mirror of
https://gitlab.gnome.org/GNOME/glib.git
synced 2024-12-26 15:36:14 +01:00
70ee43f1e9
Add SPDX license (but not copyright) headers to all files which follow a certain pattern in their existing non-machine-readable header comment. This commit was entirely generated using the command: ``` git ls-files glib/*.[ch] | xargs perl -0777 -pi -e 's/\n \*\n \* This library is free software; you can redistribute it and\/or\n \* modify it under the terms of the GNU Lesser General Public/\n \*\n \* SPDX-License-Identifier: LGPL-2.1-or-later\n \*\n \* This library is free software; you can redistribute it and\/or\n \* modify it under the terms of the GNU Lesser General Public/igs' ``` Signed-off-by: Philip Withnall <pwithnall@endlessos.org> Helps: #1415
1802 lines
60 KiB
C
1802 lines
60 KiB
C
/* GLIB sliced memory - fast concurrent memory chunk allocator
|
||
* Copyright (C) 2005 Tim Janik
|
||
*
|
||
* SPDX-License-Identifier: LGPL-2.1-or-later
|
||
*
|
||
* This library is free software; you can redistribute it and/or
|
||
* modify it under the terms of the GNU Lesser General Public
|
||
* License as published by the Free Software Foundation; either
|
||
* version 2.1 of the License, or (at your option) any later version.
|
||
*
|
||
* This library is distributed in the hope that it will be useful,
|
||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
* Lesser General Public License for more details.
|
||
*
|
||
* You should have received a copy of the GNU Lesser General Public
|
||
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
||
*/
|
||
/* MT safe */
|
||
|
||
#include "config.h"
|
||
#include "glibconfig.h"
|
||
|
||
#if defined(HAVE_POSIX_MEMALIGN) && !defined(_XOPEN_SOURCE)
|
||
#define _XOPEN_SOURCE 600 /* posix_memalign() */
|
||
#endif
|
||
#include <stdlib.h> /* posix_memalign() */
|
||
#include <string.h>
|
||
#include <errno.h>
|
||
|
||
#ifdef G_OS_UNIX
|
||
#include <unistd.h> /* sysconf() */
|
||
#endif
|
||
#ifdef G_OS_WIN32
|
||
#include <windows.h>
|
||
#include <process.h>
|
||
#endif
|
||
|
||
#include <stdio.h> /* fputs */
|
||
|
||
#include "gslice.h"
|
||
|
||
#include "gmain.h"
|
||
#include "gmem.h" /* gslice.h */
|
||
#include "gstrfuncs.h"
|
||
#include "gutils.h"
|
||
#include "gtrashstack.h"
|
||
#include "gtestutils.h"
|
||
#include "gthread.h"
|
||
#include "gthreadprivate.h"
|
||
#include "glib_trace.h"
|
||
#include "gprintf.h"
|
||
|
||
#include "gvalgrind.h"
|
||
|
||
/**
|
||
* SECTION:memory_slices
|
||
* @title: Memory Slices
|
||
* @short_description: efficient way to allocate groups of equal-sized
|
||
* chunks of memory
|
||
*
|
||
* Memory slices provide a space-efficient and multi-processing scalable
|
||
* way to allocate equal-sized pieces of memory, just like the original
|
||
* #GMemChunks (from GLib 2.8), while avoiding their excessive
|
||
* memory-waste, scalability and performance problems.
|
||
*
|
||
* To achieve these goals, the slice allocator uses a sophisticated,
|
||
* layered design that has been inspired by Bonwick's slab allocator
|
||
* ([Bonwick94](http://citeseer.ist.psu.edu/bonwick94slab.html)
|
||
* Jeff Bonwick, The slab allocator: An object-caching kernel
|
||
* memory allocator. USENIX 1994, and
|
||
* [Bonwick01](http://citeseer.ist.psu.edu/bonwick01magazines.html)
|
||
* Bonwick and Jonathan Adams, Magazines and vmem: Extending the
|
||
* slab allocator to many cpu's and arbitrary resources. USENIX 2001)
|
||
*
|
||
* It uses posix_memalign() to optimize allocations of many equally-sized
|
||
* chunks, and has per-thread free lists (the so-called magazine layer)
|
||
* to quickly satisfy allocation requests of already known structure sizes.
|
||
* This is accompanied by extra caching logic to keep freed memory around
|
||
* for some time before returning it to the system. Memory that is unused
|
||
* due to alignment constraints is used for cache colorization (random
|
||
* distribution of chunk addresses) to improve CPU cache utilization. The
|
||
* caching layer of the slice allocator adapts itself to high lock contention
|
||
* to improve scalability.
|
||
*
|
||
* The slice allocator can allocate blocks as small as two pointers, and
|
||
* unlike malloc(), it does not reserve extra space per block. For large block
|
||
* sizes, g_slice_new() and g_slice_alloc() will automatically delegate to the
|
||
* system malloc() implementation. For newly written code it is recommended
|
||
* to use the new `g_slice` API instead of g_malloc() and
|
||
* friends, as long as objects are not resized during their lifetime and the
|
||
* object size used at allocation time is still available when freeing.
|
||
*
|
||
* Here is an example for using the slice allocator:
|
||
* |[<!-- language="C" -->
|
||
* gchar *mem[10000];
|
||
* gint i;
|
||
*
|
||
* // Allocate 10000 blocks.
|
||
* for (i = 0; i < 10000; i++)
|
||
* {
|
||
* mem[i] = g_slice_alloc (50);
|
||
*
|
||
* // Fill in the memory with some junk.
|
||
* for (j = 0; j < 50; j++)
|
||
* mem[i][j] = i * j;
|
||
* }
|
||
*
|
||
* // Now free all of the blocks.
|
||
* for (i = 0; i < 10000; i++)
|
||
* g_slice_free1 (50, mem[i]);
|
||
* ]|
|
||
*
|
||
* And here is an example for using the using the slice allocator
|
||
* with data structures:
|
||
* |[<!-- language="C" -->
|
||
* GRealArray *array;
|
||
*
|
||
* // Allocate one block, using the g_slice_new() macro.
|
||
* array = g_slice_new (GRealArray);
|
||
*
|
||
* // We can now use array just like a normal pointer to a structure.
|
||
* array->data = NULL;
|
||
* array->len = 0;
|
||
* array->alloc = 0;
|
||
* array->zero_terminated = (zero_terminated ? 1 : 0);
|
||
* array->clear = (clear ? 1 : 0);
|
||
* array->elt_size = elt_size;
|
||
*
|
||
* // We can free the block, so it can be reused.
|
||
* g_slice_free (GRealArray, array);
|
||
* ]|
|
||
*/
|
||
|
||
/* the GSlice allocator is split up into 4 layers, roughly modelled after the slab
|
||
* allocator and magazine extensions as outlined in:
|
||
* + [Bonwick94] Jeff Bonwick, The slab allocator: An object-caching kernel
|
||
* memory allocator. USENIX 1994, http://citeseer.ist.psu.edu/bonwick94slab.html
|
||
* + [Bonwick01] Bonwick and Jonathan Adams, Magazines and vmem: Extending the
|
||
* slab allocator to many cpu's and arbitrary resources.
|
||
* USENIX 2001, http://citeseer.ist.psu.edu/bonwick01magazines.html
|
||
* the layers are:
|
||
* - the thread magazines. for each (aligned) chunk size, a magazine (a list)
|
||
* of recently freed and soon to be allocated chunks is maintained per thread.
|
||
* this way, most alloc/free requests can be quickly satisfied from per-thread
|
||
* free lists which only require one g_private_get() call to retrieve the
|
||
* thread handle.
|
||
* - the magazine cache. allocating and freeing chunks to/from threads only
|
||
* occurs at magazine sizes from a global depot of magazines. the depot
|
||
* maintaines a 15 second working set of allocated magazines, so full
|
||
* magazines are not allocated and released too often.
|
||
* the chunk size dependent magazine sizes automatically adapt (within limits,
|
||
* see [3]) to lock contention to properly scale performance across a variety
|
||
* of SMP systems.
|
||
* - the slab allocator. this allocator allocates slabs (blocks of memory) close
|
||
* to the system page size or multiples thereof which have to be page aligned.
|
||
* the blocks are divided into smaller chunks which are used to satisfy
|
||
* allocations from the upper layers. the space provided by the reminder of
|
||
* the chunk size division is used for cache colorization (random distribution
|
||
* of chunk addresses) to improve processor cache utilization. multiple slabs
|
||
* with the same chunk size are kept in a partially sorted ring to allow O(1)
|
||
* freeing and allocation of chunks (as long as the allocation of an entirely
|
||
* new slab can be avoided).
|
||
* - the page allocator. on most modern systems, posix_memalign(3) or
|
||
* memalign(3) should be available, so this is used to allocate blocks with
|
||
* system page size based alignments and sizes or multiples thereof.
|
||
* if no memalign variant is provided, valloc() is used instead and
|
||
* block sizes are limited to the system page size (no multiples thereof).
|
||
* as a fallback, on system without even valloc(), a malloc(3)-based page
|
||
* allocator with alloc-only behaviour is used.
|
||
*
|
||
* NOTES:
|
||
* [1] some systems memalign(3) implementations may rely on boundary tagging for
|
||
* the handed out memory chunks. to avoid excessive page-wise fragmentation,
|
||
* we reserve 2 * sizeof (void*) per block size for the systems memalign(3),
|
||
* specified in NATIVE_MALLOC_PADDING.
|
||
* [2] using the slab allocator alone already provides for a fast and efficient
|
||
* allocator, it doesn't properly scale beyond single-threaded uses though.
|
||
* also, the slab allocator implements eager free(3)-ing, i.e. does not
|
||
* provide any form of caching or working set maintenance. so if used alone,
|
||
* it's vulnerable to trashing for sequences of balanced (alloc, free) pairs
|
||
* at certain thresholds.
|
||
* [3] magazine sizes are bound by an implementation specific minimum size and
|
||
* a chunk size specific maximum to limit magazine storage sizes to roughly
|
||
* 16KB.
