mirror of
https://gitlab.gnome.org/GNOME/glib.git
synced 2025-01-24 04:56:14 +01:00
1421 lines
42 KiB
C
1421 lines
42 KiB
C
/* -*- mode: C; c-file-style: "gnu"; indent-tabs-mode: nil; -*- */
|
|
|
|
/* GIO - GLib Input, Output and Streaming Library
|
|
*
|
|
* Copyright (C) 2008 Red Hat, Inc.
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General
|
|
* Public License along with this library; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place, Suite 330,
|
|
* Boston, MA 02111-1307, USA.
|
|
*/
|
|
|
|
#include "config.h"
|
|
#include <glib.h>
|
|
#include "glibintl.h"
|
|
|
|
#include "gresolver.h"
|
|
#include "gnetworkingprivate.h"
|
|
#include "gasyncresult.h"
|
|
#include "ginetaddress.h"
|
|
#include "ginetsocketaddress.h"
|
|
#include "gsimpleasyncresult.h"
|
|
#include "gsrvtarget.h"
|
|
#include "gthreadedresolver.h"
|
|
|
|
#ifdef G_OS_UNIX
|
|
#include <sys/stat.h>
|
|
#endif
|
|
|
|
#include <stdlib.h>
|
|
|
|
|
|
/**
|
|
* SECTION:gresolver
|
|
* @short_description: Asynchronous and cancellable DNS resolver
|
|
* @include: gio/gio.h
|
|
*
|
|
* #GResolver provides cancellable synchronous and asynchronous DNS
|
|
* resolution, for hostnames (g_resolver_lookup_by_address(),
|
|
* g_resolver_lookup_by_name() and their async variants) and SRV
|
|
* (service) records (g_resolver_lookup_service()).
|
|
*
|
|
* #GNetworkAddress and #GNetworkService provide wrappers around
|
|
* #GResolver functionality that also implement #GSocketConnectable,
|
|
* making it easy to connect to a remote host/service.
|
|
*/
|
|
|
|
enum {
|
|
RELOAD,
|
|
LAST_SIGNAL
|
|
};
|
|
|
|
static guint signals[LAST_SIGNAL] = { 0 };
|
|
|
|
struct _GResolverPrivate {
|
|
#ifdef G_OS_UNIX
|
|
time_t resolv_conf_timestamp;
|
|
#else
|
|
int dummy;
|
|
#endif
|
|
};
|
|
|
|
/**
|
|
* GResolver:
|
|
*
|
|
* The object that handles DNS resolution. Use g_resolver_get_default()
|
|
* to get the default resolver.
|
|
*/
|
|
G_DEFINE_TYPE (GResolver, g_resolver, G_TYPE_OBJECT)
|
|
|
|
static GList *
|
|
srv_records_to_targets (GList *records)
|
|
{
|
|
const gchar *hostname;
|
|
guint16 port, priority, weight;
|
|
GSrvTarget *target;
|
|
GList *l;
|
|
|
|
for (l = records; l != NULL; l = g_list_next (l))
|
|
{
|
|
g_variant_get (l->data, "(qqq&s)", &priority, &weight, &port, &hostname);
|
|
target = g_srv_target_new (hostname, port, priority, weight);
|
|
g_variant_unref (l->data);
|
|
l->data = target;
|
|
}
|
|
|
|
return g_srv_target_list_sort (records);
|
|
}
|
|
|
|
static GList *
|
|
g_resolver_real_lookup_service (GResolver *resolver,
|
|
const gchar *rrname,
|
|
GCancellable *cancellable,
|
|
GError **error)
|
|
{
|
|
GList *records;
|
|
|
|
records = G_RESOLVER_GET_CLASS (resolver)->lookup_records (resolver,
|
|
rrname,
|
|
G_RESOLVER_RECORD_SRV,
|
|
cancellable,
|
|
error);
|
|
|
|
return srv_records_to_targets (records);
|
|
}
|
|
|
|
static void
|
|
g_resolver_real_lookup_service_async (GResolver *resolver,
|
|
const gchar *rrname,
|
|
GCancellable *cancellable,
|
|
GAsyncReadyCallback callback,
|
|
gpointer user_data)
|
|
{
|
|
G_RESOLVER_GET_CLASS (resolver)->lookup_records_async (resolver,
|
|
rrname,
|
|
G_RESOLVER_RECORD_SRV,
|
|
cancellable,
|
|
callback,
|
|
user_data);
|
|
}
|
|
|
|
static GList *
|
|
g_resolver_real_lookup_service_finish (GResolver *resolver,
|
|
GAsyncResult *result,
|
|
GError **error)
|
|
{
|
|
GList *records;
|
|
|
|
records = G_RESOLVER_GET_CLASS (resolver)->lookup_records_finish (resolver,
|
|
result,
|
|
error);
|
|
|
|
return srv_records_to_targets (records);
|
|
}
|
|
|
|
static void
|
|
g_resolver_class_init (GResolverClass *resolver_class)
|
|
{
|
|
/* Automatically pass these over to the lookup_records methods */
|
|
resolver_class->lookup_service = g_resolver_real_lookup_service;
|
|
resolver_class->lookup_service_async = g_resolver_real_lookup_service_async;
|
|
resolver_class->lookup_service_finish = g_resolver_real_lookup_service_finish;
|
|
|
|
g_type_class_add_private (resolver_class, sizeof (GResolverPrivate));
|
|
|
|
/* Make sure _g_networking_init() has been called */
|
|
g_type_ensure (G_TYPE_INET_ADDRESS);
|
|
|
|
/* Initialize _g_resolver_addrinfo_hints */
|
|
#ifdef AI_ADDRCONFIG
|
|
_g_resolver_addrinfo_hints.ai_flags |= AI_ADDRCONFIG;
|
|
#endif
|
|
/* These two don't actually matter, they just get copied into the
|
|
* returned addrinfo structures (and then we ignore them). But if
|
|
* we leave them unset, we'll get back duplicate answers.
|
|
*/
|
|
_g_resolver_addrinfo_hints.ai_socktype = SOCK_STREAM;
|
|
_g_resolver_addrinfo_hints.ai_protocol = IPPROTO_TCP;
|
|
|
|
/**
|
|
* GResolver::reload:
|
|
* @resolver: a #GResolver
|
|
*
|
|
* Emitted when the resolver notices that the system resolver
|
|
* configuration has changed.
