
* which must be closed to prevent resource leaking. g_spawn_close_pid()
* is provided for this purpose. It should be used on all platforms, even
* though it doesn't do anything under UNIX.
**/
void
g_spawn_close_pid (GPid pid)
{
g_spawn_close_pid_impl (pid);
}