|
||
* [4] allocating ca. 8 chunks per block/page keeps a good balance between
|
||
* external and internal fragmentation (<= 12.5%). [Bonwick94]
|
||
*/
|
||
|
||
/* --- macros and constants --- */
|
||
#define LARGEALIGNMENT (256)
|
||
#define P2ALIGNMENT (2 * sizeof (gsize)) /* fits 2 pointers (assumed to be 2 * GLIB_SIZEOF_SIZE_T below) */
|
||
#define ALIGN(size, base) ((base) * (gsize) (((size) + (base) - 1) / (base)))
|
||
#define NATIVE_MALLOC_PADDING P2ALIGNMENT /* per-page padding left for native malloc(3) see [1] */
|
||
#define SLAB_INFO_SIZE P2ALIGN (sizeof (SlabInfo) + NATIVE_MALLOC_PADDING)
|
||
#define MAX_MAGAZINE_SIZE (256) /* see [3] and allocator_get_magazine_threshold() for this */
|
||
#define MIN_MAGAZINE_SIZE (4)
|
||
#define MAX_STAMP_COUNTER (7) /* distributes the load of gettimeofday() */
|
||
#define MAX_SLAB_CHUNK_SIZE(al) (((al)->max_page_size - SLAB_INFO_SIZE) / 8) /* we want at last 8 chunks per page, see [4] */
|
||
#define MAX_SLAB_INDEX(al) (SLAB_INDEX (al, MAX_SLAB_CHUNK_SIZE (al)) + 1)
|
||
#define SLAB_INDEX(al, asize) ((asize) / P2ALIGNMENT - 1) /* asize must be P2ALIGNMENT aligned */
|
||
#define SLAB_CHUNK_SIZE(al, ix) (((ix) + 1) * P2ALIGNMENT)
|
||
#define SLAB_BPAGE_SIZE(al,csz) (8 * (csz) + SLAB_INFO_SIZE)
|
||
|
||
/* optimized version of ALIGN (size, P2ALIGNMENT) */
|
||
#if GLIB_SIZEOF_SIZE_T * 2 == 8 /* P2ALIGNMENT */
|
||
#define P2ALIGN(size) (((size) + 0x7) & ~(gsize) 0x7)
|
||
#elif GLIB_SIZEOF_SIZE_T * 2 == 16 /* P2ALIGNMENT */
|
||
#define P2ALIGN(size) (((size) + 0xf) & ~(gsize) 0xf)
|
||
#else
|
||
#define P2ALIGN(size) ALIGN (size, P2ALIGNMENT)
|
||
#endif
|
||
|
||
/* special helpers to avoid gmessage.c dependency */
|
||
static void mem_error (const char *format, ...) G_GNUC_PRINTF (1,2);
|
||
#define mem_assert(cond) do { if (G_LIKELY (cond)) ; else mem_error ("assertion failed: %s", #cond); } while (0)
|
||
|
||
/* --- structures --- */
|
||
typedef struct _ChunkLink ChunkLink;
|
||
typedef struct _SlabInfo SlabInfo;
|
||
typedef struct _CachedMagazine CachedMagazine;
|
||
struct _ChunkLink {
|
||
ChunkLink *next;
|
||
ChunkLink *data;
|
||
};
|
||
struct _SlabInfo {
|
||
ChunkLink *chunks;
|
||
guint n_allocated;
|
||
SlabInfo *next, *prev;
|
||
};
|
||
typedef struct {
|
||
ChunkLink *chunks;
|
||
gsize count; /* approximative chunks list length */
|
||
} Magazine;
|
||
typedef struct {
|
||
Magazine *magazine1; /* array of MAX_SLAB_INDEX (allocator) */
|
||
Magazine *magazine2; /* array of MAX_SLAB_INDEX (allocator) */
|
||
} ThreadMemory;
|
||
typedef struct {
|
||
gboolean always_malloc;
|
||
gboolean bypass_magazines;
|
||
gboolean debug_blocks;
|
||
gsize working_set_msecs;
|
||
guint color_increment;
|
||
} SliceConfig;
|
||
typedef struct {
|
||
/* const after initialization */
|
||
gsize min_page_size, max_page_size;
|
||
SliceConfig config;
|
||
gsize max_slab_chunk_size_for_magazine_cache;
|
||
/* magazine cache */
|
||
GMutex magazine_mutex;
|
||
ChunkLink **magazines; /* array of MAX_SLAB_INDEX (allocator) */
|
||
guint *contention_counters; /* array of MAX_SLAB_INDEX (allocator) */
|
||
gint mutex_counter;
|
||
guint stamp_counter;
|
||
guint last_stamp;
|
||
/* slab allocator */
|
||
GMutex slab_mutex;
|
||
SlabInfo **slab_stack; /* array of MAX_SLAB_INDEX (allocator) */
|
||
guint color_accu;
|
||
} Allocator;
|
||
|
||
/* --- g-slice prototypes --- */
|
||
static gpointer slab_allocator_alloc_chunk (gsize chunk_size);
|
||
static void slab_allocator_free_chunk (gsize chunk_size,
|
||
gpointer mem);
|
||
static void private_thread_memory_cleanup (gpointer data);
|
||
static gpointer allocator_memalign (gsize alignment,
|
||
gsize memsize);
|
||
static void allocator_memfree (gsize memsize,
|
||
gpointer mem);
|
||
static inline void magazine_cache_update_stamp (void);
|
||
static inline gsize allocator_get_magazine_threshold (Allocator *allocator,
|
||
guint ix);
|
||
|
||
/* --- g-slice memory checker --- */
|
||
static void smc_notify_alloc (void *pointer,
|
||
size_t size);
|
||
static int smc_notify_free (void *pointer,
|
||
size_t size);
|
||
|
||
/* --- variables --- */
|
||
static GPrivate private_thread_memory = G_PRIVATE_INIT (private_thread_memory_cleanup);
|
||
static gsize sys_page_size = 0;
|
||
static Allocator allocator[1] = { { 0, }, };
|
||
static SliceConfig slice_config = {
|
||
FALSE, /* always_malloc */
|
||
FALSE, /* bypass_magazines */
|
||
FALSE, /* debug_blocks */
|
||
15 * 1000, /* working_set_msecs */
|
||
1, /* color increment, alt: 0x7fffffff */
|
||
};
|
||
static GMutex smc_tree_mutex; /* mutex for G_SLICE=debug-blocks */
|
||
|
||
/* --- auxiliary functions --- */
|
||
void
|
||
g_slice_set_config (GSliceConfig ckey,
|
||
gint64 value)
|
||
{
|
||
g_return_if_fail (sys_page_size == 0);
|
||
switch (ckey)
|
||
{
|
||
case G_SLICE_CONFIG_ALWAYS_MALLOC:
|
||
slice_config.always_malloc = value != 0;
|
||
break;
|
||
case G_SLICE_CONFIG_BYPASS_MAGAZINES:
|
||
slice_config.bypass_magazines = value != 0;
|
||
break;
|
||
case G_SLICE_CONFIG_WORKING_SET_MSECS:
|
||
slice_config.working_set_msecs = value;
|
||
break;
|
||
case G_SLICE_CONFIG_COLOR_INCREMENT:
|
||
slice_config.color_increment = value;
|
||
break;
|
||
default: ;
|
||
}
|
||
}
|
||
|
||
gint64
|
||
g_slice_get_config (GSliceConfig ckey)
|
||
{
|
||
switch (ckey)
|
||
{
|
||
case G_SLICE_CONFIG_ALWAYS_MALLOC:
|
||
return slice_config.always_malloc;
|
||
case G_SLICE_CONFIG_BYPASS_MAGAZINES:
|
||
return slice_config.bypass_magazines;
|
||
case G_SLICE_CONFIG_WORKING_SET_MSECS:
|
||
return slice_config.working_set_msecs;
|
||
case G_SLICE_CONFIG_CHUNK_SIZES:
|
||
return MAX_SLAB_INDEX (allocator);
|
||
case G_SLICE_CONFIG_COLOR_INCREMENT:
|
||
return slice_config.color_increment;
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
gint64*
|
||
g_slice_get_config_state (GSliceConfig ckey,
|
||
gint64 address,
|
||
guint *n_values)
|
||
{
|
||
guint i = 0;
|
||
g_return_val_if_fail (n_values != NULL, NULL);
|
||
*n_values = 0;
|
||
switch (ckey)
|
||
{
|
||
gint64 array[64];
|
||
case G_SLICE_CONFIG_CONTENTION_COUNTER:
|
||
array[i++] = SLAB_CHUNK_SIZE (allocator, address);
|
||
array[i++] = allocator->contention_counters[address];
|
||
array[i++] = allocator_get_magazine_threshold (allocator, address);
|
||
*n_values = i;
|
||
return g_memdup2 (array, sizeof (array[0]) * *n_values);
|
||
default:
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
static void
|
||
slice_config_init (SliceConfig *config)
|
||
{
|
||
const gchar *val;
|
||
gchar *val_allocated = NULL;
|
||
|
||
*config = slice_config;
|
||
|
||
/* Note that the empty string (`G_SLICE=""`) is treated differently from the
|
||
* envvar being unset. In the latter case, we also check whether running under
|
||
* valgrind. */
|
||
#ifndef G_OS_WIN32
|
||
val = g_getenv ("G_SLICE");
|
||
#else
|
||
/* The win32 implementation of g_getenv() has to do UTF-8 ↔ UTF-16 conversions
|
||
* which use the slice allocator, leading to deadlock. Use a simple in-place
|
||
* implementation here instead.
|
||
*
|
||
* Ignore references to other environment variables: only support values which
|
||
* are a combination of always-malloc and debug-blocks. */
|
||
{
|
||
|
||
wchar_t wvalue[128]; /* at least big enough for `always-malloc,debug-blocks` */
|
||
gsize len;
|
||
|
||
len = GetEnvironmentVariableW (L"G_SLICE", wvalue, G_N_ELEMENTS (wvalue));
|
||
|
||
if (len == 0)
|
||
{
|
||
if (GetLastError () == ERROR_ENVVAR_NOT_FOUND)
|
||
val = NULL;
|
||
else
|
||
val = "";
|
||
}
|
||
else if (len >= G_N_ELEMENTS (wvalue))
|
||
{
|
||
/* @wvalue isn’t big enough. Give up. */
|
||
g_warning ("Unsupported G_SLICE value");
|
||
val = NULL;
|
||
}
|
||
else
|
||
{
|
||
/* it’s safe to use g_utf16_to_utf8() here as it only allocates using
|
||
* malloc() rather than GSlice */
|
||
val = val_allocated = g_utf16_to_utf8 (wvalue, -1, NULL, NULL, NULL);
|
||
}
|
||
|
||
}
|
||
#endif /* G_OS_WIN32 */
|
||
|
||
if (val != NULL)
|
||
{
|
||
gint flags;
|
||
const GDebugKey keys[] = {
|
||
{ "always-malloc", 1 << 0 },
|
||
{ "debug-blocks", 1 << 1 },
|
||
};
|
||
|
||
flags = g_parse_debug_string (val, keys, G_N_ELEMENTS (keys));
|
||
if (flags & (1 << 0))
|
||
config->always_malloc = TRUE;
|
||
if (flags & (1 << 1))
|
||
config->debug_blocks = TRUE;
|
||
}
|
||
else
|
||
{
|
||
/* G_SLICE was not specified, so check if valgrind is running and
|
||
* disable ourselves if it is.