|
|
**/
|
|
signals[RELOAD] =
|
|
g_signal_new (I_("reload"),
|
|
G_TYPE_RESOLVER,
|
|
G_SIGNAL_RUN_LAST,
|
|
G_STRUCT_OFFSET (GResolverClass, reload),
|
|
NULL, NULL,
|
|
g_cclosure_marshal_VOID__VOID,
|
|
G_TYPE_NONE, 0);
|
|
}
|
|
|
|
static void
|
|
g_resolver_init (GResolver *resolver)
|
|
{
|
|
#ifdef G_OS_UNIX
|
|
struct stat st;
|
|
#endif
|
|
|
|
resolver->priv = G_TYPE_INSTANCE_GET_PRIVATE (resolver, G_TYPE_RESOLVER, GResolverPrivate);
|
|
|
|
#ifdef G_OS_UNIX
|
|
if (stat (_PATH_RESCONF, &st) == 0)
|
|
resolver->priv->resolv_conf_timestamp = st.st_mtime;
|
|
#endif
|
|
}
|
|
|
|
static GResolver *default_resolver;
|
|
|
|
/**
|
|
* g_resolver_get_default:
|
|
*
|
|
* Gets the default #GResolver. You should unref it when you are done
|
|
* with it. #GResolver may use its reference count as a hint about how
|
|
* many threads it should allocate for concurrent DNS resolutions.
|
|
*
|
|
* Return value: (transfer full): the default #GResolver.
|
|
*
|
|
* Since: 2.22
|
|
*/
|
|
GResolver *
|
|
g_resolver_get_default (void)
|
|
{
|
|
if (!default_resolver)
|
|
default_resolver = g_object_new (G_TYPE_THREADED_RESOLVER, NULL);
|
|
|
|
return g_object_ref (default_resolver);
|
|
}
|
|
|
|
/**
|
|
* g_resolver_set_default:
|
|
* @resolver: the new default #GResolver
|
|
*
|
|
* Sets @resolver to be the application's default resolver (reffing
|
|
* @resolver, and unreffing the previous default resolver, if any).
|
|
* Future calls to g_resolver_get_default() will return this resolver.
|
|
*
|
|
* This can be used if an application wants to perform any sort of DNS
|
|
* caching or "pinning"; it can implement its own #GResolver that
|
|
* calls the original default resolver for DNS operations, and
|
|
* implements its own cache policies on top of that, and then set
|
|
* itself as the default resolver for all later code to use.
|
|
*
|
|
* Since: 2.22
|
|
*/
|
|
void
|
|
g_resolver_set_default (GResolver *resolver)
|
|
{
|
|
if (default_resolver)
|
|
g_object_unref (default_resolver);
|
|
default_resolver = g_object_ref (resolver);
|
|
}
|
|
|
|
|
|
static void
|
|
g_resolver_maybe_reload (GResolver *resolver)
|
|
{
|
|
#ifdef G_OS_UNIX
|
|
struct stat st;
|
|
|
|
if (stat (_PATH_RESCONF, &st) == 0)
|
|
{
|
|
if (st.st_mtime != resolver->priv->resolv_conf_timestamp)
|
|
{
|
|
resolver->priv->resolv_conf_timestamp = st.st_mtime;
|
|
res_init ();
|
|
g_signal_emit (resolver, signals[RELOAD], 0);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* filter out duplicates, cf. https://bugzilla.gnome.org/show_bug.cgi?id=631379 */
|
|
static void
|
|
remove_duplicates (GList *addrs)
|
|
{
|
|
GList *l;
|
|
GList *ll;
|
|
GList *lll;
|
|
|
|
/* TODO: if this is too slow (it's O(n^2) but n is typically really
|
|
* small), we can do something more clever but note that we must not
|
|
* change the order of elements...
|
|
*/
|
|
for (l = addrs; l != NULL; l = l->next)
|
|
{
|
|
GInetAddress *address = G_INET_ADDRESS (l->data);
|
|
for (ll = l->next; ll != NULL; ll = lll)
|
|
{
|
|
GInetAddress *other_address = G_INET_ADDRESS (ll->data);
|
|
lll = ll->next;
|
|
if (g_inet_address_equal (address, other_address))
|
|
{
|
|
g_object_unref (other_address);
|
|
/* we never return the first element */
|
|
g_warn_if_fail (g_list_delete_link (addrs, ll) == addrs);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* g_resolver_lookup_by_name:
|
|
* @resolver: a #GResolver
|
|
* @hostname: the hostname to look up
|
|
* @cancellable: (allow-none): a #GCancellable, or %NULL
|
|
* @error: return location for a #GError, or %NULL
|
|
*
|
|
* Synchronously resolves @hostname to determine its associated IP
|
|
* address(es). @hostname may be an ASCII-only or UTF-8 hostname, or
|
|
* the textual form of an IP address (in which case this just becomes
|
|
* a wrapper around g_inet_address_new_from_string()).
|
|
*
|
|
* On success, g_resolver_lookup_by_name() will return a #GList of
|
|
* #GInetAddress, sorted in order of preference and guaranteed to not
|
|
* contain duplicates. That is, if using the result to connect to
|
|
* @hostname, you should attempt to connect to the first address
|
|
* first, then the second if the first fails, etc. If you are using
|
|
* the result to listen on a socket, it is appropriate to add each
|
|
* result using e.g. g_socket_listener_add_address().
|
|
*
|
|
* If the DNS resolution fails, @error (if non-%NULL) will be set to a
|
|
* value from #GResolverError.
|
|
*
|
|
* If @cancellable is non-%NULL, it can be used to cancel the
|
|
* operation, in which case @error (if non-%NULL) will be set to
|
|
* %G_IO_ERROR_CANCELLED.
|
|
*
|
|
* If you are planning to connect to a socket on the resolved IP
|
|
* address, it may be easier to create a #GNetworkAddress and use its
|
|
* #GSocketConnectable interface.
|
|
*
|
|
* Return value: (element-type GInetAddress) (transfer full): a #GList
|
|
* of #GInetAddress, or %NULL on error. You
|
|
* must unref each of the addresses and free the list when you are
|
|
* done with it. (You can use g_resolver_free_addresses() to do this.)
