glib/glib/gthread.c
Philip Withnall aec5785e7b
gthread: Move thread _impl functions to static inlines for speed
The changes made in commit bc59e28bf6
(issue #3399) fixed introspection of the GThread API. However, they
introduced a trampoline in every threading function. So with those
changes applied, the disassembly of `g_mutex_lock()` (for example) was:
```
0x7ffff7f038b0 <g_mutex_lock>    jmp 0x7ffff7f2f440 <g_mutex_lock_impl>
0x7ffff7f038b5                   data16 cs nopw 0x0(%rax,%rax,1)
```

i.e. It jumps straight to the `_impl` function, even with an optimised
build. Since `g_mutex_lock()` (and various other GThread functions) are
frequently run hot paths, this additional `jmp` to a function which has
ended up in a different code page is a slowdown which we’d rather avoid.

So, this commit reworks things to define all the `_impl` functions as
`G_ALWAYS_INLINE static inline` (which typically expands to
`__attribute__((__always_inline__)) static inline`), and to move them
into the same compilation unit as `gthread.c` so that they can be
inlined without the need for link-time optimisation to be enabled.

It makes the code a little less readable, but not much worse than what
commit bc59e28bf6 already did. And perhaps
the addition of the `inline` decorations to all the `_impl` functions
will make it a bit clearer what their intended purpose is
(platform-specific implementations).

After applying this commit, the disassembly of `g_mutex_lock()`
successfully contains the inlining for me:
```
=> 0x00007ffff7f03d80 <+0>:	xor    %eax,%eax
   0x00007ffff7f03d82 <+2>:	mov    $0x1,%edx
   0x00007ffff7f03d87 <+7>:	lock cmpxchg %edx,(%rdi)
   0x00007ffff7f03d8b <+11>:	jne    0x7ffff7f03d8e <g_mutex_lock+14>
   0x00007ffff7f03d8d <+13>:	ret
   0x00007ffff7f03d8e <+14>:	jmp    0x7ffff7f03610 <g_mutex_lock_slowpath>
```

I considered making a similar change to the other APIs touched in #3399
(GContentType, GAppInfo, GSpawn), but they are all much less performance
critical, so it’s probably not worth making their code more complex for
that sake.

Signed-off-by: Philip Withnall <pwithnall@gnome.org>

Fixes: #3417
2024-08-25 21:56:14 +01:00

1917 lines
53 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* GLIB - Library of useful routines for C programming
* Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald
*
* gthread.c: MT safety related functions
* Copyright 1998 Sebastian Wilhelmi; University of Karlsruhe
* Owen Taylor
*
* SPDX-License-Identifier: LGPL-2.1-or-later
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
/* Prelude {{{1 ----------------------------------------------------------- */
/*
* Modified by the GLib Team and others 1997-2000. See the AUTHORS
* file for a list of people on the GLib Team. See the ChangeLog
* files for a list of changes. These files are distributed with
* GLib at ftp://ftp.gtk.org/pub/gtk/.
*/
/*
* MT safe
*/
/* implement gthread.h's inline functions */
#define G_IMPLEMENT_INLINES 1
#define __G_THREAD_C__
#include "config.h"
#include "gthread.h"
#include "gthreadprivate.h"
#include <string.h>
#ifdef G_OS_UNIX
#include <unistd.h>
#if defined(THREADS_POSIX) && defined(HAVE_PTHREAD_GETAFFINITY_NP)
#include <pthread.h>
#endif
#endif /* G_OS_UNIX */
#ifndef G_OS_WIN32
#include <sys/time.h>
#include <time.h>
#else
#include <windows.h>
#endif /* G_OS_WIN32 */
#include "gslice.h"
#include "gstrfuncs.h"
#include "gtestutils.h"
#include "glib_trace.h"
#include "gtrace-private.h"
/* In order that the API can be defined in one place (this file), the platform
* specific code is moved out into separate files so this one doesnt turn into
* a massive #ifdef tangle.
*
* To avoid the functions in this file becoming tiny trampolines (`jmp` to the
* relevant `_impl` function only), which would be a performance hit on some
* hot paths, #include the platform specific implementations. They are marked as
* `inline` so should be inlined correctly by the compiler without the need for
* link time optimisation or any fancy tricks.
*/
static inline void g_mutex_init_impl (GMutex *mutex);
static inline void g_mutex_clear_impl (GMutex *mutex);
static inline void g_mutex_lock_impl (GMutex *mutex);
static inline void g_mutex_unlock_impl (GMutex *mutex);
static inline gboolean g_mutex_trylock_impl (GMutex *mutex);
static inline void g_rec_mutex_init_impl (GRecMutex *rec_mutex);
static inline void g_rec_mutex_clear_impl (GRecMutex *rec_mutex);
static inline void g_rec_mutex_lock_impl (GRecMutex *mutex);
static inline void g_rec_mutex_unlock_impl (GRecMutex *rec_mutex);
static inline gboolean g_rec_mutex_trylock_impl (GRecMutex *rec_mutex);
static inline void g_rw_lock_init_impl (GRWLock *rw_lock);
static inline void g_rw_lock_clear_impl (GRWLock *rw_lock);
static inline void g_rw_lock_writer_lock_impl (GRWLock *rw_lock);
static inline gboolean g_rw_lock_writer_trylock_impl (GRWLock *rw_lock);
static inline void g_rw_lock_writer_unlock_impl (GRWLock *rw_lock);
static inline void g_rw_lock_reader_lock_impl (GRWLock *rw_lock);
static inline gboolean g_rw_lock_reader_trylock_impl (GRWLock *rw_lock);
static inline void g_rw_lock_reader_unlock_impl (GRWLock *rw_lock);
static inline void g_cond_init_impl (GCond *cond);
static inline void g_cond_clear_impl (GCond *cond);
static inline void g_cond_wait_impl (GCond *cond,
GMutex *mutex);
static inline void g_cond_signal_impl (GCond *cond);
static inline void g_cond_broadcast_impl (GCond *cond);
static inline gboolean g_cond_wait_until_impl (GCond *cond,
GMutex *mutex,
gint64 end_time);
static inline gpointer g_private_get_impl (GPrivate *key);
static inline void g_private_set_impl (GPrivate *key,
gpointer value);
static inline void g_private_replace_impl (GPrivate *key,
gpointer value);
static inline void g_thread_yield_impl (void);
#if defined(THREADS_POSIX)
#include "gthread-posix.c"
#elif defined(THREADS_WIN32)
#include "gthread-win32.c"
#else
#error "No threads implementation"
#endif
/* G_LOCK Documentation {{{1 ---------------------------------------------- */
/**
* G_LOCK_DEFINE:
* @name: the name of the lock
*
* The `G_LOCK_` macros provide a convenient interface to #GMutex.