|
||
*
|
||
* This way it's possible to force gslice to be enabled under
|
||
* valgrind just by setting G_SLICE to the empty string.
|
||
*/
|
||
#ifdef ENABLE_VALGRIND
|
||
if (RUNNING_ON_VALGRIND)
|
||
config->always_malloc = TRUE;
|
||
#endif
|
||
}
|
||
|
||
g_free (val_allocated);
|
||
}
|
||
|
||
static void
|
||
g_slice_init_nomessage (void)
|
||
{
|
||
/* we may not use g_error() or friends here */
|
||
mem_assert (sys_page_size == 0);
|
||
mem_assert (MIN_MAGAZINE_SIZE >= 4);
|
||
|
||
#ifdef G_OS_WIN32
|
||
{
|
||
SYSTEM_INFO system_info;
|
||
GetSystemInfo (&system_info);
|
||
sys_page_size = system_info.dwPageSize;
|
||
}
|
||
#else
|
||
sys_page_size = sysconf (_SC_PAGESIZE); /* = sysconf (_SC_PAGE_SIZE); = getpagesize(); */
|
||
#endif
|
||
mem_assert (sys_page_size >= 2 * LARGEALIGNMENT);
|
||
mem_assert ((sys_page_size & (sys_page_size - 1)) == 0);
|
||
slice_config_init (&allocator->config);
|
||
allocator->min_page_size = sys_page_size;
|
||
#if HAVE_POSIX_MEMALIGN || HAVE_MEMALIGN
|
||
/* allow allocation of pages up to 8KB (with 8KB alignment).
|
||
* this is useful because many medium to large sized structures
|
||
* fit less than 8 times (see [4]) into 4KB pages.
|
||
* we allow very small page sizes here, to reduce wastage in
|
||
* threads if only small allocations are required (this does
|
||
* bear the risk of increasing allocation times and fragmentation
|
||
* though).
|
||
*/
|
||
allocator->min_page_size = MAX (allocator->min_page_size, 4096);
|
||
allocator->max_page_size = MAX (allocator->min_page_size, 8192);
|
||
allocator->min_page_size = MIN (allocator->min_page_size, 128);
|
||
#else
|
||
/* we can only align to system page size */
|
||
allocator->max_page_size = sys_page_size;
|
||
#endif
|
||
if (allocator->config.always_malloc)
|
||
{
|
||
allocator->contention_counters = NULL;
|
||
allocator->magazines = NULL;
|
||
allocator->slab_stack = NULL;
|
||
}
|
||
else
|
||
{
|
||
allocator->contention_counters = g_new0 (guint, MAX_SLAB_INDEX (allocator));
|
||
allocator->magazines = g_new0 (ChunkLink*, MAX_SLAB_INDEX (allocator));
|
||
allocator->slab_stack = g_new0 (SlabInfo*, MAX_SLAB_INDEX (allocator));
|
||
}
|
||
|
||
allocator->mutex_counter = 0;
|
||
allocator->stamp_counter = MAX_STAMP_COUNTER; /* force initial update */
|
||
allocator->last_stamp = 0;
|
||
allocator->color_accu = 0;
|
||
magazine_cache_update_stamp();
|
||
/* values cached for performance reasons */
|
||
allocator->max_slab_chunk_size_for_magazine_cache = MAX_SLAB_CHUNK_SIZE (allocator);
|
||
if (allocator->config.always_malloc || allocator->config.bypass_magazines)
|
||
allocator->max_slab_chunk_size_for_magazine_cache = 0; /* non-optimized cases */
|
||
}
|
||
|
||
static inline guint
|
||
allocator_categorize (gsize aligned_chunk_size)
|
||
{
|
||
/* speed up the likely path */
|
||
if (G_LIKELY (aligned_chunk_size && aligned_chunk_size <= allocator->max_slab_chunk_size_for_magazine_cache))
|
||
return 1; /* use magazine cache */
|
||
|
||
if (!allocator->config.always_malloc &&
|
||
aligned_chunk_size &&
|
||
aligned_chunk_size <= MAX_SLAB_CHUNK_SIZE (allocator))
|
||
{
|
||
if (allocator->config.bypass_magazines)
|
||
return 2; /* use slab allocator, see [2] */
|
||
return 1; /* use magazine cache */
|
||
}
|
||
return 0; /* use malloc() */
|
||
}
|
||
|
||
static inline void
|
||
g_mutex_lock_a (GMutex *mutex,
|
||
guint *contention_counter)
|
||
{
|
||
gboolean contention = FALSE;
|
||
if (!g_mutex_trylock (mutex))
|
||
{
|
||
g_mutex_lock (mutex);
|
||
contention = TRUE;
|
||
}
|
||
if (contention)
|
||
{
|
||
allocator->mutex_counter++;
|
||
if (allocator->mutex_counter >= 1) /* quickly adapt to contention */
|
||
{
|
||
allocator->mutex_counter = 0;
|
||
*contention_counter = MIN (*contention_counter + 1, MAX_MAGAZINE_SIZE);
|
||
}
|
||
}
|
||
else /* !contention */
|
||
{
|
||
allocator->mutex_counter--;
|
||
if (allocator->mutex_counter < -11) /* moderately recover magazine sizes */
|
||
{
|
||
allocator->mutex_counter = 0;
|
||
*contention_counter = MAX (*contention_counter, 1) - 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
static inline ThreadMemory*
|
||
thread_memory_from_self (void)
|
||
{
|
||
ThreadMemory *tmem = g_private_get (&private_thread_memory);
|
||
if (G_UNLIKELY (!tmem))
|
||
{
|
||
static GMutex init_mutex;
|
||
guint n_magazines;
|
||
|
||
g_mutex_lock (&init_mutex);
|
||
if G_UNLIKELY (sys_page_size == 0)
|
||
g_slice_init_nomessage ();
|
||
g_mutex_unlock (&init_mutex);
|
||
|
||
n_magazines = MAX_SLAB_INDEX (allocator);
|
||
tmem = g_private_set_alloc0 (&private_thread_memory, sizeof (ThreadMemory) + sizeof (Magazine) * 2 * n_magazines);
|
||
tmem->magazine1 = (Magazine*) (tmem + 1);
|
||
tmem->magazine2 = &tmem->magazine1[n_magazines];
|
||
}
|
||
return tmem;
|
||
}
|
||
|
||
static inline ChunkLink*
|
||
magazine_chain_pop_head (ChunkLink **magazine_chunks)
|
||
{
|
||
/* magazine chains are linked via ChunkLink->next.
|
||
* each ChunkLink->data of the toplevel chain may point to a subchain,
|
||
* linked via ChunkLink->next. ChunkLink->data of the subchains just
|
||
* contains uninitialized junk.
|
||
*/
|
||
ChunkLink *chunk = (*magazine_chunks)->data;
|
||
if (G_UNLIKELY (chunk))
|
||
{
|
||
/* allocating from freed list */
|
||
(*magazine_chunks)->data = chunk->next;
|
||
}
|
||
else
|
||
{
|
||
chunk = *magazine_chunks;
|
||
*magazine_chunks = chunk->next;
|
||
}
|
||
return chunk;
|
||
}
|
||
|
||
#if 0 /* useful for debugging */
|
||
static guint
|
||
magazine_count (ChunkLink *head)
|
||
{
|
||
guint count = 0;
|
||
if (!head)
|
||
return 0;
|
||
while (head)
|
||
{
|
||
ChunkLink *child = head->data;
|
||
count += 1;
|
||
for (child = head->data; child; child = child->next)
|
||
count += 1;
|
||
head = head->next;
|
||
}
|
||
return count;
|
||
}
|
||
#endif
|
||
|
||
static inline gsize
|
||
allocator_get_magazine_threshold (Allocator *local_allocator,
|
||
guint ix)
|
||
{
|
||
/* the magazine size calculated here has a lower bound of MIN_MAGAZINE_SIZE,
|
||
* which is required by the implementation. also, for moderately sized chunks
|
||
* (say >= 64 bytes), magazine sizes shouldn't be much smaller then the number
|
||
* of chunks available per page/2 to avoid excessive traffic in the magazine
|
||
* cache for small to medium sized structures.
|
||
* the upper bound of the magazine size is effectively provided by
|
||
* MAX_MAGAZINE_SIZE. for larger chunks, this number is scaled down so that
|
||
* the content of a single magazine doesn't exceed ca. 16KB.