|
|
*
|
|
* Since: 2.22
|
|
*/
|
|
GList *
|
|
g_resolver_lookup_by_name (GResolver *resolver,
|
|
const gchar *hostname,
|
|
GCancellable *cancellable,
|
|
GError **error)
|
|
{
|
|
GInetAddress *addr;
|
|
GList *addrs;
|
|
gchar *ascii_hostname = NULL;
|
|
|
|
g_return_val_if_fail (G_IS_RESOLVER (resolver), NULL);
|
|
g_return_val_if_fail (hostname != NULL, NULL);
|
|
|
|
/* Check if @hostname is just an IP address */
|
|
addr = g_inet_address_new_from_string (hostname);
|
|
if (addr)
|
|
return g_list_append (NULL, addr);
|
|
|
|
if (g_hostname_is_non_ascii (hostname))
|
|
hostname = ascii_hostname = g_hostname_to_ascii (hostname);
|
|
|
|
g_resolver_maybe_reload (resolver);
|
|
addrs = G_RESOLVER_GET_CLASS (resolver)->
|
|
lookup_by_name (resolver, hostname, cancellable, error);
|
|
|
|
remove_duplicates (addrs);
|
|
|
|
g_free (ascii_hostname);
|
|
return addrs;
|
|
}
|
|
|
|
/**
|
|
* g_resolver_lookup_by_name_async:
|
|
* @resolver: a #GResolver
|
|
* @hostname: the hostname to look up the address of
|
|
* @cancellable: (allow-none): a #GCancellable, or %NULL
|
|
* @callback: (scope async): callback to call after resolution completes
|
|
* @user_data: (closure): data for @callback
|
|
*
|
|
* Begins asynchronously resolving @hostname to determine its
|
|
* associated IP address(es), and eventually calls @callback, which
|
|
* must call g_resolver_lookup_by_name_finish() to get the result.
|
|
* See g_resolver_lookup_by_name() for more details.
|
|
*
|
|
* Since: 2.22
|
|
*/
|
|
void
|
|
g_resolver_lookup_by_name_async (GResolver *resolver,
|
|
const gchar *hostname,
|
|
GCancellable *cancellable,
|
|
GAsyncReadyCallback callback,
|
|
gpointer user_data)
|
|
{
|
|
GInetAddress *addr;
|
|
gchar *ascii_hostname = NULL;
|
|
|
|
g_return_if_fail (G_IS_RESOLVER (resolver));
|
|
g_return_if_fail (hostname != NULL);
|
|
|
|
/* Check if @hostname is just an IP address */
|
|
addr = g_inet_address_new_from_string (hostname);
|
|
if (addr)
|
|
{
|
|
GSimpleAsyncResult *simple;
|
|
|
|
simple = g_simple_async_result_new (G_OBJECT (resolver),
|
|
callback, user_data,
|
|
g_resolver_lookup_by_name_async);
|
|
|
|
g_simple_async_result_set_op_res_gpointer (simple, addr, g_object_unref);
|
|
g_simple_async_result_complete_in_idle (simple);
|
|
g_object_unref (simple);
|
|
return;
|
|
}
|
|
|
|
if (g_hostname_is_non_ascii (hostname))
|
|
hostname = ascii_hostname = g_hostname_to_ascii (hostname);
|
|
|
|
g_resolver_maybe_reload (resolver);
|
|
G_RESOLVER_GET_CLASS (resolver)->
|
|
lookup_by_name_async (resolver, hostname, cancellable, callback, user_data);
|
|
|
|
g_free (ascii_hostname);
|
|
}
|
|
|
|
/**
|
|
* g_resolver_lookup_by_name_finish:
|
|
* @resolver: a #GResolver
|
|
* @result: the result passed to your #GAsyncReadyCallback
|
|
* @error: return location for a #GError, or %NULL
|
|
*
|
|
* Retrieves the result of a call to
|
|
* g_resolver_lookup_by_name_async().
|
|
*
|
|
* If the DNS resolution failed, @error (if non-%NULL) will be set to
|
|
* a value from #GResolverError. If the operation was cancelled,
|
|
* @error will be set to %G_IO_ERROR_CANCELLED.
|
|
*
|
|
* Return value: (element-type GInetAddress) (transfer full): a #GList
|
|
* of #GInetAddress, or %NULL on error. See g_resolver_lookup_by_name()
|
|
* for more details.
|
|
*
|
|
* Since: 2.22
|
|
*/
|
|
GList *
|
|
g_resolver_lookup_by_name_finish (GResolver *resolver,
|
|
GAsyncResult *result,
|
|
GError **error)
|
|
{
|
|
GList *addrs;
|
|
|
|
g_return_val_if_fail (G_IS_RESOLVER (resolver), NULL);
|
|
|
|
if (g_async_result_legacy_propagate_error (result, error))
|
|
return NULL;
|
|
else if (g_async_result_is_tagged (result, g_resolver_lookup_by_name_async))
|
|
{
|
|
GSimpleAsyncResult *simple = G_SIMPLE_ASYNC_RESULT (result);
|
|
GInetAddress *addr;
|
|
|
|
/* Handle the stringified-IP-addr case */
|
|
addr = g_simple_async_result_get_op_res_gpointer (simple);
|
|
return g_list_append (NULL, g_object_ref (addr));
|
|
}
|
|
|
|
addrs = G_RESOLVER_GET_CLASS (resolver)->
|
|
lookup_by_name_finish (resolver, result, error);
|
|
|
|
remove_duplicates (addrs);
|
|
|
|
return addrs;
|
|
}
|
|
|
|
/**
|
|
* g_resolver_free_addresses: (skip)
|
|
* @addresses: a #GList of #GInetAddress
|
|
*
|
|
* Frees @addresses (which should be the return value from
|
|
* g_resolver_lookup_by_name() or g_resolver_lookup_by_name_finish()).
|
|
* (This is a convenience method; you can also simply free the results
|
|
* by hand.)
|
|
*
|
|
* Since: 2.22
|
|
*/
|
|
void
|
|
g_resolver_free_addresses (GList *addresses)
|
|
{
|
|
GList *a;
|
|
|
|
for (a = addresses; a; a = a->next)
|
|
g_object_unref (a->data);
|
|
g_list_free (addresses);
|
|
}
|
|
|
|
/**
|
|
* g_resolver_lookup_by_address:
|
|
* @resolver: a #GResolver
|
|
* @address: the address to reverse-resolve
|
|
* @cancellable: (allow-none): a #GCancellable, or %NULL
|
|
* @error: return location for a #GError, or %NULL
|
|
*
|
|
* Synchronously reverse-resolves @address to determine its
|
|
* associated hostname.
|
|
*
|
|
* If the DNS resolution fails, @error (if non-%NULL) will be set to
|
|
* a value from #GResolverError.
|
|
*
|
|
* If @cancellable is non-%NULL, it can be used to cancel the
|
|
* operation, in which case @error (if non-%NULL) will be set to
|
|
* %G_IO_ERROR_CANCELLED.
|
|
*
|
|
* Return value: a hostname (either ASCII-only, or in ASCII-encoded
|
|
* form), or %NULL on error.