* %G_LOCK_DEFINE defines a lock. It can appear in any place where
* variable definitions may appear in programs, i.e. in the first block
* of a function or outside of functions. The @name parameter will be
* mangled to get the name of the #GMutex. This means that you
* can use names of existing variables as the parameter - e.g. the name
* of the variable you intend to protect with the lock. Look at our
* give_me_next_number() example using the `G_LOCK` macros:
*
* Here is an example for using the `G_LOCK` convenience macros:
*
* |[<!-- language="C" -->
* G_LOCK_DEFINE (current_number);
*
* int
* give_me_next_number (void)
* {
* static int current_number = 0;
* int ret_val;
*
* G_LOCK (current_number);
* ret_val = current_number = calc_next_number (current_number);
* G_UNLOCK (current_number);
*
* return ret_val;
* }
* ]|
*/
/**
* G_LOCK_DEFINE_STATIC:
* @name: the name of the lock
*
* This works like %G_LOCK_DEFINE, but it creates a static object.
*/
/**
* G_LOCK_EXTERN:
* @name: the name of the lock
*
* This declares a lock, that is defined with %G_LOCK_DEFINE in another
* module.
*/
/**
* G_LOCK:
* @name: the name of the lock
*
* Works like g_mutex_lock(), but for a lock defined with
* %G_LOCK_DEFINE.
*/
/**
* G_TRYLOCK:
* @name: the name of the lock
*
* Works like g_mutex_trylock(), but for a lock defined with
* %G_LOCK_DEFINE.
*
* Returns: %TRUE, if the lock could be locked.
*/
/**
* G_UNLOCK:
* @name: the name of the lock
*
* Works like g_mutex_unlock(), but for a lock defined with
* %G_LOCK_DEFINE.
*/
/**
* G_AUTO_LOCK:
* @name: the name of the lock
*
* Works like [func@GLib.MUTEX_AUTO_LOCK], but for a lock defined with
* [func@GLib.LOCK_DEFINE].
*
* This feature is only supported on GCC and clang. This macro is not defined on
* other compilers and should not be used in programs that are intended to be
* portable to those compilers.
*
* Since: 2.80
*/
/* GMutex Documentation {{{1 ------------------------------------------ */
/**
* GMutex:
*
* The #GMutex struct is an opaque data structure to represent a mutex
* (mutual exclusion). It can be used to protect data against shared
* access.
*
* Take for example the following function:
* |[<!-- language="C" -->
* int
* give_me_next_number (void)
* {
* static int current_number = 0;
*
* // now do a very complicated calculation to calculate the new
* // number, this might for example be a random number generator
* current_number = calc_next_number (current_number);
*
* return current_number;
* }
* ]|
* It is easy to see that this won't work in a multi-threaded
* application. There current_number must be protected against shared
* access. A #GMutex can be used as a solution to this problem:
* |[<!-- language="C" -->
* int
* give_me_next_number (void)
* {
* static GMutex mutex;
* static int current_number = 0;
* int ret_val;
*
* g_mutex_lock (&mutex);
* ret_val = current_number = calc_next_number (current_number);
* g_mutex_unlock (&mutex);
*
* return ret_val;
* }
* ]|
* Notice that the #GMutex is not initialised to any particular value.
* Its placement in static storage ensures that it will be initialised
* to all-zeros, which is appropriate.
*
* If a #GMutex is placed in other contexts (eg: embedded in a struct)
* then it must be explicitly initialised using g_mutex_init().
*
* A #GMutex should only be accessed via g_mutex_ functions.
*/
/* GRecMutex Documentation {{{1 -------------------------------------- */
/**
* GRecMutex:
*
* The GRecMutex struct is an opaque data structure to represent a
* recursive mutex. It is similar to a #GMutex with the difference
* that it is possible to lock a GRecMutex multiple times in the same
* thread without deadlock. When doing so, care has to be taken to
* unlock the recursive mutex as often as it has been locked.
*
* If a #GRecMutex is allocated in static storage then it can be used
* without initialisation. Otherwise, you should call
* g_rec_mutex_init() on it and g_rec_mutex_clear() when done.
*
* A GRecMutex should only be accessed with the
* g_rec_mutex_ functions.
*
* Since: 2.32
*/
/* GRWLock Documentation {{{1 ---------------------------------------- */
/**
* GRWLock:
*
* The GRWLock struct is an opaque data structure to represent a
* reader-writer lock. It is similar to a #GMutex in that it allows
* multiple threads to coordinate access to a shared resource.
*
* The difference to a mutex is that a reader-writer lock discriminates
* between read-only ('reader') and full ('writer') access. While only
* one thread at a time is allowed write access (by holding the 'writer'
* lock via g_rw_lock_writer_lock()), multiple threads can gain
* simultaneous read-only access (by holding the 'reader' lock via
* g_rw_lock_reader_lock()).
*
* It is unspecified whether readers or writers have priority in acquiring the
* lock when a reader already holds the lock and a writer is queued to acquire
* it.
*
* Here is an example for an array with access functions:
* |[<!-- language="C" -->
* GRWLock lock;
* GPtrArray *array;
*
* gpointer
* my_array_get (guint index)
* {
* gpointer retval = NULL;
*
* if (!array)
* return NULL;
*
* g_rw_lock_reader_lock (&lock);
* if (index < array->len)
* retval = g_ptr_array_index (array, index);
* g_rw_lock_reader_unlock (&lock);
*
* return retval;
* }
*
* void
* my_array_set (guint index, gpointer data)
* {
* g_rw_lock_writer_lock (&lock);
*
* if (!array)
* array = g_ptr_array_new ();
*
* if (index >= array->len)
* g_ptr_array_set_size (array, index+1);
* g_ptr_array_index (array, index) = data;
*
* g_rw_lock_writer_unlock (&lock);
* }
* ]|
* This example shows an array which can be accessed by many readers
* (the my_array_get() function) simultaneously, whereas the writers
* (the my_array_set() function) will only be allowed one at a time
* and only if no readers currently access the array. This is because
* of the potentially dangerous resizing of the array. Using these
* functions is fully multi-thread safe now.
*
* If a #GRWLock is allocated in static storage then it can be used
* without initialisation. Otherwise, you should call
* g_rw_lock_init() on it and g_rw_lock_clear() when done.
*
* A GRWLock should only be accessed with the g_rw_lock_ functions.
*
* Since: 2.32
*/
/* GCond Documentation {{{1 ------------------------------------------ */
/**
* GCond:
*
* The #GCond struct is an opaque data structure that represents a
* condition. Threads can block on a #GCond if they find a certain
* condition to be false. If other threads change the state of this
* condition they signal the #GCond, and that causes the waiting
* threads to be woken up.
*
* Consider the following example of a shared variable. One or more
* threads can wait for data to be published to the variable and when
* another thread publishes the data, it can signal one of the waiting
* threads to wake up to collect the data.