|
||
*/
|
||
gsize chunk_size = SLAB_CHUNK_SIZE (local_allocator, ix);
|
||
guint threshold = MAX (MIN_MAGAZINE_SIZE, local_allocator->max_page_size / MAX (5 * chunk_size, 5 * 32));
|
||
guint contention_counter = local_allocator->contention_counters[ix];
|
||
if (G_UNLIKELY (contention_counter)) /* single CPU bias */
|
||
{
|
||
/* adapt contention counter thresholds to chunk sizes */
|
||
contention_counter = contention_counter * 64 / chunk_size;
|
||
threshold = MAX (threshold, contention_counter);
|
||
}
|
||
return threshold;
|
||
}
|
||
|
||
/* --- magazine cache --- */
|
||
static inline void
|
||
magazine_cache_update_stamp (void)
|
||
{
|
||
if (allocator->stamp_counter >= MAX_STAMP_COUNTER)
|
||
{
|
||
gint64 now_us = g_get_real_time ();
|
||
allocator->last_stamp = now_us / 1000; /* milli seconds */
|
||
allocator->stamp_counter = 0;
|
||
}
|
||
else
|
||
allocator->stamp_counter++;
|
||
}
|
||
|
||
static inline ChunkLink*
|
||
magazine_chain_prepare_fields (ChunkLink *magazine_chunks)
|
||
{
|
||
ChunkLink *chunk1;
|
||
ChunkLink *chunk2;
|
||
ChunkLink *chunk3;
|
||
ChunkLink *chunk4;
|
||
/* checked upon initialization: mem_assert (MIN_MAGAZINE_SIZE >= 4); */
|
||
/* ensure a magazine with at least 4 unused data pointers */
|
||
chunk1 = magazine_chain_pop_head (&magazine_chunks);
|
||
chunk2 = magazine_chain_pop_head (&magazine_chunks);
|
||
chunk3 = magazine_chain_pop_head (&magazine_chunks);
|
||
chunk4 = magazine_chain_pop_head (&magazine_chunks);
|
||
chunk4->next = magazine_chunks;
|
||
chunk3->next = chunk4;
|
||
chunk2->next = chunk3;
|
||
chunk1->next = chunk2;
|
||
return chunk1;
|
||
}
|
||
|
||
/* access the first 3 fields of a specially prepared magazine chain */
|
||
#define magazine_chain_prev(mc) ((mc)->data)
|
||
#define magazine_chain_stamp(mc) ((mc)->next->data)
|
||
#define magazine_chain_uint_stamp(mc) GPOINTER_TO_UINT ((mc)->next->data)
|
||
#define magazine_chain_next(mc) ((mc)->next->next->data)
|
||
#define magazine_chain_count(mc) ((mc)->next->next->next->data)
|
||
|
||
static void
|
||
magazine_cache_trim (Allocator *local_allocator,
|
||
guint ix,
|
||
guint stamp)
|
||
{
|
||
/* g_mutex_lock (local_allocator->mutex); done by caller */
|
||
/* trim magazine cache from tail */
|
||
ChunkLink *current = magazine_chain_prev (local_allocator->magazines[ix]);
|
||
ChunkLink *trash = NULL;
|
||
while (!G_APPROX_VALUE (stamp, magazine_chain_uint_stamp (current),
|
||
local_allocator->config.working_set_msecs))
|
||
{
|
||
/* unlink */
|
||
ChunkLink *prev = magazine_chain_prev (current);
|
||
ChunkLink *next = magazine_chain_next (current);
|
||
magazine_chain_next (prev) = next;
|
||
magazine_chain_prev (next) = prev;
|
||
/* clear special fields, put on trash stack */
|
||
magazine_chain_next (current) = NULL;
|
||
magazine_chain_count (current) = NULL;
|
||
magazine_chain_stamp (current) = NULL;
|
||
magazine_chain_prev (current) = trash;
|
||
trash = current;
|
||
/* fixup list head if required */
|
||
if (current == local_allocator->magazines[ix])
|
||
{
|
||
local_allocator->magazines[ix] = NULL;
|
||
break;
|
||
}
|
||
current = prev;
|
||
}
|
||
g_mutex_unlock (&local_allocator->magazine_mutex);
|
||
/* free trash */
|
||
if (trash)
|
||
{
|
||
const gsize chunk_size = SLAB_CHUNK_SIZE (local_allocator, ix);
|
||
g_mutex_lock (&local_allocator->slab_mutex);
|
||
while (trash)
|
||
{
|
||
current = trash;
|
||
trash = magazine_chain_prev (current);
|
||
magazine_chain_prev (current) = NULL; /* clear special field */
|
||
while (current)
|
||
{
|
||
ChunkLink *chunk = magazine_chain_pop_head (¤t);
|
||
slab_allocator_free_chunk (chunk_size, chunk);
|
||
}
|
||
}
|
||
g_mutex_unlock (&local_allocator->slab_mutex);
|
||
}
|
||
}
|
||
|
||
static void
|
||
magazine_cache_push_magazine (guint ix,
|
||
ChunkLink *magazine_chunks,
|
||
gsize count) /* must be >= MIN_MAGAZINE_SIZE */
|
||
{
|
||
ChunkLink *current = magazine_chain_prepare_fields (magazine_chunks);
|
||
ChunkLink *next, *prev;
|
||
g_mutex_lock (&allocator->magazine_mutex);
|
||
/* add magazine at head */
|
||
next = allocator->magazines[ix];
|
||
if (next)
|
||
prev = magazine_chain_prev (next);
|
||
else
|
||
next = prev = current;
|
||
magazine_chain_next (prev) = current;
|
||
magazine_chain_prev (next) = current;
|
||
magazine_chain_prev (current) = prev;
|
||
magazine_chain_next (current) = next;
|
||
magazine_chain_count (current) = (gpointer) count;
|
||
/* stamp magazine */
|
||
magazine_cache_update_stamp();
|
||
magazine_chain_stamp (current) = GUINT_TO_POINTER (allocator->last_stamp);
|
||
allocator->magazines[ix] = current;
|
||
/* free old magazines beyond a certain threshold */
|
||
magazine_cache_trim (allocator, ix, allocator->last_stamp);
|
||
/* g_mutex_unlock (allocator->mutex); was done by magazine_cache_trim() */
|
||
}
|
||
|
||
static ChunkLink*
|
||
magazine_cache_pop_magazine (guint ix,
|
||
gsize *countp)
|
||
{
|
||
g_mutex_lock_a (&allocator->magazine_mutex, &allocator->contention_counters[ix]);
|
||
if (!allocator->magazines[ix])
|
||
{
|
||
guint magazine_threshold = allocator_get_magazine_threshold (allocator, ix);
|
||
gsize i, chunk_size = SLAB_CHUNK_SIZE (allocator, ix);
|
||
ChunkLink *chunk, *head;
|
||
g_mutex_unlock (&allocator->magazine_mutex);
|
||
g_mutex_lock (&allocator->slab_mutex);
|
||
head = slab_allocator_alloc_chunk (chunk_size);
|
||
head->data = NULL;
|
||
chunk = head;
|
||
for (i = 1; i < magazine_threshold; i++)
|
||
{
|
||
chunk->next = slab_allocator_alloc_chunk (chunk_size);
|
||
chunk = chunk->next;
|
||
chunk->data = NULL;
|
||
}
|
||
chunk->next = NULL;
|
||
g_mutex_unlock (&allocator->slab_mutex);
|
||
*countp = i;
|
||
return head;
|
||
}
|
||
else
|
||
{
|
||
ChunkLink *current = allocator->magazines[ix];
|
||
ChunkLink *prev = magazine_chain_prev (current);
|
||
ChunkLink *next = magazine_chain_next (current);
|
||
/* unlink */
|
||
magazine_chain_next (prev) = next;
|
||
magazine_chain_prev (next) = prev;
|
||
allocator->magazines[ix] = next == current ? NULL : next;
|
||
g_mutex_unlock (&allocator->magazine_mutex);
|
||
/* clear special fields and hand out */
|
||
*countp = (gsize) magazine_chain_count (current);
|
||
magazine_chain_prev (current) = NULL;
|
||
magazine_chain_next (current) = NULL;
|
||
magazine_chain_count (current) = NULL;
|
||
magazine_chain_stamp (current) = NULL;
|
||
return current;
|
||
}
|
||
}
|
||
|
||
/* --- thread magazines --- */
|
||
static void
|
||
private_thread_memory_cleanup (gpointer data)
|
||
{
|
||
ThreadMemory *tmem = data;
|
||
const guint n_magazines = MAX_SLAB_INDEX (allocator);
|
||
guint ix;
|
||
for (ix = 0; ix < n_magazines; ix++)
|
||
{
|
||
Magazine *mags[2];
|
||
guint j;
|
||
mags[0] = &tmem->magazine1[ix];
|
||
mags[1] = &tmem->magazine2[ix];
|
||
for (j = 0; j < 2; j++)
|
||
{
|
||
Magazine *mag = mags[j];
|
||
if (mag->count >= MIN_MAGAZINE_SIZE)
|
||
magazine_cache_push_magazine (ix, mag->chunks, mag->count);
|
||
else
|
||
{
|
||
const gsize chunk_size = SLAB_CHUNK_SIZE (allocator, ix);
|
||
g_mutex_lock (&allocator->slab_mutex);
|
||
while (mag->chunks)
|
||
{
|
||
ChunkLink *chunk = magazine_chain_pop_head (&mag->chunks);
|
||
slab_allocator_free_chunk (chunk_size, chunk);
|
||
}
|
||
g_mutex_unlock (&allocator->slab_mutex);
|
||
}
|
||
}
|
||
}
|
||
g_free (tmem);
|
||
}
|
||
|
||
static void
|
||
thread_memory_magazine1_reload (ThreadMemory *tmem,
|
||
guint ix)
|
||
{
|
||
Magazine *mag = &tmem->magazine1[ix];
|
||
mem_assert (mag->chunks == NULL); /* ensure that we may reset mag->count */
|
||
mag->count = 0;
|
||
mag->chunks = magazine_cache_pop_magazine (ix, &mag->count);
|
||
}
|
||
|
||
static void
|
||
thread_memory_magazine2_unload (ThreadMemory *tmem,
|
||
guint ix)
|
||
{
|
||
Magazine *mag = &tmem->magazine2[ix];
|
||
magazine_cache_push_magazine (ix, mag->chunks, mag->count);
|
||
mag->chunks = NULL;
|
||
mag->count = 0;
|
||
}
|
||
|
||
static inline void
|
||
thread_memory_swap_magazines (ThreadMemory *tmem,
|
||
guint ix)
|
||
{
|
||
Magazine xmag = tmem->magazine1[ix];
|
||
tmem->magazine1[ix] = tmem->magazine2[ix];
|
||
tmem->magazine2[ix] = xmag;
|
||
}
|
||
|
||
static inline gboolean
|
||
thread_memory_magazine1_is_empty (ThreadMemory *tmem,
|
||
guint ix)
|
||
{
|
||
return tmem->magazine1[ix].chunks == NULL;
|
||
}
|
||
|
||
static inline gboolean
|
||
thread_memory_magazine2_is_full (ThreadMemory *tmem,
|
||
guint ix)
|
||
{
|
||
return tmem->magazine2[ix].count >= allocator_get_magazine_threshold (allocator, ix);
|
||
}
|
||
|
||
static inline gpointer
|
||
thread_memory_magazine1_alloc (ThreadMemory *tmem,
|
||
guint ix)
|
||
{
|
||
Magazine *mag = &tmem->magazine1[ix];
|
||
ChunkLink *chunk = magazine_chain_pop_head (&mag->chunks);
|
||
if (G_LIKELY (mag->count > 0))
|
||
mag->count--;
|
||
return chunk;
|
||
}
|
||
|
||
static inline void
|
||
thread_memory_magazine2_free (ThreadMemory *tmem,
|
||
guint ix,
|
||
gpointer mem)
|
||
{
|
||
Magazine *mag = &tmem->magazine2[ix];
|
||
ChunkLink *chunk = mem;
|
||
chunk->data = NULL;
|
||
chunk->next = mag->chunks;
|
||
mag->chunks = chunk;
|
||
mag->count++;
|
||
}
|
||
|
||
/* --- API functions --- */
|
||
|
||
/**
|
||
* g_slice_new:
|
||
* @type: the type to allocate, typically a structure name
|
||
*
|
||
* A convenience macro to allocate a block of memory from the
|
||
* slice allocator.