|
|
*
|
|
* Since: 2.22
|
|
*/
|
|
gchar *
|
|
g_resolver_lookup_by_address (GResolver *resolver,
|
|
GInetAddress *address,
|
|
GCancellable *cancellable,
|
|
GError **error)
|
|
{
|
|
g_return_val_if_fail (G_IS_RESOLVER (resolver), NULL);
|
|
g_return_val_if_fail (G_IS_INET_ADDRESS (address), NULL);
|
|
|
|
g_resolver_maybe_reload (resolver);
|
|
return G_RESOLVER_GET_CLASS (resolver)->
|
|
lookup_by_address (resolver, address, cancellable, error);
|
|
}
|
|
|
|
/**
|
|
* g_resolver_lookup_by_address_async:
|
|
* @resolver: a #GResolver
|
|
* @address: the address to reverse-resolve
|
|
* @cancellable: (allow-none): a #GCancellable, or %NULL
|
|
* @callback: (scope async): callback to call after resolution completes
|
|
* @user_data: (closure): data for @callback
|
|
*
|
|
* Begins asynchronously reverse-resolving @address to determine its
|
|
* associated hostname, and eventually calls @callback, which must
|
|
* call g_resolver_lookup_by_address_finish() to get the final result.
|
|
*
|
|
* Since: 2.22
|
|
*/
|
|
void
|
|
g_resolver_lookup_by_address_async (GResolver *resolver,
|
|
GInetAddress *address,
|
|
GCancellable *cancellable,
|
|
GAsyncReadyCallback callback,
|
|
gpointer user_data)
|
|
{
|
|
g_return_if_fail (G_IS_RESOLVER (resolver));
|
|
g_return_if_fail (G_IS_INET_ADDRESS (address));
|
|
|
|
g_resolver_maybe_reload (resolver);
|
|
G_RESOLVER_GET_CLASS (resolver)->
|
|
lookup_by_address_async (resolver, address, cancellable, callback, user_data);
|
|
}
|
|
|
|
/**
|
|
* g_resolver_lookup_by_address_finish:
|
|
* @resolver: a #GResolver
|
|
* @result: the result passed to your #GAsyncReadyCallback
|
|
* @error: return location for a #GError, or %NULL
|
|
*
|
|
* Retrieves the result of a previous call to
|
|
* g_resolver_lookup_by_address_async().
|
|
*
|
|
* If the DNS resolution failed, @error (if non-%NULL) will be set to
|
|
* a value from #GResolverError. If the operation was cancelled,
|
|
* @error will be set to %G_IO_ERROR_CANCELLED.
|
|
*
|
|
* Return value: a hostname (either ASCII-only, or in ASCII-encoded
|
|
* form), or %NULL on error.
|
|
*
|
|
* Since: 2.22
|
|
*/
|
|
gchar *
|
|
g_resolver_lookup_by_address_finish (GResolver *resolver,
|
|
GAsyncResult *result,
|
|
GError **error)
|
|
{
|
|
g_return_val_if_fail (G_IS_RESOLVER (resolver), NULL);
|
|
|
|
if (g_async_result_legacy_propagate_error (result, error))
|
|
return NULL;
|
|
|
|
return G_RESOLVER_GET_CLASS (resolver)->
|
|
lookup_by_address_finish (resolver, result, error);
|
|
}
|
|
|
|
static gchar *
|
|
g_resolver_get_service_rrname (const char *service,
|
|
const char *protocol,
|
|
const char *domain)
|
|
{
|
|
gchar *rrname, *ascii_domain = NULL;
|
|
|
|
if (g_hostname_is_non_ascii (domain))
|
|
domain = ascii_domain = g_hostname_to_ascii (domain);
|
|
|
|
rrname = g_strdup_printf ("_%s._%s.%s", service, protocol, domain);
|
|
|
|
g_free (ascii_domain);
|
|
return rrname;
|
|
}
|
|
|
|
/**
|
|
* g_resolver_lookup_service:
|
|
* @resolver: a #GResolver
|
|
* @service: the service type to look up (eg, "ldap")
|
|
* @protocol: the networking protocol to use for @service (eg, "tcp")
|
|
* @domain: the DNS domain to look up the service in
|
|
* @cancellable: (allow-none): a #GCancellable, or %NULL
|
|
* @error: return location for a #GError, or %NULL
|
|
*
|
|
* Synchronously performs a DNS SRV lookup for the given @service and
|
|
* @protocol in the given @domain and returns an array of #GSrvTarget.
|
|
* @domain may be an ASCII-only or UTF-8 hostname. Note also that the
|
|
* @service and @protocol arguments <emphasis>do not</emphasis>
|
|
* include the leading underscore that appears in the actual DNS
|
|
* entry.
|
|
*
|
|
* On success, g_resolver_lookup_service() will return a #GList of
|
|
* #GSrvTarget, sorted in order of preference. (That is, you should
|
|
* attempt to connect to the first target first, then the second if
|
|
* the first fails, etc.)
|
|
*
|
|
* If the DNS resolution fails, @error (if non-%NULL) will be set to
|
|
* a value from #GResolverError.
|
|
*
|
|
* If @cancellable is non-%NULL, it can be used to cancel the
|
|
* operation, in which case @error (if non-%NULL) will be set to
|
|
* %G_IO_ERROR_CANCELLED.
|
|
*
|
|
* If you are planning to connect to the service, it is usually easier
|
|
* to create a #GNetworkService and use its #GSocketConnectable
|
|
* interface.
|
|
*
|
|
* Return value: (element-type GSrvTarget) (transfer full): a #GList of #GSrvTarget,
|
|
* or %NULL on error. You must free each of the targets and the list when you are
|
|
* done with it. (You can use g_resolver_free_targets() to do this.)