*
* Here is an example for using GCond to block a thread until a condition
* is satisfied:
* |[<!-- language="C" -->
* gpointer current_data = NULL;
* GMutex data_mutex;
* GCond data_cond;
*
* void
* push_data (gpointer data)
* {
* g_mutex_lock (&data_mutex);
* current_data = data;
* g_cond_signal (&data_cond);
* g_mutex_unlock (&data_mutex);
* }
*
* gpointer
* pop_data (void)
* {
* gpointer data;
*
* g_mutex_lock (&data_mutex);
* while (!current_data)
* g_cond_wait (&data_cond, &data_mutex);
* data = current_data;
* current_data = NULL;
* g_mutex_unlock (&data_mutex);
*
* return data;
* }
* ]|
* Whenever a thread calls pop_data() now, it will wait until
* current_data is non-%NULL, i.e. until some other thread
* has called push_data().
*
* The example shows that use of a condition variable must always be
* paired with a mutex. Without the use of a mutex, there would be a
* race between the check of @current_data by the while loop in
* pop_data() and waiting. Specifically, another thread could set
* @current_data after the check, and signal the cond (with nobody
* waiting on it) before the first thread goes to sleep. #GCond is
* specifically useful for its ability to release the mutex and go
* to sleep atomically.
*
* It is also important to use the g_cond_wait() and g_cond_wait_until()
* functions only inside a loop which checks for the condition to be
* true. See g_cond_wait() for an explanation of why the condition may
* not be true even after it returns.
*
* If a #GCond is allocated in static storage then it can be used
* without initialisation. Otherwise, you should call g_cond_init()
* on it and g_cond_clear() when done.
*
* A #GCond should only be accessed via the g_cond_ functions.
*/
/* GThread Documentation {{{1 ---------------------------------------- */
/**
* GThread:
*
* The #GThread struct represents a running thread. This struct
* is returned by g_thread_new() or g_thread_try_new(). You can
* obtain the #GThread struct representing the current thread by
* calling g_thread_self().
*
* GThread is refcounted, see g_thread_ref() and g_thread_unref().
* The thread represented by it holds a reference while it is running,
* and g_thread_join() consumes the reference that it is given, so
* it is normally not necessary to manage GThread references
* explicitly.
*
* The structure is opaque -- none of its fields may be directly
* accessed.
*/
/**
* GThreadFunc:
* @data: data passed to the thread
*
* Specifies the type of the @func functions passed to g_thread_new()
* or g_thread_try_new().
*
* Returns: the return value of the thread
*/
/**
* g_thread_supported:
*
* This macro returns %TRUE if the thread system is initialized,
* and %FALSE if it is not.
*
* For language bindings, g_thread_get_initialized() provides
* the same functionality as a function.
*
* Returns: %TRUE, if the thread system is initialized
*/
/* GThreadError {{{1 ------------------------------------------------------- */
/**
* GThreadError:
* @G_THREAD_ERROR_AGAIN: a thread couldn't be created due to resource
* shortage. Try again later.
*
* Possible errors of thread related functions.
**/
/**
* G_THREAD_ERROR:
*
* The error domain of the GLib thread subsystem.
**/
G_DEFINE_QUARK (g_thread_error, g_thread_error)
/* Local Data {{{1 -------------------------------------------------------- */
static GMutex g_once_mutex;
static GCond g_once_cond;
static GSList *g_once_init_list = NULL;
static guint g_thread_n_created_counter = 0; /* (atomic) */
static void g_thread_cleanup (gpointer data);
static GPrivate g_thread_specific_private = G_PRIVATE_INIT (g_thread_cleanup);
/*
* g_private_set_alloc0:
* @key: a #GPrivate
* @size: size of the allocation, in bytes
*
* Sets the thread local variable @key to have a newly-allocated and zero-filled
* value of given @size, and returns a pointer to that memory. Allocations made
* using this API will be suppressed in valgrind: it is intended to be used for
* one-time allocations which are known to be leaked, such as those for
* per-thread initialisation data. Otherwise, this function behaves the same as
* g_private_set().
*
* Returns: (transfer full): new thread-local heap allocation of size @size
* Since: 2.60
*/
/*< private >*/
gpointer
g_private_set_alloc0 (GPrivate *key,
gsize size)
{
gpointer allocated = g_malloc0 (size);
g_private_set (key, allocated);
return g_steal_pointer (&allocated);
}
/* GOnce {{{1 ------------------------------------------------------------- */
/**
* GOnce:
* @status: the status of the #GOnce
* @retval: the value returned by the call to the function, if @status
* is %G_ONCE_STATUS_READY
*
* A #GOnce struct controls a one-time initialization function. Any
* one-time initialization function must have its own unique #GOnce
* struct.
*
* Since: 2.4
*/
/**
* G_ONCE_INIT:
*
* A #GOnce must be initialized with this macro before it can be used.
*
* |[<!-- language="C" -->
* GOnce my_once = G_ONCE_INIT;
* ]|
*
* Since: 2.4
*/
/**
* GOnceStatus:
* @G_ONCE_STATUS_NOTCALLED: the function has not been called yet.
* @G_ONCE_STATUS_PROGRESS: the function call is currently in progress.
* @G_ONCE_STATUS_READY: the function has been called.
*
* The possible statuses of a one-time initialization function
* controlled by a #GOnce struct.
*
* Since: 2.4
*/
/**
* g_once:
* @once: a #GOnce structure
* @func: the #GThreadFunc function associated to @once. This function
* is called only once, regardless of the number of times it and
* its associated #GOnce struct are passed to g_once().
* @arg: data to be passed to @func
*
* The first call to this routine by a process with a given #GOnce
* struct calls @func with the given argument. Thereafter, subsequent
* calls to g_once() with the same #GOnce struct do not call @func
* again, but return the stored result of the first call. On return
* from g_once(), the status of @once will be %G_ONCE_STATUS_READY.
*
* For example, a mutex or a thread-specific data key must be created
* exactly once. In a threaded environment, calling g_once() ensures
* that the initialization is serialized across multiple threads.
*
* Calling g_once() recursively on the same #GOnce struct in
* @func will lead to a deadlock.
*
* |[<!-- language="C" -->
* gpointer
* get_debug_flags (void)
* {
* static GOnce my_once = G_ONCE_INIT;
*
* g_once (&my_once, parse_debug_flags, NULL);
*
* return my_once.retval;
* }
* ]|
*
* Since: 2.4
*/
gpointer
g_once_impl (GOnce *once,
GThreadFunc func,
gpointer arg)
{
g_mutex_lock (&g_once_mutex);
while (once->status == G_ONCE_STATUS_PROGRESS)
g_cond_wait (&g_once_cond, &g_once_mutex);
if (once->status != G_ONCE_STATUS_READY)
{
gpointer retval;
once->status = G_ONCE_STATUS_PROGRESS;
g_mutex_unlock (&g_once_mutex);
retval = func (arg);
g_mutex_lock (&g_once_mutex);
/* We prefer the new C11-style atomic extension of GCC if available. If not,
* fall back to always locking. */
#if defined(G_ATOMIC_LOCK_FREE) && defined(__GCC_HAVE_SYNC_COMPARE_AND_SWAP_4) && defined(__ATOMIC_SEQ_CST)
/* Only the second store needs to be atomic, as the two writes are related
* by a happens-before relationship here. */
once->retval = retval;
__atomic_store_n (&once->status, G_ONCE_STATUS_READY, __ATOMIC_RELEASE);
#else
once->retval = retval;
once->status = G_ONCE_STATUS_READY;
#endif
g_cond_broadcast (&g_once_cond);
}
g_mutex_unlock (&g_once_mutex);
return once->retval;
}
/**
* g_once_init_enter:
* @location: (inout) (not optional): location of a static initializable variable
* containing 0
*
* Function to be called when starting a critical initialization
* section. The argument @location must point to a static
* 0-initialized variable that will be set to a value other than 0 at
* the end of the initialization section. In combination with
* g_once_init_leave() and the unique address @value_location, it can
* be ensured that an initialization section will be executed only once
* during a program's life time, and that concurrent threads are
* blocked until initialization completed. To be used in constructs
* like this:
*
* |[<!-- language="C" -->
* static gsize initialization_value = 0;
*
* if (g_once_init_enter (&initialization_value))
* {
* gsize setup_value = 42; // initialization code here
*
* g_once_init_leave (&initialization_value, setup_value);
* }
*
* // use initialization_value here
* ]|
*
* While @location has a `volatile` qualifier, this is a historical artifact and
* the pointer passed to it should not be `volatile`.