|
||
*
|
||
* It calls g_slice_alloc() with `sizeof (@type)` and casts the
|
||
* returned pointer to a pointer of the given type, avoiding a type
|
||
* cast in the source code. Note that the underlying slice allocation
|
||
* mechanism can be changed with the [`G_SLICE=always-malloc`][G_SLICE]
|
||
* environment variable.
|
||
*
|
||
* This can never return %NULL as the minimum allocation size from
|
||
* `sizeof (@type)` is 1 byte.
|
||
*
|
||
* Returns: (not nullable): a pointer to the allocated block, cast to a pointer
|
||
* to @type
|
||
*
|
||
* Since: 2.10
|
||
*/
|
||
|
||
/**
|
||
* g_slice_new0:
|
||
* @type: the type to allocate, typically a structure name
|
||
*
|
||
* A convenience macro to allocate a block of memory from the
|
||
* slice allocator and set the memory to 0.
|
||
*
|
||
* It calls g_slice_alloc0() with `sizeof (@type)`
|
||
* and casts the returned pointer to a pointer of the given type,
|
||
* avoiding a type cast in the source code.
|
||
* Note that the underlying slice allocation mechanism can
|
||
* be changed with the [`G_SLICE=always-malloc`][G_SLICE]
|
||
* environment variable.
|
||
*
|
||
* This can never return %NULL as the minimum allocation size from
|
||
* `sizeof (@type)` is 1 byte.
|
||
*
|
||
* Returns: (not nullable): a pointer to the allocated block, cast to a pointer
|
||
* to @type
|
||
*
|
||
* Since: 2.10
|
||
*/
|
||
|
||
/**
|
||
* g_slice_dup:
|
||
* @type: the type to duplicate, typically a structure name
|
||
* @mem: (not nullable): the memory to copy into the allocated block
|
||
*
|
||
* A convenience macro to duplicate a block of memory using
|
||
* the slice allocator.
|
||
*
|
||
* It calls g_slice_copy() with `sizeof (@type)`
|
||
* and casts the returned pointer to a pointer of the given type,
|
||
* avoiding a type cast in the source code.
|
||
* Note that the underlying slice allocation mechanism can
|
||
* be changed with the [`G_SLICE=always-malloc`][G_SLICE]
|
||
* environment variable.
|
||
*
|
||
* This can never return %NULL.
|
||
*
|
||
* Returns: (not nullable): a pointer to the allocated block, cast to a pointer
|
||
* to @type
|
||
*
|
||
* Since: 2.14
|
||
*/
|
||
|
||
/**
|
||
* g_slice_free:
|
||
* @type: the type of the block to free, typically a structure name
|
||
* @mem: a pointer to the block to free
|
||
*
|
||
* A convenience macro to free a block of memory that has
|
||
* been allocated from the slice allocator.
|
||
*
|
||
* It calls g_slice_free1() using `sizeof (type)`
|
||
* as the block size.
|
||
* Note that the exact release behaviour can be changed with the
|
||
* [`G_DEBUG=gc-friendly`][G_DEBUG] environment variable, also see
|
||
* [`G_SLICE`][G_SLICE] for related debugging options.
|
||
*
|
||
* If @mem is %NULL, this macro does nothing.
|
||
*
|
||
* Since: 2.10
|
||
*/
|
||
|
||
/**
|
||
* g_slice_free_chain:
|
||
* @type: the type of the @mem_chain blocks
|
||
* @mem_chain: a pointer to the first block of the chain
|
||
* @next: the field name of the next pointer in @type
|
||
*
|
||
* Frees a linked list of memory blocks of structure type @type.
|
||
*
|
||
* The memory blocks must be equal-sized, allocated via
|
||
* g_slice_alloc() or g_slice_alloc0() and linked together by
|
||
* a @next pointer (similar to #GSList). The name of the
|
||
* @next field in @type is passed as third argument.
|
||
* Note that the exact release behaviour can be changed with the
|
||
* [`G_DEBUG=gc-friendly`][G_DEBUG] environment variable, also see
|
||
* [`G_SLICE`][G_SLICE] for related debugging options.
|
||
*
|
||
* If @mem_chain is %NULL, this function does nothing.
|
||
*
|
||
* Since: 2.10
|
||
*/
|
||
|
||
/**
|
||
* g_slice_alloc:
|
||
* @block_size: the number of bytes to allocate
|
||
*
|
||
* Allocates a block of memory from the slice allocator.
|
||
*
|
||
* The block address handed out can be expected to be aligned
|
||
* to at least `1 * sizeof (void*)`, though in general slices
|
||
* are `2 * sizeof (void*)` bytes aligned; if a `malloc()`
|
||
* fallback implementation is used instead, the alignment may
|
||
* be reduced in a libc dependent fashion.
|
||
*
|
||
* Note that the underlying slice allocation mechanism can
|
||
* be changed with the [`G_SLICE=always-malloc`][G_SLICE]
|
||
* environment variable.
|
||
*
|
||
* Returns: a pointer to the allocated memory block, which will
|
||
* be %NULL if and only if @mem_size is 0
|
||
*
|
||
* Since: 2.10
|
||
*/
|
||
gpointer
|
||
g_slice_alloc (gsize mem_size)
|
||
{
|
||
ThreadMemory *tmem;
|
||
gsize chunk_size;
|
||
gpointer mem;
|
||
guint acat;
|
||
|
||
/* This gets the private structure for this thread. If the private
|
||
* structure does not yet exist, it is created.
|
||
*
|
||
* This has a side effect of causing GSlice to be initialised, so it
|
||
* must come first.
|
||
*/
|
||
tmem = thread_memory_from_self ();
|
||
|
||
chunk_size = P2ALIGN (mem_size);
|
||
acat = allocator_categorize (chunk_size);
|
||
if (G_LIKELY (acat == 1)) /* allocate through magazine layer */
|
||
{
|
||
guint ix = SLAB_INDEX (allocator, chunk_size);
|
||
if (G_UNLIKELY (thread_memory_magazine1_is_empty (tmem, ix)))
|
||
{
|
||
thread_memory_swap_magazines (tmem, ix);
|
||
if (G_UNLIKELY (thread_memory_magazine1_is_empty (tmem, ix)))
|
||
thread_memory_magazine1_reload (tmem, ix);
|
||
}
|
||
mem = thread_memory_magazine1_alloc (tmem, ix);
|
||
}
|
||
else if (acat == 2) /* allocate through slab allocator */
|
||
{
|
||
g_mutex_lock (&allocator->slab_mutex);
|
||
mem = slab_allocator_alloc_chunk (chunk_size);
|
||
g_mutex_unlock (&allocator->slab_mutex);
|
||
}
|
||
else /* delegate to system malloc */
|
||
mem = g_malloc (mem_size);
|
||
if (G_UNLIKELY (allocator->config.debug_blocks))
|
||
smc_notify_alloc (mem, mem_size);
|
||
|
||
TRACE (GLIB_SLICE_ALLOC((void*)mem, mem_size));
|
||
|
||
return mem;
|
||
}
|
||
|
||
/**
|
||
* g_slice_alloc0:
|
||
* @block_size: the number of bytes to allocate
|
||
*
|
||
* Allocates a block of memory via g_slice_alloc() and initializes
|
||
* the returned memory to 0. Note that the underlying slice allocation
|
||
* mechanism can be changed with the [`G_SLICE=always-malloc`][G_SLICE]
|
||
* environment variable.
|
||
*
|
||
* Returns: a pointer to the allocated block, which will be %NULL if and only
|
||
* if @mem_size is 0
|
||
*
|
||
* Since: 2.10
|
||
*/
|
||
gpointer
|
||
g_slice_alloc0 (gsize mem_size)
|
||
{
|
||
gpointer mem = g_slice_alloc (mem_size);
|
||
if (mem)
|
||
memset (mem, 0, mem_size);
|
||
return mem;
|
||
}
|
||
|
||
/**
|
||
* g_slice_copy:
|
||
* @block_size: the number of bytes to allocate
|
||
* @mem_block: the memory to copy
|
||
*
|
||
* Allocates a block of memory from the slice allocator
|
||
* and copies @block_size bytes into it from @mem_block.
|
||
*
|
||
* @mem_block must be non-%NULL if @block_size is non-zero.
|
||
*
|
||
* Returns: a pointer to the allocated memory block, which will be %NULL if and
|
||
* only if @mem_size is 0
|
||
*
|
||
* Since: 2.14
|
||
*/
|
||
gpointer
|
||
g_slice_copy (gsize mem_size,
|
||
gconstpointer mem_block)
|
||
{
|
||
gpointer mem = g_slice_alloc (mem_size);
|
||
if (mem)
|
||
memcpy (mem, mem_block, mem_size);
|
||
return mem;
|
||
}
|
||
|
||
/**
|
||
* g_slice_free1:
|
||
* @block_size: the size of the block
|
||
* @mem_block: a pointer to the block to free
|
||
*
|
||
* Frees a block of memory.