|
|
*
|
|
* Since: 2.22
|
|
*/
|
|
GList *
|
|
g_resolver_lookup_service (GResolver *resolver,
|
|
const gchar *service,
|
|
const gchar *protocol,
|
|
const gchar *domain,
|
|
GCancellable *cancellable,
|
|
GError **error)
|
|
{
|
|
GList *targets;
|
|
gchar *rrname;
|
|
|
|
g_return_val_if_fail (G_IS_RESOLVER (resolver), NULL);
|
|
g_return_val_if_fail (service != NULL, NULL);
|
|
g_return_val_if_fail (protocol != NULL, NULL);
|
|
g_return_val_if_fail (domain != NULL, NULL);
|
|
|
|
rrname = g_resolver_get_service_rrname (service, protocol, domain);
|
|
|
|
g_resolver_maybe_reload (resolver);
|
|
targets = G_RESOLVER_GET_CLASS (resolver)->
|
|
lookup_service (resolver, rrname, cancellable, error);
|
|
|
|
g_free (rrname);
|
|
return targets;
|
|
}
|
|
|
|
/**
|
|
* g_resolver_lookup_service_async:
|
|
* @resolver: a #GResolver
|
|
* @service: the service type to look up (eg, "ldap")
|
|
* @protocol: the networking protocol to use for @service (eg, "tcp")
|
|
* @domain: the DNS domain to look up the service in
|
|
* @cancellable: (allow-none): a #GCancellable, or %NULL
|
|
* @callback: (scope async): callback to call after resolution completes
|
|
* @user_data: (closure): data for @callback
|
|
*
|
|
* Begins asynchronously performing a DNS SRV lookup for the given
|
|
* @service and @protocol in the given @domain, and eventually calls
|
|
* @callback, which must call g_resolver_lookup_service_finish() to
|
|
* get the final result. See g_resolver_lookup_service() for more
|
|
* details.
|
|
*
|
|
* Since: 2.22
|
|
*/
|
|
void
|
|
g_resolver_lookup_service_async (GResolver *resolver,
|
|
const gchar *service,
|
|
const gchar *protocol,
|
|
const gchar *domain,
|
|
GCancellable *cancellable,
|
|
GAsyncReadyCallback callback,
|
|
gpointer user_data)
|
|
{
|
|
gchar *rrname;
|
|
|
|
g_return_if_fail (G_IS_RESOLVER (resolver));
|
|
g_return_if_fail (service != NULL);
|
|
g_return_if_fail (protocol != NULL);
|
|
g_return_if_fail (domain != NULL);
|
|
|
|
rrname = g_resolver_get_service_rrname (service, protocol, domain);
|
|
|
|
g_resolver_maybe_reload (resolver);
|
|
G_RESOLVER_GET_CLASS (resolver)->
|
|
lookup_service_async (resolver, rrname, cancellable, callback, user_data);
|
|
|
|
g_free (rrname);
|
|
}
|
|
|
|
/**
|
|
* g_resolver_lookup_service_finish:
|
|
* @resolver: a #GResolver
|
|
* @result: the result passed to your #GAsyncReadyCallback
|
|
* @error: return location for a #GError, or %NULL
|
|
*
|
|
* Retrieves the result of a previous call to
|
|
* g_resolver_lookup_service_async().
|
|
*
|
|
* If the DNS resolution failed, @error (if non-%NULL) will be set to
|
|
* a value from #GResolverError. If the operation was cancelled,
|
|
* @error will be set to %G_IO_ERROR_CANCELLED.
|
|
*
|
|
* Return value: (element-type GSrvTarget) (transfer full): a #GList of #GSrvTarget,
|
|
* or %NULL on error. See g_resolver_lookup_service() for more details.
|
|
*
|
|
* Since: 2.22
|
|
*/
|
|
GList *
|
|
g_resolver_lookup_service_finish (GResolver *resolver,
|
|
GAsyncResult *result,
|
|
GError **error)
|
|
{
|
|
g_return_val_if_fail (G_IS_RESOLVER (resolver), NULL);
|
|
|
|
if (g_async_result_legacy_propagate_error (result, error))
|
|
return NULL;
|
|
|
|
return G_RESOLVER_GET_CLASS (resolver)->
|
|
lookup_service_finish (resolver, result, error);
|
|
}
|
|
|
|
/**
|
|
* g_resolver_free_targets: (skip)
|
|
* @targets: a #GList of #GSrvTarget
|
|
*
|
|
* Frees @targets (which should be the return value from
|
|
* g_resolver_lookup_service() or g_resolver_lookup_service_finish()).
|
|
* (This is a convenience method; you can also simply free the
|
|
* results by hand.)
|
|
*
|
|
* Since: 2.22
|
|
*/
|
|
void
|
|
g_resolver_free_targets (GList *targets)
|
|
{
|
|
GList *t;
|
|
|
|
for (t = targets; t; t = t->next)
|
|
g_srv_target_free (t->data);
|
|
g_list_free (targets);
|
|
}
|
|
|
|
/**
|
|
* g_resolver_lookup_records:
|
|
* @resolver: a #GResolver
|
|
* @rrname: the DNS name to lookup the record for
|
|
* @record_type: the type of DNS record to lookup
|
|
* @cancellable: (allow-none): a #GCancellable, or %NULL
|
|
* @error: return location for a #GError, or %NULL
|
|
*
|
|
* Synchronously performs a DNS record lookup for the given @rrname and returns
|
|
* a list of records as #GVariant tuples. See #GResolverRecordType for
|
|
* information on what the records contain for each @record_type.
|
|
*
|
|
* If the DNS resolution fails, @error (if non-%NULL) will be set to
|
|
* a value from #GResolverError.
|
|
*
|
|
* If @cancellable is non-%NULL, it can be used to cancel the
|
|
* operation, in which case @error (if non-%NULL) will be set to
|
|
* %G_IO_ERROR_CANCELLED.
|
|
*
|
|
* Return value: (element-type GVariant) (transfer full): a #GList of #GVariant,
|
|
* or %NULL on error. You must free each of the records and the list when you are
|
|
* done with it. (You can use g_list_free_full() with g_variant_unref() to do this.)
|
|
*
|
|
* Since: 2.34
|
|
*/
|
|
GList *
|
|
g_resolver_lookup_records (GResolver *resolver,
|
|
const gchar *rrname,
|
|
GResolverRecordType record_type,
|
|
GCancellable *cancellable,
|
|
GError **error)
|
|
{
|
|
GList *records;
|
|
|
|
g_return_val_if_fail (G_IS_RESOLVER (resolver), NULL);
|
|
g_return_val_if_fail (rrname != NULL, NULL);
|
|
|
|
g_resolver_maybe_reload (resolver);
|
|
records = G_RESOLVER_GET_CLASS (resolver)->
|
|
lookup_records (resolver, rrname, record_type, cancellable, error);
|
|
|
|
return records;
|
|
}
|
|
|
|
/**
|
|
* g_resolver_lookup_records_async:
|
|
* @resolver: a #GResolver
|
|
* @rrname: the DNS name to lookup the record for
|
|
* @record_type: the type of DNS record to lookup
|
|
* @cancellable: (allow-none): a #GCancellable, or %NULL
|
|
* @callback: (scope async): callback to call after resolution completes
|
|
* @user_data: (closure): data for @callback
|
|
*
|
|
* Begins asynchronously performing a DNS lookup for the given
|
|
* @rrname, and eventually calls @callback, which must call
|
|
* g_resolver_lookup_records_finish() to get the final result. See
|
|
* g_resolver_lookup_records() for more details.