*
* Returns: %TRUE if the initialization section should be entered,
* %FALSE and blocks otherwise
*
* Since: 2.14
*/
gboolean
(g_once_init_enter) (volatile void *location)
{
gsize *value_location = (gsize *) location;
gboolean need_init = FALSE;
g_mutex_lock (&g_once_mutex);
if (g_atomic_pointer_get (value_location) == 0)
{
if (!g_slist_find (g_once_init_list, (void*) value_location))
{
need_init = TRUE;
g_once_init_list = g_slist_prepend (g_once_init_list, (void*) value_location);
}
else
do
g_cond_wait (&g_once_cond, &g_once_mutex);
while (g_slist_find (g_once_init_list, (void*) value_location));
}
g_mutex_unlock (&g_once_mutex);
return need_init;
}
/**
* g_once_init_enter_pointer:
* @location: (not nullable): location of a static initializable variable
* containing `NULL`
*
* This functions behaves in the same way as g_once_init_enter(), but can
* can be used to initialize pointers (or #guintptr) instead of #gsize.
*
* |[<!-- language="C" -->
* static MyStruct *interesting_struct = NULL;
*
* if (g_once_init_enter_pointer (&interesting_struct))
* {
* MyStruct *setup_value = allocate_my_struct (); // initialization code here
*
* g_once_init_leave_pointer (&interesting_struct, g_steal_pointer (&setup_value));
* }
*
* // use interesting_struct here
* ]|
*
* Returns: %TRUE if the initialization section should be entered,
* %FALSE and blocks otherwise
*
* Since: 2.80
*/
gboolean
(g_once_init_enter_pointer) (gpointer location)
{
gpointer *value_location = (gpointer *) location;
gboolean need_init = FALSE;
g_mutex_lock (&g_once_mutex);
if (g_atomic_pointer_get (value_location) == 0)
{
if (!g_slist_find (g_once_init_list, (void *) value_location))
{
need_init = TRUE;
g_once_init_list = g_slist_prepend (g_once_init_list, (void *) value_location);
}
else
do
g_cond_wait (&g_once_cond, &g_once_mutex);
while (g_slist_find (g_once_init_list, (void *) value_location));
}
g_mutex_unlock (&g_once_mutex);
return need_init;
}
/**
* g_once_init_leave:
* @location: (inout) (not optional): location of a static initializable variable
* containing 0
* @result: new non-0 value for *@value_location
*
* Counterpart to g_once_init_enter(). Expects a location of a static
* 0-initialized initialization variable, and an initialization value
* other than 0. Sets the variable to the initialization value, and
* releases concurrent threads blocking in g_once_init_enter() on this
* initialization variable.
*
* While @location has a `volatile` qualifier, this is a historical artifact and
* the pointer passed to it should not be `volatile`.
*
* Since: 2.14
*/
void
(g_once_init_leave) (volatile void *location,
gsize result)
{
gsize *value_location = (gsize *) location;
gsize old_value;
g_return_if_fail (result != 0);
old_value = (gsize) g_atomic_pointer_exchange (value_location, result);
g_return_if_fail (old_value == 0);
g_mutex_lock (&g_once_mutex);
g_return_if_fail (g_once_init_list != NULL);
g_once_init_list = g_slist_remove (g_once_init_list, (void*) value_location);
g_cond_broadcast (&g_once_cond);
g_mutex_unlock (&g_once_mutex);
}
/**
* g_once_init_leave_pointer:
* @location: (not nullable): location of a static initializable variable
* containing `NULL`
* @result: new non-`NULL` value for `*location`
*
* Counterpart to g_once_init_enter_pointer(). Expects a location of a static
* `NULL`-initialized initialization variable, and an initialization value
* other than `NULL`. Sets the variable to the initialization value, and
* releases concurrent threads blocking in g_once_init_enter_pointer() on this
* initialization variable.
*
* This functions behaves in the same way as g_once_init_leave(), but
* can be used to initialize pointers (or #guintptr) instead of #gsize.
*
* Since: 2.80
*/
void
(g_once_init_leave_pointer) (gpointer location,
gpointer result)
{
gpointer *value_location = (gpointer *) location;
gpointer old_value;
g_return_if_fail (result != 0);
old_value = g_atomic_pointer_exchange (value_location, result);
g_return_if_fail (old_value == 0);
g_mutex_lock (&g_once_mutex);
g_return_if_fail (g_once_init_list != NULL);
g_once_init_list = g_slist_remove (g_once_init_list, (void *) value_location);
g_cond_broadcast (&g_once_cond);
g_mutex_unlock (&g_once_mutex);
}
/* GThread {{{1 -------------------------------------------------------- */
/**
* g_thread_ref:
* @thread: a #GThread
*
* Increase the reference count on @thread.
*
* Returns: (transfer full): a new reference to @thread
*
* Since: 2.32
*/
GThread *
g_thread_ref (GThread *thread)
{
GRealThread *real = (GRealThread *) thread;
g_atomic_int_inc (&real->ref_count);
return thread;
}
/**
* g_thread_unref:
* @thread: (transfer full): a #GThread
*
* Decrease the reference count on @thread, possibly freeing all
* resources associated with it.
*
* Note that each thread holds a reference to its #GThread while
* it is running, so it is safe to drop your own reference to it
* if you don't need it anymore.