|
||
*
|
||
* The memory must have been allocated via g_slice_alloc() or
|
||
* g_slice_alloc0() and the @block_size has to match the size
|
||
* specified upon allocation. Note that the exact release behaviour
|
||
* can be changed with the [`G_DEBUG=gc-friendly`][G_DEBUG] environment
|
||
* variable, also see [`G_SLICE`][G_SLICE] for related debugging options.
|
||
*
|
||
* If @mem_block is %NULL, this function does nothing.
|
||
*
|
||
* Since: 2.10
|
||
*/
|
||
void
|
||
g_slice_free1 (gsize mem_size,
|
||
gpointer mem_block)
|
||
{
|
||
gsize chunk_size = P2ALIGN (mem_size);
|
||
guint acat = allocator_categorize (chunk_size);
|
||
if (G_UNLIKELY (!mem_block))
|
||
return;
|
||
if (G_UNLIKELY (allocator->config.debug_blocks) &&
|
||
!smc_notify_free (mem_block, mem_size))
|
||
abort();
|
||
if (G_LIKELY (acat == 1)) /* allocate through magazine layer */
|
||
{
|
||
ThreadMemory *tmem = thread_memory_from_self();
|
||
guint ix = SLAB_INDEX (allocator, chunk_size);
|
||
if (G_UNLIKELY (thread_memory_magazine2_is_full (tmem, ix)))
|
||
{
|
||
thread_memory_swap_magazines (tmem, ix);
|
||
if (G_UNLIKELY (thread_memory_magazine2_is_full (tmem, ix)))
|
||
thread_memory_magazine2_unload (tmem, ix);
|
||
}
|
||
if (G_UNLIKELY (g_mem_gc_friendly))
|
||
memset (mem_block, 0, chunk_size);
|
||
thread_memory_magazine2_free (tmem, ix, mem_block);
|
||
}
|
||
else if (acat == 2) /* allocate through slab allocator */
|
||
{
|
||
if (G_UNLIKELY (g_mem_gc_friendly))
|
||
memset (mem_block, 0, chunk_size);
|
||
g_mutex_lock (&allocator->slab_mutex);
|
||
slab_allocator_free_chunk (chunk_size, mem_block);
|
||
g_mutex_unlock (&allocator->slab_mutex);
|
||
}
|
||
else /* delegate to system malloc */
|
||
{
|
||
if (G_UNLIKELY (g_mem_gc_friendly))
|
||
memset (mem_block, 0, mem_size);
|
||
g_free (mem_block);
|
||
}
|
||
TRACE (GLIB_SLICE_FREE((void*)mem_block, mem_size));
|
||
}
|
||
|
||
/**
|
||
* g_slice_free_chain_with_offset:
|
||
* @block_size: the size of the blocks
|
||
* @mem_chain: a pointer to the first block of the chain
|
||
* @next_offset: the offset of the @next field in the blocks
|
||
*
|
||
* Frees a linked list of memory blocks of structure type @type.
|
||
*
|
||
* The memory blocks must be equal-sized, allocated via
|
||
* g_slice_alloc() or g_slice_alloc0() and linked together by a
|
||
* @next pointer (similar to #GSList). The offset of the @next
|
||
* field in each block is passed as third argument.
|
||
* Note that the exact release behaviour can be changed with the
|
||
* [`G_DEBUG=gc-friendly`][G_DEBUG] environment variable, also see
|
||
* [`G_SLICE`][G_SLICE] for related debugging options.
|
||
*
|
||
* If @mem_chain is %NULL, this function does nothing.
|
||
*
|
||
* Since: 2.10
|
||
*/
|
||
void
|
||
g_slice_free_chain_with_offset (gsize mem_size,
|
||
gpointer mem_chain,
|
||
gsize next_offset)
|
||
{
|
||
gpointer slice = mem_chain;
|
||
/* while the thread magazines and the magazine cache are implemented so that
|
||
* they can easily be extended to allow for free lists containing more free
|
||
* lists for the first level nodes, which would allow O(1) freeing in this
|
||
* function, the benefit of such an extension is questionable, because:
|
||
* - the magazine size counts will become mere lower bounds which confuses
|
||
* the code adapting to lock contention;
|
||
* - freeing a single node to the thread magazines is very fast, so this
|
||
* O(list_length) operation is multiplied by a fairly small factor;
|
||
* - memory usage histograms on larger applications seem to indicate that
|
||
* the amount of released multi node lists is negligible in comparison
|
||
* to single node releases.
|
||
* - the major performance bottle neck, namely g_private_get() or
|
||
* g_mutex_lock()/g_mutex_unlock() has already been moved out of the
|
||
* inner loop for freeing chained slices.
|
||
*/
|
||
gsize chunk_size = P2ALIGN (mem_size);
|
||
guint acat = allocator_categorize (chunk_size);
|
||
if (G_LIKELY (acat == 1)) /* allocate through magazine layer */
|
||
{
|
||
ThreadMemory *tmem = thread_memory_from_self();
|
||
guint ix = SLAB_INDEX (allocator, chunk_size);
|
||
while (slice)
|
||
{
|
||
guint8 *current = slice;
|
||
slice = *(gpointer*) (current + next_offset);
|
||
if (G_UNLIKELY (allocator->config.debug_blocks) &&
|
||
!smc_notify_free (current, mem_size))
|
||
abort();
|
||
if (G_UNLIKELY (thread_memory_magazine2_is_full (tmem, ix)))
|
||
{
|
||
thread_memory_swap_magazines (tmem, ix);
|
||
if (G_UNLIKELY (thread_memory_magazine2_is_full (tmem, ix)))
|
||
thread_memory_magazine2_unload (tmem, ix);
|
||
}
|
||
if (G_UNLIKELY (g_mem_gc_friendly))
|
||
memset (current, 0, chunk_size);
|
||
thread_memory_magazine2_free (tmem, ix, current);
|
||
}
|
||
}
|
||
else if (acat == 2) /* allocate through slab allocator */
|
||
{
|
||
g_mutex_lock (&allocator->slab_mutex);
|
||
while (slice)
|
||
{
|
||
guint8 *current = slice;
|
||
slice = *(gpointer*) (current + next_offset);
|
||
if (G_UNLIKELY (allocator->config.debug_blocks) &&
|
||
!smc_notify_free (current, mem_size))
|
||
abort();
|
||
if (G_UNLIKELY (g_mem_gc_friendly))
|
||
memset (current, 0, chunk_size);
|
||
slab_allocator_free_chunk (chunk_size, current);
|
||
}
|
||
g_mutex_unlock (&allocator->slab_mutex);
|
||
}
|
||
else /* delegate to system malloc */
|
||
while (slice)
|
||
{
|
||
guint8 *current = slice;
|
||
slice = *(gpointer*) (current + next_offset);
|
||
if (G_UNLIKELY (allocator->config.debug_blocks) &&
|
||
!smc_notify_free (current, mem_size))
|
||
abort();
|
||
if (G_UNLIKELY (g_mem_gc_friendly))
|
||
memset (current, 0, mem_size);
|
||
g_free (current);
|
||
}
|
||
}
|
||
|
||
/* --- single page allocator --- */
|
||
static void
|
||
allocator_slab_stack_push (Allocator *local_allocator,
|
||
guint ix,
|
||
SlabInfo *sinfo)
|
||
{
|
||
/* insert slab at slab ring head */
|
||
if (!local_allocator->slab_stack[ix])
|
||
{
|
||
sinfo->next = sinfo;
|
||
sinfo->prev = sinfo;
|
||
}
|
||
else
|
||
{
|
||
SlabInfo *next = local_allocator->slab_stack[ix], *prev = next->prev;
|
||
next->prev = sinfo;
|
||
prev->next = sinfo;
|
||
sinfo->next = next;
|
||
sinfo->prev = prev;
|
||
}
|
||
local_allocator->slab_stack[ix] = sinfo;
|
||
}
|
||
|
||
static gsize
|
||
allocator_aligned_page_size (Allocator *local_allocator,
|
||
gsize n_bytes)
|
||
{
|
||
gsize val = (gsize) 1 << g_bit_storage (n_bytes - 1);
|
||
val = MAX (val, local_allocator->min_page_size);
|
||
return val;
|
||
}
|
||
|
||
static void
|
||
allocator_add_slab (Allocator *local_allocator,
|
||
guint ix,
|
||
gsize chunk_size)
|
||
{
|
||
ChunkLink *chunk;
|
||
SlabInfo *sinfo;
|
||
gsize addr, padding, n_chunks, color = 0;
|
||
gsize page_size;
|
||
int errsv;
|
||
gpointer aligned_memory;
|
||
guint8 *mem;
|
||
guint i;
|
||
|
||
page_size = allocator_aligned_page_size (local_allocator, SLAB_BPAGE_SIZE (local_allocator, chunk_size));
|
||
/* allocate 1 page for the chunks and the slab */
|
||
aligned_memory = allocator_memalign (page_size, page_size - NATIVE_MALLOC_PADDING);
|
||
errsv = errno;
|
||
mem = aligned_memory;
|
||
|
||
if (!mem)
|
||
{
|
||
const gchar *syserr = strerror (errsv);
|
||
mem_error ("failed to allocate %u bytes (alignment: %u): %s\n",
|
||
(guint) (page_size - NATIVE_MALLOC_PADDING), (guint) page_size, syserr);
|
||
}
|
||
/* mask page address */
|
||
addr = ((gsize) mem / page_size) * page_size;
|
||
/* assert alignment */
|
||
mem_assert (aligned_memory == (gpointer) addr);
|
||
/* basic slab info setup */
|
||