|
|
*
|
|
* Since: 2.34
|
|
*/
|
|
void
|
|
g_resolver_lookup_records_async (GResolver *resolver,
|
|
const gchar *rrname,
|
|
GResolverRecordType record_type,
|
|
GCancellable *cancellable,
|
|
GAsyncReadyCallback callback,
|
|
gpointer user_data)
|
|
{
|
|
g_return_if_fail (G_IS_RESOLVER (resolver));
|
|
g_return_if_fail (rrname != NULL);
|
|
|
|
g_resolver_maybe_reload (resolver);
|
|
G_RESOLVER_GET_CLASS (resolver)->
|
|
lookup_records_async (resolver, rrname, record_type, cancellable, callback, user_data);
|
|
}
|
|
|
|
/**
|
|
* g_resolver_lookup_records_finish:
|
|
* @resolver: a #GResolver
|
|
* @result: the result passed to your #GAsyncReadyCallback
|
|
* @error: return location for a #GError, or %NULL
|
|
*
|
|
* Retrieves the result of a previous call to
|
|
* g_resolver_lookup_records_async(). Returns a list of records as #GVariant
|
|
* tuples. See #GResolverRecordType for information on what the records contain.
|
|
*
|
|
* If the DNS resolution failed, @error (if non-%NULL) will be set to
|
|
* a value from #GResolverError. If the operation was cancelled,
|
|
* @error will be set to %G_IO_ERROR_CANCELLED.
|
|
*
|
|
* Return value: (element-type GVariant) (transfer full): a #GList of #GVariant,
|
|
* or %NULL on error. You must free each of the records and the list when you are
|
|
* done with it. (You can use g_list_free_full() with g_variant_unref() to do this.)
|
|
*
|
|
* Since: 2.34
|
|
*/
|
|
GList *
|
|
g_resolver_lookup_records_finish (GResolver *resolver,
|
|
GAsyncResult *result,
|
|
GError **error)
|
|
{
|
|
g_return_val_if_fail (G_IS_RESOLVER (resolver), NULL);
|
|
return G_RESOLVER_GET_CLASS (resolver)->
|
|
lookup_records_finish (resolver, result, error);
|
|
}
|
|
|
|
/**
|
|
* g_resolver_error_quark:
|
|
*
|
|
* Gets the #GResolver Error Quark.
|
|
*
|
|
* Return value: a #GQuark.
|
|
*
|
|
* Since: 2.22
|
|
*/
|
|
G_DEFINE_QUARK (g-resolver-error-quark, g_resolver_error)
|
|
|
|
static GResolverError
|
|
g_resolver_error_from_addrinfo_error (gint err)
|
|
{
|
|
switch (err)
|
|
{
|
|
case EAI_FAIL:
|
|
#if defined(EAI_NODATA) && (EAI_NODATA != EAI_NONAME)
|
|
case EAI_NODATA:
|
|
#endif
|
|
case EAI_NONAME:
|
|
return G_RESOLVER_ERROR_NOT_FOUND;
|
|
|
|
case EAI_AGAIN:
|
|
return G_RESOLVER_ERROR_TEMPORARY_FAILURE;
|
|
|
|
default:
|
|
return G_RESOLVER_ERROR_INTERNAL;
|
|
}
|
|
}
|
|
|
|
struct addrinfo _g_resolver_addrinfo_hints;
|
|
|
|
/* Private method to process a getaddrinfo() response. */
|
|
GList *
|
|
_g_resolver_addresses_from_addrinfo (const char *hostname,
|
|
struct addrinfo *res,
|
|
gint gai_retval,
|
|
GError **error)
|
|
{
|
|
struct addrinfo *ai;
|
|
GSocketAddress *sockaddr;
|
|
GInetAddress *addr;
|
|
GList *addrs;
|
|
|
|
if (gai_retval != 0)
|
|
{
|
|
g_set_error (error, G_RESOLVER_ERROR,
|
|
g_resolver_error_from_addrinfo_error (gai_retval),
|
|
_("Error resolving '%s': %s"),
|
|
hostname, gai_strerror (gai_retval));
|
|
return NULL;
|
|
}
|
|
|
|
g_return_val_if_fail (res != NULL, NULL);
|
|
|
|
addrs = NULL;
|
|
for (ai = res; ai; ai = ai->ai_next)
|
|
{
|
|
sockaddr = g_socket_address_new_from_native (ai->ai_addr, ai->ai_addrlen);
|
|
if (!sockaddr || !G_IS_INET_SOCKET_ADDRESS (sockaddr))
|
|
continue;
|
|
|
|
addr = g_object_ref (g_inet_socket_address_get_address ((GInetSocketAddress *)sockaddr));
|
|
addrs = g_list_prepend (addrs, addr);
|
|
g_object_unref (sockaddr);
|
|
}
|
|
|
|
return g_list_reverse (addrs);
|
|
}
|
|
|
|
/* Private method to set up a getnameinfo() request */
|
|
void
|
|
_g_resolver_address_to_sockaddr (GInetAddress *address,
|
|
struct sockaddr_storage *sa,
|
|
gsize *len)
|
|
{
|
|
GSocketAddress *sockaddr;
|
|
|
|
sockaddr = g_inet_socket_address_new (address, 0);
|
|
g_socket_address_to_native (sockaddr, (struct sockaddr *)sa, sizeof (*sa), NULL);
|
|
*len = g_socket_address_get_native_size (sockaddr);
|
|
g_object_unref (sockaddr);
|
|
}
|
|
|
|
/* Private method to process a getnameinfo() response. */
|
|
char *
|
|
_g_resolver_name_from_nameinfo (GInetAddress *address,
|
|
const gchar *name,
|
|
gint gni_retval,
|
|
GError **error)
|
|
{
|
|
if (gni_retval != 0)
|
|
{
|
|
gchar *phys;
|
|
|
|
phys = g_inet_address_to_string (address);
|
|
g_set_error (error, G_RESOLVER_ERROR,
|
|
g_resolver_error_from_addrinfo_error (gni_retval),
|
|