*
* Since: 2.32
*/
void
g_thread_unref (GThread *thread)
{
GRealThread *real = (GRealThread *) thread;
if (g_atomic_int_dec_and_test (&real->ref_count))
{
if (real->ours)
g_system_thread_free (real);
else
g_slice_free (GRealThread, real);
}
}
static void
g_thread_cleanup (gpointer data)
{
g_thread_unref (data);
}
gpointer
g_thread_proxy (gpointer data)
{
GRealThread* thread = data;
g_assert (data);
g_private_set (&g_thread_specific_private, data);
TRACE (GLIB_THREAD_SPAWNED (thread->thread.func, thread->thread.data,
thread->name));
if (thread->name)
{
g_system_thread_set_name (thread->name);
g_free (thread->name);
thread->name = NULL;
}
thread->retval = thread->thread.func (thread->thread.data);
return NULL;
}
guint
g_thread_n_created (void)
{
return g_atomic_int_get (&g_thread_n_created_counter);
}
/**
* g_thread_new:
* @name: (nullable): an (optional) name for the new thread
* @func: (closure data) (scope async): a function to execute in the new thread
* @data: (nullable): an argument to supply to the new thread
*
* This function creates a new thread. The new thread starts by invoking
* @func with the argument data. The thread will run until @func returns
* or until g_thread_exit() is called from the new thread. The return value
* of @func becomes the return value of the thread, which can be obtained
* with g_thread_join().
*
* The @name can be useful for discriminating threads in a debugger.
* It is not used for other purposes and does not have to be unique.
* Some systems restrict the length of @name to 16 bytes.
*
* If the thread can not be created the program aborts. See
* g_thread_try_new() if you want to attempt to deal with failures.
*
* If you are using threads to offload (potentially many) short-lived tasks,
* #GThreadPool may be more appropriate than manually spawning and tracking
* multiple #GThreads.
*
* To free the struct returned by this function, use g_thread_unref().
* Note that g_thread_join() implicitly unrefs the #GThread as well.
*
* New threads by default inherit their scheduler policy (POSIX) or thread
* priority (Windows) of the thread creating the new thread.
*
* This behaviour changed in GLib 2.64: before threads on Windows were not
* inheriting the thread priority but were spawned with the default priority.
* Starting with GLib 2.64 the behaviour is now consistent between Windows and
* POSIX and all threads inherit their parent thread's priority.
*
* Returns: (transfer full): the new #GThread
*
* Since: 2.32
*/
GThread *
g_thread_new (const gchar *name,
GThreadFunc func,
gpointer data)
{
GError *error = NULL;
GThread *thread;
thread = g_thread_new_internal (name, g_thread_proxy, func, data, 0, &error);
if G_UNLIKELY (thread == NULL)
g_error ("creating thread '%s': %s", name ? name : "", error->message);
return thread;
}
/**
* g_thread_try_new:
* @name: (nullable): an (optional) name for the new thread
* @func: (closure data) (scope async): a function to execute in the new thread
* @data: (nullable): an argument to supply to the new thread
* @error: return location for error, or %NULL
*
* This function is the same as g_thread_new() except that
* it allows for the possibility of failure.
*
* If a thread can not be created (due to resource limits),
* @error is set and %NULL is returned.
*
* Returns: (transfer full): the new #GThread, or %NULL if an error occurred
*
* Since: 2.32
*/
GThread *
g_thread_try_new (const gchar *name,
GThreadFunc func,
gpointer data,
GError **error)
{
return g_thread_new_internal (name, g_thread_proxy, func, data, 0, error);
}
GThread *
g_thread_new_internal (const gchar *name,
GThreadFunc proxy,
GThreadFunc func,
gpointer data,
gsize stack_size,
GError **error)
{
g_return_val_if_fail (func != NULL, NULL);
g_atomic_int_inc (&g_thread_n_created_counter);
g_trace_mark (G_TRACE_CURRENT_TIME, 0, "GLib", "GThread created", "%s", name ? name : "(unnamed)");
return (GThread *) g_system_thread_new (proxy, stack_size, name, func, data, error);
}
/**
* g_thread_exit:
* @retval: the return value of this thread
*
* Terminates the current thread.
*
* If another thread is waiting for us using g_thread_join() then the
* waiting thread will be woken up and get @retval as the return value
* of g_thread_join().
*
* Calling g_thread_exit() with a parameter @retval is equivalent to
* returning @retval from the function @func, as given to g_thread_new().
*
* You must only call g_thread_exit() from a thread that you created
* yourself with g_thread_new() or related APIs. You must not call
* this function from a thread created with another threading library
* or or from within a #GThreadPool.
*/
void
g_thread_exit (gpointer retval)
{
GRealThread* real = (GRealThread*) g_thread_self ();
if G_UNLIKELY (!real->ours)
g_error ("attempt to g_thread_exit() a thread not created by GLib");
real->retval = retval;
g_system_thread_exit ();
}
/**
* g_thread_join:
* @thread: (transfer full): a #GThread
*
* Waits until @thread finishes, i.e. the function @func, as
* given to g_thread_new(), returns or g_thread_exit() is called.
* If @thread has already terminated, then g_thread_join()
* returns immediately.
*
* Any thread can wait for any other thread by calling g_thread_join(),
* not just its 'creator'. Calling g_thread_join() from multiple threads
* for the same @thread leads to undefined behaviour.
*
* The value returned by @func or given to g_thread_exit() is
* returned by this function.
*
* g_thread_join() consumes the reference to the passed-in @thread.
* This will usually cause the #GThread struct and associated resources
* to be freed. Use g_thread_ref() to obtain an extra reference if you
* want to keep the GThread alive beyond the g_thread_join() call.
*
* Returns: (transfer full): the return value of the thread
*/
gpointer
g_thread_join (GThread *thread)
{
GRealThread *real = (GRealThread*) thread;
gpointer retval;
g_return_val_if_fail (thread, NULL);
g_return_val_if_fail (real->ours, NULL);
g_system_thread_wait (real);
retval = real->retval;
/* Just to make sure, this isn't used any more */
thread->joinable = 0;
g_thread_unref (thread);
return retval;
}
/**
* g_thread_self:
*
* This function returns the #GThread corresponding to the
* current thread. Note that this function does not increase
* the reference count of the returned struct.
*
* This function will return a #GThread even for threads that
* were not created by GLib (i.e. those created by other threading
* APIs). This may be useful for thread identification purposes
* (i.e. comparisons) but you must not use GLib functions (such
* as g_thread_join()) on these threads.
*
* Returns: (transfer none): the #GThread representing the current thread
*/
GThread*
g_thread_self (void)
{
GRealThread* thread = g_private_get (&g_thread_specific_private);
if (!thread)
{
/* If no thread data is available, provide and set one.
* This can happen for the main thread and for threads
* that are not created by GLib.
*/
thread = g_slice_new0 (GRealThread);
thread->ref_count = 1;
g_private_set (&g_thread_specific_private, thread);
}
return (GThread*) thread;
}
/**
* g_get_num_processors:
*
* Determine the approximate number of threads that the system will
* schedule simultaneously for this process. This is intended to be
* used as a parameter to g_thread_pool_new() for CPU bound tasks and
* similar cases.