sinfo = (SlabInfo*) (mem + page_size - SLAB_INFO_SIZE);
|
||
sinfo->n_allocated = 0;
|
||
sinfo->chunks = NULL;
|
||
/* figure cache colorization */
|
||
n_chunks = ((guint8*) sinfo - mem) / chunk_size;
|
||
padding = ((guint8*) sinfo - mem) - n_chunks * chunk_size;
|
||
if (padding)
|
||
{
|
||
color = (local_allocator->color_accu * P2ALIGNMENT) % padding;
|
||
local_allocator->color_accu += local_allocator->config.color_increment;
|
||
}
|
||
/* add chunks to free list */
|
||
chunk = (ChunkLink*) (mem + color);
|
||
sinfo->chunks = chunk;
|
||
for (i = 0; i < n_chunks - 1; i++)
|
||
{
|
||
chunk->next = (ChunkLink*) ((guint8*) chunk + chunk_size);
|
||
chunk = chunk->next;
|
||
}
|
||
chunk->next = NULL; /* last chunk */
|
||
/* add slab to slab ring */
|
||
allocator_slab_stack_push (local_allocator, ix, sinfo);
|
||
}
|
||
|
||
static gpointer
|
||
slab_allocator_alloc_chunk (gsize chunk_size)
|
||
{
|
||
ChunkLink *chunk;
|
||
guint ix = SLAB_INDEX (allocator, chunk_size);
|
||
/* ensure non-empty slab */
|
||
if (!allocator->slab_stack[ix] || !allocator->slab_stack[ix]->chunks)
|
||
allocator_add_slab (allocator, ix, chunk_size);
|
||
/* allocate chunk */
|
||
chunk = allocator->slab_stack[ix]->chunks;
|
||
allocator->slab_stack[ix]->chunks = chunk->next;
|
||
allocator->slab_stack[ix]->n_allocated++;
|
||
/* rotate empty slabs */
|
||
if (!allocator->slab_stack[ix]->chunks)
|
||
allocator->slab_stack[ix] = allocator->slab_stack[ix]->next;
|
||
return chunk;
|
||
}
|
||
|
||
static void
|
||
slab_allocator_free_chunk (gsize chunk_size,
|
||
gpointer mem)
|
||
{
|
||
ChunkLink *chunk;
|
||
gboolean was_empty;
|
||
guint ix = SLAB_INDEX (allocator, chunk_size);
|
||
gsize page_size = allocator_aligned_page_size (allocator, SLAB_BPAGE_SIZE (allocator, chunk_size));
|
||
gsize addr = ((gsize) mem / page_size) * page_size;
|
||
/* mask page address */
|
||
guint8 *page = (guint8*) addr;
|
||
SlabInfo *sinfo = (SlabInfo*) (page + page_size - SLAB_INFO_SIZE);
|
||
/* assert valid chunk count */
|
||
mem_assert (sinfo->n_allocated > 0);
|
||
/* add chunk to free list */
|
||
was_empty = sinfo->chunks == NULL;
|
||
chunk = (ChunkLink*) mem;
|
||
chunk->next = sinfo->chunks;
|
||
sinfo->chunks = chunk;
|
||
sinfo->n_allocated--;
|
||
/* keep slab ring partially sorted, empty slabs at end */
|
||
if (was_empty)
|
||
{
|
||
/* unlink slab */
|
||
SlabInfo *next = sinfo->next, *prev = sinfo->prev;
|
||
next->prev = prev;
|
||
prev->next = next;
|
||
if (allocator->slab_stack[ix] == sinfo)
|
||
allocator->slab_stack[ix] = next == sinfo ? NULL : next;
|
||
/* insert slab at head */
|
||
allocator_slab_stack_push (allocator, ix, sinfo);
|
||
}
|
||
/* eagerly free complete unused slabs */
|
||
if (!sinfo->n_allocated)
|
||
{
|
||
/* unlink slab */
|
||
SlabInfo *next = sinfo->next, *prev = sinfo->prev;
|
||
next->prev = prev;
|
||
prev->next = next;
|
||
if (allocator->slab_stack[ix] == sinfo)
|
||
allocator->slab_stack[ix] = next == sinfo ? NULL : next;
|
||
/* free slab */
|
||
allocator_memfree (page_size, page);
|
||
}
|
||
}
|
||
|
||
/* --- memalign implementation --- */
|
||
#ifdef HAVE_MALLOC_H
|
||
#include <malloc.h> /* memalign() */
|
||
#endif
|
||
|
||
/* from config.h:
|
||
* define HAVE_POSIX_MEMALIGN 1 // if free(posix_memalign(3)) works, <stdlib.h>
|
||
* define HAVE_MEMALIGN 1 // if free(memalign(3)) works, <malloc.h>
|
||
* define HAVE_VALLOC 1 // if free(valloc(3)) works, <stdlib.h> or <malloc.h>
|
||
* if none is provided, we implement malloc(3)-based alloc-only page alignment
|
||
*/
|
||
|
||
#if !(HAVE_POSIX_MEMALIGN || HAVE_MEMALIGN || HAVE_VALLOC)
|
||
G_GNUC_BEGIN_IGNORE_DEPRECATIONS
|
||
static GTrashStack *compat_valloc_trash = NULL;
|
||
G_GNUC_END_IGNORE_DEPRECATIONS
|
||
#endif
|
||
|
||
static gpointer
|
||
allocator_memalign (gsize alignment,
|
||
gsize memsize)
|
||
{
|
||
gpointer aligned_memory = NULL;
|
||
gint err = ENOMEM;
|
||
#if HAVE_POSIX_MEMALIGN
|
||
err = posix_memalign (&aligned_memory, alignment, memsize);
|
||
#elif HAVE_MEMALIGN
|
||
errno = 0;
|
||
aligned_memory = memalign (alignment, memsize);
|
||
err = errno;
|
||
#elif HAVE_VALLOC
|
||
errno = 0;
|
||
aligned_memory = valloc (memsize);
|
||
err = errno;
|
||
#else
|
||
/* simplistic non-freeing page allocator */
|
||
mem_assert (alignment == sys_page_size);
|
||
mem_assert (memsize <= sys_page_size);
|
||
if (!compat_valloc_trash)
|
||
{
|
||
const guint n_pages = 16;
|
||
guint8 *mem = malloc (n_pages * sys_page_size);
|
||
err = errno;
|
||
if (mem)
|
||
{
|
||
gint i = n_pages;
|
||
guint8 *amem = (guint8*) ALIGN ((gsize) mem, sys_page_size);
|
||
if (amem != mem)
|
||
i--; /* mem wasn't page aligned */
|
||
G_GNUC_BEGIN_IGNORE_DEPRECATIONS
|
||
while (--i >= 0)
|
||
g_trash_stack_push (&compat_valloc_trash, amem + i * sys_page_size);
|
||
G_GNUC_END_IGNORE_DEPRECATIONS
|
||
}
|
||
}
|
||
G_GNUC_BEGIN_IGNORE_DEPRECATIONS
|
||
aligned_memory = g_trash_stack_pop (&compat_valloc_trash);
|
||
G_GNUC_END_IGNORE_DEPRECATIONS
|
||
#endif
|
||
if (!aligned_memory)
|
||
errno = err;
|
||
return aligned_memory;
|
||
}
|
||
|
||
static void
|
||
allocator_memfree (gsize memsize,
|
||
gpointer mem)
|
||
{
|
||
#if HAVE_POSIX_MEMALIGN || HAVE_MEMALIGN || HAVE_VALLOC
|
||
free (mem);
|
||
#else
|
||
mem_assert (memsize <= sys_page_size);
|
||
G_GNUC_BEGIN_IGNORE_DEPRECATIONS
|
||
g_trash_stack_push (&compat_valloc_trash, mem);
|
||
G_GNUC_END_IGNORE_DEPRECATIONS
|
||
#endif
|
||
}
|
||
|
||
static void
|
||
mem_error (const char *format,
|
||
...)
|
||
{
|
||
const char *pname;
|
||
va_list args;
|
||
/* at least, put out "MEMORY-ERROR", in case we segfault during the rest of the function */
|
||
fputs ("\n***MEMORY-ERROR***: ", stderr);
|
||
pname = g_get_prgname();
|
||
g_fprintf (stderr, "%s[%ld]: GSlice: ", pname ? pname : "", (long)getpid());
|
||
va_start (args, format);
|
||
g_vfprintf (stderr, format, args);
|
||
va_end (args);
|
||
fputs ("\n", stderr);
|
||
abort();
|
||
_exit (1);
|
||
}
|
||
|
||
/* --- g-slice memory checker tree --- */
|
||
typedef size_t SmcKType; /* key type */
|
||
typedef size_t SmcVType; /* value type */
|
||
typedef struct {
|
||
SmcKType key;
|
||
SmcVType value;
|
||
} SmcEntry;
|
||
static void smc_tree_insert (SmcKType key,
|
||
SmcVType value);
|
||
static gboolean smc_tree_lookup (SmcKType key,
|
||
SmcVType *value_p);
|
||
static gboolean smc_tree_remove (SmcKType key);
|
||
|
||
|
||
/* --- g-slice memory checker implementation --- */
|
||
static void
|
||
smc_notify_alloc (void *pointer,
|
||
size_t size)
|
||
{
|
||
size_t address = (size_t) pointer;
|
||
if (pointer)
|
||
smc_tree_insert (address, size);
|
||
}
|
||
|
||
#if 0
|
||
static void
|
||
smc_notify_ignore (void *pointer)
|
||
{
|
||
size_t address = (size_t) pointer;
|
||
if (pointer)
|
||
smc_tree_remove (address);
|
||
}
|
||
#endif
|
||
|
||
static int
|
||
smc_notify_free (void *pointer,
|
||
size_t size)
|
||
{
|
||
size_t address = (size_t) pointer;
|
||
SmcVType real_size;
|
||
gboolean found_one;
|
||
|
||
if (!pointer)
|
||
return 1; /* ignore */
|
||
found_one = smc_tree_lookup (address, &real_size);
|
||
if (!found_one)
|
||
{
|
||
g_fprintf (stderr, "GSlice: MemChecker: attempt to release non-allocated block: %p size=%" G_GSIZE_FORMAT "\n", pointer, size);
|
||
return 0;
|
||
}
|
||
if (real_size != size && (real_size || size))
|
||
{
|
||
g_fprintf (stderr, "GSlice: MemChecker: attempt to release block with invalid size: %p size=%" G_GSIZE_FORMAT " invalid-size=%" G_GSIZE_FORMAT "\n", pointer, real_size, size);