_("Error reverse-resolving '%s': %s"),
|
|
phys ? phys : "(unknown)", gai_strerror (gni_retval));
|
|
g_free (phys);
|
|
return NULL;
|
|
}
|
|
|
|
return g_strdup (name);
|
|
}
|
|
|
|
#if defined(G_OS_UNIX)
|
|
|
|
static gboolean
|
|
parse_short (guchar **p,
|
|
guchar *end,
|
|
guint16 *value)
|
|
{
|
|
if (*p + 2 > end)
|
|
return FALSE;
|
|
GETSHORT (*value, *p);
|
|
return TRUE;
|
|
}
|
|
|
|
static gboolean
|
|
parse_long (guchar **p,
|
|
guchar *end,
|
|
guint32 *value)
|
|
{
|
|
if (*p + 4 > end)
|
|
return FALSE;
|
|
GETLONG (*value, *p);
|
|
return TRUE;
|
|
}
|
|
|
|
static GVariant *
|
|
parse_res_srv (guchar *answer,
|
|
guchar *end,
|
|
guchar *p)
|
|
{
|
|
gchar namebuf[1024];
|
|
guint16 priority, weight, port;
|
|
gint n;
|
|
|
|
if (!parse_short (&p, end, &priority) ||
|
|
!parse_short (&p, end, &weight) ||
|
|
!parse_short (&p, end, &port))
|
|
return NULL;
|
|
|
|
n = dn_expand (answer, end, p, namebuf, sizeof (namebuf));
|
|
if (n < 0)
|
|
return NULL;
|
|
*p += n;
|
|
|
|
return g_variant_new ("(qqqs)",
|
|
priority,
|
|
weight,
|
|
port,
|
|
namebuf);
|
|
}
|
|
|
|
static GVariant *
|
|
parse_res_soa (guchar *answer,
|
|
guchar *end,
|
|
guchar *p)
|
|
{
|
|
gchar mnamebuf[1024];
|
|
gchar rnamebuf[1024];
|
|
guint32 serial, refresh, retry, expire, ttl;
|
|
gint n;
|
|
|
|
n = dn_expand (answer, end, p, mnamebuf, sizeof (mnamebuf));
|
|
if (n < 0)
|
|
return NULL;
|
|
p += n;
|
|
|
|
n = dn_expand (answer, end, p, rnamebuf, sizeof (rnamebuf));
|
|
if (n < 0)
|
|
return NULL;
|
|
p += n;
|
|
|
|
if (!parse_long (&p, end, &serial) ||
|
|
!parse_long (&p, end, &refresh) ||
|
|
!parse_long (&p, end, &retry) ||
|
|
!parse_long (&p, end, &expire) ||
|
|
!parse_long (&p, end, &ttl))
|
|
return NULL;
|
|
|
|
return g_variant_new ("(ssuuuuu)",
|
|
mnamebuf,
|
|
rnamebuf,
|
|
serial,
|
|
refresh,
|
|
retry,
|
|
expire,
|
|
ttl);
|
|
}
|
|
|
|
static GVariant *
|
|
parse_res_ns (guchar *answer,
|
|
guchar *end,
|
|
guchar *p)
|
|
{
|
|
gchar namebuf[1024];
|
|
gint n;
|
|
|
|
n = dn_expand (answer, end, p, namebuf, sizeof (namebuf));
|
|
if (n < 0)
|
|
return NULL;
|
|
|
|
return g_variant_new ("(s)", namebuf);
|
|
}
|
|
|
|
static GVariant *
|
|
parse_res_mx (guchar *answer,
|
|
guchar *end,
|
|
guchar *p)
|
|
{
|
|
gchar namebuf[1024];
|
|
guint16 preference;
|
|
gint n;
|
|
|
|
if (!parse_short (&p, end, &preference))
|
|
return NULL;
|
|
|
|
n = dn_expand (answer, end, p, namebuf, sizeof (namebuf));
|
|
if (n < 0)
|
|
return NULL;
|
|
p += n;
|
|
|
|
return g_variant_new ("(qs)",
|
|
preference,
|
|
namebuf);
|
|
}
|
|
|
|
static GVariant *
|
|
parse_res_txt (guchar *answer,
|
|
guchar *end,
|
|
guchar *p)
|
|
{
|
|
GVariant *record;
|
|
GPtrArray *array;
|
|
gsize len;
|
|
|
|
array = g_ptr_array_new_with_free_func (g_free);
|
|
while (p < end)
|
|
{
|
|
len = *(p++);
|
|
if (len > p - end)
|
|
break;
|
|
g_ptr_array_add (array, g_strndup ((gchar *)p, len));
|
|
p += len;
|
|
}
|
|
|
|
record = g_variant_new ("(@as)",
|
|
g_variant_new_strv ((const gchar **)array->pdata, array->len));
|
|
g_ptr_array_free (array, TRUE);
|
|
return record;
|
|
}
|
|
|
|
gint
|
|
_g_resolver_record_type_to_rrtype (GResolverRecordType type)
|
|
{
|
|
switch (type)
|
|
{
|
|
case G_RESOLVER_RECORD_SRV:
|
|
return T_SRV;
|
|
case G_RESOLVER_RECORD_TXT:
|
|
return T_TXT;
|
|
case G_RESOLVER_RECORD_SOA:
|
|
return T_SOA;
|
|
case G_RESOLVER_RECORD_NS:
|
|
return T_NS;
|
|
case G_RESOLVER_RECORD_MX:
|
|
return T_MX;
|
|
}
|
|
g_return_val_if_reached (-1);
|
|
}
|
|
|
|
/* Private method to process a res_query response into GSrvTargets */
|
|
GList *
|
|
_g_resolver_records_from_res_query (const gchar *rrname,
|
|
gint rrtype,
|
|
guchar *answer,
|
|
gint len,
|
|
gint herr,
|
|
GError **error)
|
|
{
|
|
gint count;
|
|
guchar *end, *p;
|
|
guint16 type, qclass, rdlength;
|
|
guint32 ttl;
|
|
HEADER *header;
|
|
GList *records;
|
|
GVariant *record;
|
|
gint n, i;
|
|
|
|
if (len <= 0)
|
|
{
|
|
GResolverError errnum;
|
|
const gchar *format;
|
|
|
|
if (len == 0 || herr == HOST_NOT_FOUND || herr == NO_DATA)
|
|
{
|
|
errnum = G_RESOLVER_ERROR_NOT_FOUND;
|
|
format = _("No DNS record of the requested type for '%s'");
|
|
}
|
|
else if (herr == TRY_AGAIN)
|
|
{
|
|
errnum = G_RESOLVER_ERROR_TEMPORARY_FAILURE;
|
|
format = _("Temporarily unable to resolve '%s'");