*
* Returns: Number of schedulable threads, always greater than 0
*
* Since: 2.36
*/
guint
g_get_num_processors (void)
{
#ifdef G_OS_WIN32
unsigned int count;
SYSTEM_INFO sysinfo;
DWORD_PTR process_cpus;
DWORD_PTR system_cpus;
/* This *never* fails, use it as fallback */
GetNativeSystemInfo (&sysinfo);
count = (int) sysinfo.dwNumberOfProcessors;
if (GetProcessAffinityMask (GetCurrentProcess (),
&process_cpus, &system_cpus))
{
unsigned int af_count;
for (af_count = 0; process_cpus != 0; process_cpus >>= 1)
if (process_cpus & 1)
af_count++;
/* Prefer affinity-based result, if available */
if (af_count > 0)
count = af_count;
}
if (count > 0)
return count;
#elif defined(_SC_NPROCESSORS_ONLN) && defined(THREADS_POSIX) && defined(HAVE_PTHREAD_GETAFFINITY_NP)
{
int ncores = MIN (sysconf (_SC_NPROCESSORS_ONLN), CPU_SETSIZE);
cpu_set_t cpu_mask;
CPU_ZERO (&cpu_mask);
int af_count = 0;
int err = pthread_getaffinity_np (pthread_self (), sizeof (cpu_mask), &cpu_mask);
if (!err)
af_count = CPU_COUNT (&cpu_mask);
int count = (af_count > 0) ? af_count : ncores;
return count;
}
#elif defined(_SC_NPROCESSORS_ONLN)
{
int count;
count = sysconf (_SC_NPROCESSORS_ONLN);
if (count > 0)
return count;
}
#elif defined HW_NCPU
{
int mib[2], count = 0;
size_t len;
mib[0] = CTL_HW;
mib[1] = HW_NCPU;
len = sizeof(count);
if (sysctl (mib, 2, &count, &len, NULL, 0) == 0 && count > 0)
return count;
}
#endif
return 1; /* Fallback */
}
/**
* g_mutex_init:
* @mutex: an uninitialized #GMutex
*
* Initializes a #GMutex so that it can be used.
*
* This function is useful to initialize a mutex that has been
* allocated on the stack, or as part of a larger structure.
* It is not necessary to initialize a mutex that has been
* statically allocated.
*
* |[<!-- language="C" -->
* typedef struct {
* GMutex m;
* ...
* } Blob;
*
* Blob *b;
*
* b = g_new (Blob, 1);
* g_mutex_init (&b->m);
* ]|
*
* To undo the effect of g_mutex_init() when a mutex is no longer
* needed, use g_mutex_clear().
*
* Calling g_mutex_init() on an already initialized #GMutex leads
* to undefined behaviour.
*
* Since: 2.32
*/
void
g_mutex_init (GMutex *mutex)
{
g_mutex_init_impl (mutex);
}
/**
* g_mutex_clear:
* @mutex: an initialized #GMutex
*
* Frees the resources allocated to a mutex with g_mutex_init().
*
* This function should not be used with a #GMutex that has been
* statically allocated.
*
* Calling g_mutex_clear() on a locked mutex leads to undefined
* behaviour.
*
* Since: 2.32
*/
void
g_mutex_clear (GMutex *mutex)
{
g_mutex_clear_impl (mutex);
}
/**
* g_mutex_lock:
* @mutex: a #GMutex
*
* Locks @mutex. If @mutex is already locked by another thread, the
* current thread will block until @mutex is unlocked by the other
* thread.
*
* #GMutex is neither guaranteed to be recursive nor to be
* non-recursive. As such, calling g_mutex_lock() on a #GMutex that has
* already been locked by the same thread results in undefined behaviour
* (including but not limited to deadlocks).
*/
void
g_mutex_lock (GMutex *mutex)
{
g_mutex_lock_impl (mutex);
}
/**
* g_mutex_unlock:
* @mutex: a #GMutex
*
* Unlocks @mutex. If another thread is blocked in a g_mutex_lock()
* call for @mutex, it will become unblocked and can lock @mutex itself.
*
* Calling g_mutex_unlock() on a mutex that is not locked by the
* current thread leads to undefined behaviour.
*/
void
g_mutex_unlock (GMutex *mutex)
{
g_mutex_unlock_impl (mutex);
}
/**
* g_mutex_trylock:
* @mutex: a #GMutex
*
* Tries to lock @mutex. If @mutex is already locked by another thread,
* it immediately returns %FALSE. Otherwise it locks @mutex and returns
* %TRUE.
*
* #GMutex is neither guaranteed to be recursive nor to be
* non-recursive. As such, calling g_mutex_lock() on a #GMutex that has
* already been locked by the same thread results in undefined behaviour
* (including but not limited to deadlocks or arbitrary return values).
*
* Returns: %TRUE if @mutex could be locked
*/
gboolean
g_mutex_trylock (GMutex *mutex)
{
return g_mutex_trylock_impl (mutex);
}
/**
* g_rec_mutex_init:
* @rec_mutex: an uninitialized #GRecMutex
*
* Initializes a #GRecMutex so that it can be used.
*
* This function is useful to initialize a recursive mutex
* that has been allocated on the stack, or as part of a larger
* structure.
*
* It is not necessary to initialise a recursive mutex that has been
* statically allocated.
*
* |[<!-- language="C" -->
* typedef struct {
* GRecMutex m;
* ...
* } Blob;
*
* Blob *b;
*
* b = g_new (Blob, 1);
* g_rec_mutex_init (&b->m);
* ]|
*
* Calling g_rec_mutex_init() on an already initialized #GRecMutex
* leads to undefined behaviour.
*
* To undo the effect of g_rec_mutex_init() when a recursive mutex
* is no longer needed, use g_rec_mutex_clear().
*
* Since: 2.32
*/
void
g_rec_mutex_init (GRecMutex *rec_mutex)
{
g_rec_mutex_init_impl (rec_mutex);
}
/**
* g_rec_mutex_clear:
* @rec_mutex: an initialized #GRecMutex
*
* Frees the resources allocated to a recursive mutex with
* g_rec_mutex_init().
*
* This function should not be used with a #GRecMutex that has been
* statically allocated.
*
* Calling g_rec_mutex_clear() on a locked recursive mutex leads
* to undefined behaviour.
*
* Since: 2.32
*/
void
g_rec_mutex_clear (GRecMutex *rec_mutex)
{
g_rec_mutex_clear_impl (rec_mutex);
}
/**
* g_rec_mutex_lock:
* @rec_mutex: a #GRecMutex
*
* Locks @rec_mutex. If @rec_mutex is already locked by another
* thread, the current thread will block until @rec_mutex is
* unlocked by the other thread. If @rec_mutex is already locked
* by the current thread, the 'lock count' of @rec_mutex is increased.
* The mutex will only become available again when it is unlocked
* as many times as it has been locked.
*
* Since: 2.32
*/
void
g_rec_mutex_lock (GRecMutex *mutex)
{
g_rec_mutex_lock_impl (mutex);
}
/**
* g_rec_mutex_unlock:
* @rec_mutex: a #GRecMutex
*
* Unlocks @rec_mutex. If another thread is blocked in a
* g_rec_mutex_lock() call for @rec_mutex, it will become unblocked
* and can lock @rec_mutex itself.