|
||
return 0;
|
||
}
|
||
if (!smc_tree_remove (address))
|
||
{
|
||
g_fprintf (stderr, "GSlice: MemChecker: attempt to release non-allocated block: %p size=%" G_GSIZE_FORMAT "\n", pointer, size);
|
||
return 0;
|
||
}
|
||
return 1; /* all fine */
|
||
}
|
||
|
||
/* --- g-slice memory checker tree implementation --- */
|
||
#define SMC_TRUNK_COUNT (4093 /* 16381 */) /* prime, to distribute trunk collisions (big, allocated just once) */
|
||
#define SMC_BRANCH_COUNT (511) /* prime, to distribute branch collisions */
|
||
#define SMC_TRUNK_EXTENT (SMC_BRANCH_COUNT * 2039) /* key address space per trunk, should distribute uniformly across BRANCH_COUNT */
|
||
#define SMC_TRUNK_HASH(k) ((k / SMC_TRUNK_EXTENT) % SMC_TRUNK_COUNT) /* generate new trunk hash per megabyte (roughly) */
|
||
#define SMC_BRANCH_HASH(k) (k % SMC_BRANCH_COUNT)
|
||
|
||
typedef struct {
|
||
SmcEntry *entries;
|
||
unsigned int n_entries;
|
||
} SmcBranch;
|
||
|
||
static SmcBranch **smc_tree_root = NULL;
|
||
|
||
static void
|
||
smc_tree_abort (int errval)
|
||
{
|
||
const char *syserr = strerror (errval);
|
||
mem_error ("MemChecker: failure in debugging tree: %s", syserr);
|
||
}
|
||
|
||
static inline SmcEntry*
|
||
smc_tree_branch_grow_L (SmcBranch *branch,
|
||
unsigned int index)
|
||
{
|
||
unsigned int old_size = branch->n_entries * sizeof (branch->entries[0]);
|
||
unsigned int new_size = old_size + sizeof (branch->entries[0]);
|
||
SmcEntry *entry;
|
||
mem_assert (index <= branch->n_entries);
|
||
branch->entries = (SmcEntry*) realloc (branch->entries, new_size);
|
||
if (!branch->entries)
|
||
smc_tree_abort (errno);
|
||
entry = branch->entries + index;
|
||
memmove (entry + 1, entry, (branch->n_entries - index) * sizeof (entry[0]));
|
||
branch->n_entries += 1;
|
||
return entry;
|
||
}
|
||
|
||
static inline SmcEntry*
|
||
smc_tree_branch_lookup_nearest_L (SmcBranch *branch,
|
||
SmcKType key)
|
||
{
|
||
unsigned int n_nodes = branch->n_entries, offs = 0;
|
||
SmcEntry *check = branch->entries;
|
||
int cmp = 0;
|
||
while (offs < n_nodes)
|
||
{
|
||
unsigned int i = (offs + n_nodes) >> 1;
|
||
check = branch->entries + i;
|
||
cmp = key < check->key ? -1 : key != check->key;
|
||
if (cmp == 0)
|
||
return check; /* return exact match */
|
||
else if (cmp < 0)
|
||
n_nodes = i;
|
||
else /* (cmp > 0) */
|
||
offs = i + 1;
|
||
}
|
||
/* check points at last mismatch, cmp > 0 indicates greater key */
|
||
return cmp > 0 ? check + 1 : check; /* return insertion position for inexact match */
|
||
}
|
||
|
||
static void
|
||
smc_tree_insert (SmcKType key,
|
||
SmcVType value)
|
||
{
|
||
unsigned int ix0, ix1;
|
||
SmcEntry *entry;
|
||
|
||
g_mutex_lock (&smc_tree_mutex);
|
||
ix0 = SMC_TRUNK_HASH (key);
|
||
ix1 = SMC_BRANCH_HASH (key);
|
||
if (!smc_tree_root)
|
||
{
|
||
smc_tree_root = calloc (SMC_TRUNK_COUNT, sizeof (smc_tree_root[0]));
|
||
if (!smc_tree_root)
|
||
smc_tree_abort (errno);
|
||
}
|
||
if (!smc_tree_root[ix0])
|
||
{
|
||
smc_tree_root[ix0] = calloc (SMC_BRANCH_COUNT, sizeof (smc_tree_root[0][0]));
|
||
if (!smc_tree_root[ix0])
|
||
smc_tree_abort (errno);
|
||
}
|
||
entry = smc_tree_branch_lookup_nearest_L (&smc_tree_root[ix0][ix1], key);
|
||
if (!entry || /* need create */
|
||
entry >= smc_tree_root[ix0][ix1].entries + smc_tree_root[ix0][ix1].n_entries || /* need append */
|
||
entry->key != key) /* need insert */
|
||
entry = smc_tree_branch_grow_L (&smc_tree_root[ix0][ix1], entry - smc_tree_root[ix0][ix1].entries);
|
||
entry->key = key;
|
||
entry->value = value;
|
||
g_mutex_unlock (&smc_tree_mutex);
|
||
}
|
||
|
||
static gboolean
|
||
smc_tree_lookup (SmcKType key,
|
||
SmcVType *value_p)
|
||
{
|
||
SmcEntry *entry = NULL;
|
||
unsigned int ix0 = SMC_TRUNK_HASH (key), ix1 = SMC_BRANCH_HASH (key);
|
||
gboolean found_one = FALSE;
|
||
*value_p = 0;
|
||
g_mutex_lock (&smc_tree_mutex);
|
||
if (smc_tree_root && smc_tree_root[ix0])
|
||
{
|
||
entry = smc_tree_branch_lookup_nearest_L (&smc_tree_root[ix0][ix1], key);
|
||
if (entry &&
|
||
entry < smc_tree_root[ix0][ix1].entries + smc_tree_root[ix0][ix1].n_entries &&
|
||
entry->key == key)
|
||
{
|
||
found_one = TRUE;
|
||
*value_p = entry->value;
|
||
}
|
||
}
|
||
g_mutex_unlock (&smc_tree_mutex);
|
||
return found_one;
|
||
}
|
||
|
||
static gboolean
|
||
smc_tree_remove (SmcKType key)
|
||
{
|
||
unsigned int ix0 = SMC_TRUNK_HASH (key), ix1 = SMC_BRANCH_HASH (key);
|
||
gboolean found_one = FALSE;
|
||
g_mutex_lock (&smc_tree_mutex);
|
||
if (smc_tree_root && smc_tree_root[ix0])
|
||
{
|
||
SmcEntry *entry = smc_tree_branch_lookup_nearest_L (&smc_tree_root[ix0][ix1], key);
|
||
if (entry &&
|
||
entry < smc_tree_root[ix0][ix1].entries + smc_tree_root[ix0][ix1].n_entries &&
|
||
entry->key == key)
|
||
{
|
||
unsigned int i = entry - smc_tree_root[ix0][ix1].entries;
|
||
smc_tree_root[ix0][ix1].n_entries -= 1;
|
||
memmove (entry, entry + 1, (smc_tree_root[ix0][ix1].n_entries - i) * sizeof (entry[0]));
|
||
if (!smc_tree_root[ix0][ix1].n_entries)
|
||
{
|
||
/* avoid useless pressure on the memory system */
|
||
free (smc_tree_root[ix0][ix1].entries);
|
||
smc_tree_root[ix0][ix1].entries = NULL;
|
||
}
|
||
found_one = TRUE;
|
||
}
|
||
}
|
||
g_mutex_unlock (&smc_tree_mutex);
|
||
return found_one;
|
||
}
|
||
|
||
#ifdef G_ENABLE_DEBUG
|
||
void
|
||
g_slice_debug_tree_statistics (void)
|
||
{
|
||
g_mutex_lock (&smc_tree_mutex);
|
||
if (smc_tree_root)
|
||
{
|
||
unsigned int i, j, t = 0, o = 0, b = 0, su = 0, ex = 0, en = 4294967295u;
|
||
double tf, bf;
|
||
for (i = 0; i < SMC_TRUNK_COUNT; i++)
|
||
if (smc_tree_root[i])
|
||
{
|
||
t++;
|
||
for (j = 0; j < SMC_BRANCH_COUNT; j++)
|
||
if (smc_tree_root[i][j].n_entries)
|
||
{
|
||
b++;
|
||
su += smc_tree_root[i][j].n_entries;
|
||
en = MIN (en, smc_tree_root[i][j].n_entries);
|
||
ex = MAX (ex, smc_tree_root[i][j].n_entries);
|
||
}
|
||
else if (smc_tree_root[i][j].entries)
|
||
o++; /* formerly used, now empty */
|
||
}
|
||
en = b ? en : 0;
|
||
tf = MAX (t, 1.0); /* max(1) to be a valid divisor */
|
||
bf = MAX (b, 1.0); /* max(1) to be a valid divisor */
|
||
g_fprintf (stderr, "GSlice: MemChecker: %u trunks, %u branches, %u old branches\n", t, b, o);
|
||
g_fprintf (stderr, "GSlice: MemChecker: %f branches per trunk, %.2f%% utilization\n",
|
||
b / tf,
|
||
100.0 - (SMC_BRANCH_COUNT - b / tf) / (0.01 * SMC_BRANCH_COUNT));
|
||
g_fprintf (stderr, "GSlice: MemChecker: %f entries per branch, %u minimum, %u maximum\n",
|
||
su / bf, en, ex);
|
||
}
|
||
else
|
||
g_fprintf (stderr, "GSlice: MemChecker: root=NULL\n");
|
||
g_mutex_unlock (&smc_tree_mutex);
|
||
|
||
/* sample statistics (beast + GSLice + 24h scripted core & GUI activity):
|
||
* PID %CPU %MEM VSZ RSS COMMAND
|
||
* 8887 30.3 45.8 456068 414856 beast-0.7.1 empty.bse
|
||
* $ cat /proc/8887/statm # total-program-size resident-set-size shared-pages text/code data/stack library dirty-pages
|
||
* 114017 103714 2354 344 0 108676 0
|
||
* $ cat /proc/8887/status
|
||
* Name: beast-0.7.1
|
||
* VmSize: 456068 kB
|
||
* VmLck: 0 kB
|
||
* VmRSS: 414856 kB
|
||
* VmData: 434620 kB
|
||
* VmStk: 84 kB
|
||
* VmExe: 1376 kB
|
||
* VmLib: 13036 kB
|
||
* VmPTE: 456 kB
|
||
* Threads: 3
|
||
* (gdb) print g_slice_debug_tree_statistics ()
|
||
* GSlice: MemChecker: 422 trunks, 213068 branches, 0 old branches
|
||
* GSlice: MemChecker: 504.900474 branches per trunk, 98.81% utilization
|
||
* GSlice: MemChecker: 4.965039 entries per branch, 1 minimum, 37 maximum
|
||
*/
|
||
}
|
||
#endif /* G_ENABLE_DEBUG */
|