*
* Calling g_rec_mutex_unlock() on a recursive mutex that is not
* locked by the current thread leads to undefined behaviour.
*
* Since: 2.32
*/
void
g_rec_mutex_unlock (GRecMutex *rec_mutex)
{
g_rec_mutex_unlock_impl (rec_mutex);
}
/**
* g_rec_mutex_trylock:
* @rec_mutex: a #GRecMutex
*
* Tries to lock @rec_mutex. If @rec_mutex is already locked
* by another thread, it immediately returns %FALSE. Otherwise
* it locks @rec_mutex and returns %TRUE.
*
* Returns: %TRUE if @rec_mutex could be locked
*
* Since: 2.32
*/
gboolean
g_rec_mutex_trylock (GRecMutex *rec_mutex)
{
return g_rec_mutex_trylock_impl (rec_mutex);
}
/* {{{1 GRWLock */
/**
* g_rw_lock_init:
* @rw_lock: an uninitialized #GRWLock
*
* Initializes a #GRWLock so that it can be used.
*
* This function is useful to initialize a lock that has been
* allocated on the stack, or as part of a larger structure. It is not
* necessary to initialise a reader-writer lock that has been statically
* allocated.
*
* |[<!-- language="C" -->
* typedef struct {
* GRWLock l;
* ...
* } Blob;
*
* Blob *b;
*
* b = g_new (Blob, 1);
* g_rw_lock_init (&b->l);
* ]|
*
* To undo the effect of g_rw_lock_init() when a lock is no longer
* needed, use g_rw_lock_clear().
*
* Calling g_rw_lock_init() on an already initialized #GRWLock leads
* to undefined behaviour.
*
* Since: 2.32
*/
void
g_rw_lock_init (GRWLock *rw_lock)
{
g_rw_lock_init_impl (rw_lock);
}
/**
* g_rw_lock_clear:
* @rw_lock: an initialized #GRWLock
*
* Frees the resources allocated to a lock with g_rw_lock_init().
*
* This function should not be used with a #GRWLock that has been
* statically allocated.
*
* Calling g_rw_lock_clear() when any thread holds the lock
* leads to undefined behaviour.
*
* Since: 2.32
*/
void
g_rw_lock_clear (GRWLock *rw_lock)
{
g_rw_lock_clear_impl (rw_lock);
}
/**
* g_rw_lock_writer_lock:
* @rw_lock: a #GRWLock
*
* Obtain a write lock on @rw_lock. If another thread currently holds
* a read or write lock on @rw_lock, the current thread will block
* until all other threads have dropped their locks on @rw_lock.
*
* Calling g_rw_lock_writer_lock() while the current thread already
* owns a read or write lock on @rw_lock leads to undefined behaviour.
*
* Since: 2.32
*/
void
g_rw_lock_writer_lock (GRWLock *rw_lock)
{
g_rw_lock_writer_lock_impl (rw_lock);
}
/**
* g_rw_lock_writer_trylock:
* @rw_lock: a #GRWLock
*
* Tries to obtain a write lock on @rw_lock. If another thread
* currently holds a read or write lock on @rw_lock, it immediately
* returns %FALSE.
* Otherwise it locks @rw_lock and returns %TRUE.
*
* Returns: %TRUE if @rw_lock could be locked
*
* Since: 2.32
*/
gboolean
g_rw_lock_writer_trylock (GRWLock *rw_lock)
{
return g_rw_lock_writer_trylock_impl (rw_lock);
}
/**
* g_rw_lock_writer_unlock:
* @rw_lock: a #GRWLock
*
* Release a write lock on @rw_lock.
*
* Calling g_rw_lock_writer_unlock() on a lock that is not held
* by the current thread leads to undefined behaviour.
*
* Since: 2.32
*/
void
g_rw_lock_writer_unlock (GRWLock *rw_lock)
{
g_rw_lock_writer_unlock_impl (rw_lock);
}
/**
* g_rw_lock_reader_lock:
* @rw_lock: a #GRWLock
*
* Obtain a read lock on @rw_lock. If another thread currently holds
* the write lock on @rw_lock, the current thread will block until the
* write lock was (held and) released. If another thread does not hold
* the write lock, but is waiting for it, it is implementation defined
* whether the reader or writer will block. Read locks can be taken
* recursively.
*
* Calling g_rw_lock_reader_lock() while the current thread already
* owns a write lock leads to undefined behaviour. Read locks however
* can be taken recursively, in which case you need to make sure to
* call g_rw_lock_reader_unlock() the same amount of times.
*
* It is implementation-defined how many read locks are allowed to be
* held on the same lock simultaneously. If the limit is hit,
* or if a deadlock is detected, a critical warning will be emitted.
*
* Since: 2.32
*/
void
g_rw_lock_reader_lock (GRWLock *rw_lock)
{
g_rw_lock_reader_lock_impl (rw_lock);
}
/**
* g_rw_lock_reader_trylock:
* @rw_lock: a #GRWLock
*
* Tries to obtain a read lock on @rw_lock and returns %TRUE if
* the read lock was successfully obtained. Otherwise it
* returns %FALSE.
*
* Returns: %TRUE if @rw_lock could be locked
*
* Since: 2.32
*/
gboolean
g_rw_lock_reader_trylock (GRWLock *rw_lock)
{
return g_rw_lock_reader_trylock_impl (rw_lock);
}
/**
* g_rw_lock_reader_unlock:
* @rw_lock: a #GRWLock
*
* Release a read lock on @rw_lock.
*
* Calling g_rw_lock_reader_unlock() on a lock that is not held
* by the current thread leads to undefined behaviour.
*
* Since: 2.32
*/
void
g_rw_lock_reader_unlock (GRWLock *rw_lock)
{
g_rw_lock_reader_unlock_impl (rw_lock);
}
/* {{{1 GCond */
/**
* g_cond_init:
* @cond: an uninitialized #GCond
*
* Initialises a #GCond so that it can be used.
*
* This function is useful to initialise a #GCond that has been
* allocated as part of a larger structure. It is not necessary to
* initialise a #GCond that has been statically allocated.
*
* To undo the effect of g_cond_init() when a #GCond is no longer
* needed, use g_cond_clear().
*
* Calling g_cond_init() on an already-initialised #GCond leads
* to undefined behaviour.
*
* Since: 2.32
*/
void
g_cond_init (GCond *cond)
{
g_cond_init_impl (cond);
}
/**
* g_cond_clear:
* @cond: an initialised #GCond
*
* Frees the resources allocated to a #GCond with g_cond_init().
*
* This function should not be used with a #GCond that has been
* statically allocated.
*
* Calling g_cond_clear() for a #GCond on which threads are
* blocking leads to undefined behaviour.
*
* Since: 2.32
*/
void
g_cond_clear (GCond *cond)
{
g_cond_clear_impl (cond);
}
/**
* g_cond_wait:
* @cond: a #GCond
* @mutex: a #GMutex that is currently locked
*
* Atomically releases @mutex and waits until @cond is signalled.
* When this function returns, @mutex is locked again and owned by the
* calling thread.
*
* When using condition variables, it is possible that a spurious wakeup
* may occur (ie: g_cond_wait() returns even though g_cond_signal() was
* not called). It's also possible that a stolen wakeup may occur.
* This is when g_cond_signal() is called, but another thread acquires
* @mutex before this thread and modifies the state of the program in
* such a way that when g_cond_wait() is able to return, the expected
* condition is no longer met.
*
* For this reason, g_cond_wait() must always be used in a loop. See
* the documentation for #GCond for a complete example.
**/
void
g_cond_wait (GCond *cond,
GMutex *mutex)
{
g_cond_wait_impl (cond, mutex);
}
/**
* g_cond_signal:
* @cond: a #GCond
*
* If threads are waiting for @cond, at least one of them is unblocked.
* If no threads are waiting for @cond, this function has no effect.
* It is good practice to hold the same lock as the waiting thread
* while calling this function, though not required.
*/
void
g_cond_signal (GCond *cond)
{
g_cond_signal_impl (cond);
}
/**
* g_cond_broadcast:
* @cond: a #GCond
*
* If threads are waiting for @cond, all of them are unblocked.
* If no threads are waiting for @cond, this function has no effect.
* It is good practice to lock the same mutex as the waiting threads
* while calling this function, though not required.
*/
void
g_cond_broadcast (GCond *cond)
{
g_cond_broadcast_impl (cond);
}
/**
* g_cond_wait_until:
* @cond: a #GCond
* @mutex: a #GMutex that is currently locked
* @end_time: the monotonic time to wait until
*
* Waits until either @cond is signalled or @end_time has passed.
*
* As with g_cond_wait() it is possible that a spurious or stolen wakeup
* could occur. For that reason, waiting on a condition variable should
* always be in a loop, based on an explicitly-checked predicate.
*
* %TRUE is returned if the condition variable was signalled (or in the
* case of a spurious wakeup). %FALSE is returned if @end_time has
* passed.
*
* The following code shows how to correctly perform a timed wait on a
* condition variable (extending the example presented in the
* documentation for #GCond):
*
* |[<!-- language="C" -->
* gpointer
* pop_data_timed (void)
* {
* gint64 end_time;
* gpointer data;
*
* g_mutex_lock (&data_mutex);
*
* end_time = g_get_monotonic_time () + 5 * G_TIME_SPAN_SECOND;
* while (!current_data)
* if (!g_cond_wait_until (&data_cond, &data_mutex, end_time))
* {
* // timeout has passed.
* g_mutex_unlock (&data_mutex);
* return NULL;
* }
*
* // there is data for us
* data = current_data;
* current_data = NULL;
*
* g_mutex_unlock (&data_mutex);
*
* return data;
* }
* ]|
*
* Notice that the end time is calculated once, before entering the
* loop and reused. This is the motivation behind the use of absolute
* time on this API -- if a relative time of 5 seconds were passed
* directly to the call and a spurious wakeup occurred, the program would
* have to start over waiting again (which would lead to a total wait
* time of more than 5 seconds).
*
* Returns: %TRUE on a signal, %FALSE on a timeout
* Since: 2.32
**/
gboolean
g_cond_wait_until (GCond *cond,
GMutex *mutex,
gint64 end_time)
{
return g_cond_wait_until_impl (cond, mutex, end_time);
}
/* {{{1 GPrivate */
/**
* GPrivate:
*
* The #GPrivate struct is an opaque data structure to represent a
* thread-local data key. It is approximately equivalent to the
* pthread_setspecific()/pthread_getspecific() APIs on POSIX and to
* TlsSetValue()/TlsGetValue() on Windows.
*
* If you don't already know why you might want this functionality,
* then you probably don't need it.
*
* #GPrivate is a very limited resource (as far as 128 per program,
* shared between all libraries). It is also not possible to destroy a
* #GPrivate after it has been used. As such, it is only ever acceptable
* to use #GPrivate in static scope, and even then sparingly so.
*
* See G_PRIVATE_INIT() for a couple of examples.
*
* The #GPrivate structure should be considered opaque. It should only
* be accessed via the g_private_ functions.
*/
/**
* G_PRIVATE_INIT:
* @notify: a #GDestroyNotify
*
* A macro to assist with the static initialisation of a #GPrivate.
*
* This macro is useful for the case that a #GDestroyNotify function
* should be associated with the key. This is needed when the key will be
* used to point at memory that should be deallocated when the thread
* exits.
*
* Additionally, the #GDestroyNotify will also be called on the previous
* value stored in the key when g_private_replace() is used.
*
* If no #GDestroyNotify is needed, then use of this macro is not
* required -- if the #GPrivate is declared in static scope then it will
* be properly initialised by default (ie: to all zeros). See the
* examples below.
*
* |[<!-- language="C" -->
* static GPrivate name_key = G_PRIVATE_INIT (g_free);
*
* // return value should not be freed
* const gchar *
* get_local_name (void)
* {
* return g_private_get (&name_key);
* }
*
* void
* set_local_name (const gchar *name)
* {
* g_private_replace (&name_key, g_strdup (name));
* }
*
*
* static GPrivate count_key; // no free function
*
* gint
* get_local_count (void)
* {
* return GPOINTER_TO_INT (g_private_get (&count_key));
* }
*
* void
* set_local_count (gint count)
* {
* g_private_set (&count_key, GINT_TO_POINTER (count));
* }
* ]|
*
* Since: 2.32
**/
/**
* g_private_get:
* @key: a #GPrivate
*
* Returns the current value of the thread local variable @key.
*
* If the value has not yet been set in this thread, %NULL is returned.
* Values are never copied between threads (when a new thread is
* created, for example).
*
* Returns: the thread-local value
*/
gpointer
g_private_get (GPrivate *key)
{
return g_private_get_impl (key);
}
/**
* g_private_set:
* @key: a #GPrivate
* @value: the new value
*
* Sets the thread local variable @key to have the value @value in the
* current thread.
*
* This function differs from g_private_replace() in the following way:
* the #GDestroyNotify for @key is not called on the old value.
*/
void
g_private_set (GPrivate *key,
gpointer value)
{
g_private_set_impl (key, value);
}
/**
* g_private_replace:
* @key: a #GPrivate
* @value: the new value
*
* Sets the thread local variable @key to have the value @value in the
* current thread.
*
* This function differs from g_private_set() in the following way: if
* the previous value was non-%NULL then the #GDestroyNotify handler for
* @key is run on it.
*
* Since: 2.32
**/
void
g_private_replace (GPrivate *key,
gpointer value)
{
g_private_replace_impl (key, value);
}
/* {{{1 GThread */
/**
* g_thread_yield:
*
* Causes the calling thread to voluntarily relinquish the CPU, so
* that other threads can run.
*
* This function is often used as a method to make busy wait less evil.
*/
void
g_thread_yield (void)
{
g_thread_yield_impl ();
}
/* Epilogue {{{1 */
/* vim: set foldmethod=marker: */