|
|
}
|
|
else
|
|
{
|
|
errnum = G_RESOLVER_ERROR_INTERNAL;
|
|
format = _("Error resolving '%s'");
|
|
}
|
|
|
|
g_set_error (error, G_RESOLVER_ERROR, errnum, format, rrname);
|
|
return NULL;
|
|
}
|
|
|
|
records = NULL;
|
|
|
|
header = (HEADER *)answer;
|
|
p = answer + sizeof (HEADER);
|
|
end = answer + len;
|
|
|
|
/* Skip query */
|
|
count = ntohs (header->qdcount);
|
|
for (i = 0; i < count && p < end; i++)
|
|
{
|
|
n = dn_skipname (p, end);
|
|
if (n < 0)
|
|
break;
|
|
p += n;
|
|
p += 4;
|
|
}
|
|
|
|
/* Incomplete response */
|
|
if (i < count)
|
|
{
|
|
g_set_error (error, G_RESOLVER_ERROR, G_RESOLVER_ERROR_TEMPORARY_FAILURE,
|
|
_("Incomplete data received for '%s'"), rrname);
|
|
return NULL;
|
|
}
|
|
|
|
/* Read answers */
|
|
count = ntohs (header->ancount);
|
|
for (i = 0; i < count && p < end; i++)
|
|
{
|
|
n = dn_skipname (p, end);
|
|
if (n < 0)
|
|
break;
|
|
p += n;
|
|
|
|
if (!parse_short (&p, end, &type) ||
|
|
!parse_short (&p, end, &qclass) ||
|
|
!parse_long (&p, end, &ttl) ||
|
|
!parse_short (&p, end, &rdlength))
|
|
break;
|
|
|
|
ttl = ttl; /* To avoid -Wunused-but-set-variable */
|
|
|
|
if (p + rdlength > end)
|
|
break;
|
|
|
|
if (type == rrtype && qclass == C_IN)
|
|
{
|
|
switch (rrtype)
|
|
{
|
|
case T_SRV:
|
|
record = parse_res_srv (answer, end, p);
|
|
break;
|
|
case T_MX:
|
|
record = parse_res_mx (answer, end, p);
|
|
break;
|
|
case T_SOA:
|
|
record = parse_res_soa (answer, end, p);
|
|
break;
|
|
case T_NS:
|
|
record = parse_res_ns (answer, end, p);
|
|
break;
|
|
case T_TXT:
|
|
record = parse_res_txt (answer, p + rdlength, p);
|
|
break;
|
|
default:
|
|
g_warn_if_reached ();
|
|
record = NULL;
|
|
break;
|
|
}
|
|
|
|
if (record != NULL)
|
|
records = g_list_prepend (records, record);
|
|
}
|
|
|
|
p += rdlength;
|
|
}
|
|
|
|
/* Somehow got a truncated response */
|
|
if (i < count)
|
|
{
|
|
g_list_free_full (records, (GDestroyNotify)g_variant_unref);
|
|
g_set_error (error, G_RESOLVER_ERROR, G_RESOLVER_ERROR_TEMPORARY_FAILURE,
|
|
_("Incomplete data received for '%s'"), rrname);
|
|
return NULL;
|
|
}
|
|
|
|
return records;
|
|
}
|
|
|
|
#elif defined(G_OS_WIN32)
|
|
static GVariant *
|
|
parse_dns_srv (DNS_RECORD *rec)
|
|
{
|
|
return g_variant_new ("(qqqs)",
|
|
(guint16)rec->Data.SRV.wPriority,
|
|
(guint16)rec->Data.SRV.wWeight,
|
|
(guint16)rec->Data.SRV.wPort,
|
|
rec->Data.SRV.pNameTarget);
|
|
}
|
|
|
|
static GVariant *
|
|
parse_dns_soa (DNS_RECORD *rec)
|
|
{
|
|
return g_variant_new ("(ssuuuuu)",
|
|
rec->Data.SOA.pNamePrimaryServer,
|
|
rec->Data.SOA.pNameAdministrator,
|
|
(guint32)rec->Data.SOA.dwSerialNo,
|
|
(guint32)rec->Data.SOA.dwRefresh,
|
|
(guint32)rec->Data.SOA.dwRetry,
|
|
(guint32)rec->Data.SOA.dwExpire,
|
|
(guint32)rec->Data.SOA.dwDefaultTtl);
|
|
}
|
|
|
|
static GVariant *
|
|
parse_dns_ns (DNS_RECORD *rec)
|
|
{
|
|
return g_variant_new ("(s)", rec->Data.NS.pNameHost);
|
|
}
|
|
|
|
static GVariant *
|
|
parse_dns_mx (DNS_RECORD *rec)
|
|
{
|
|
return g_variant_new ("(qs)",
|
|
(guint16)rec->Data.MX.wPreference,
|
|
rec->Data.MX.pNameExchange);
|
|
}
|
|
|
|
static GVariant *
|
|
parse_dns_txt (DNS_RECORD *rec)
|
|
{
|
|
GVariant *record;
|
|
GPtrArray *array;
|
|
DWORD i;
|
|
|
|
array = g_ptr_array_new ();
|
|
for (i = 0; i < rec->Data.TXT.dwStringCount; i++)
|
|
g_ptr_array_add (array, rec->Data.TXT.pStringArray[i]);
|
|
record = g_variant_new ("(@as)",
|
|
g_variant_new_strv ((const gchar **)array->pdata, array->len));
|
|
g_ptr_array_free (array, TRUE);
|
|
return record;
|
|
}
|
|
|
|
WORD
|
|
_g_resolver_record_type_to_dnstype (GResolverRecordType type)
|
|
{
|
|
switch (type)
|
|
{
|
|
case G_RESOLVER_RECORD_SRV:
|
|
return DNS_TYPE_SRV;
|
|
case G_RESOLVER_RECORD_TXT:
|
|
return DNS_TYPE_TEXT;
|
|
case G_RESOLVER_RECORD_SOA:
|
|
return DNS_TYPE_SOA;
|
|
case G_RESOLVER_RECORD_NS:
|
|
return DNS_TYPE_NS;
|
|
case G_RESOLVER_RECORD_MX:
|
|
return DNS_TYPE_MX;
|
|
}
|
|
g_return_val_if_reached (-1);
|
|
}
|
|
|
|
/* Private method to process a DnsQuery response into GVariants */
|
|
GList *
|
|
_g_resolver_records_from_DnsQuery (const gchar *rrname,
|
|
WORD dnstype,
|
|
DNS_STATUS status,
|
|
DNS_RECORD *results,
|
|
GError **error)
|
|
{
|
|
DNS_RECORD *rec;
|
|
gpointer record;
|
|
GList *records;
|
|
|
|
if (status != ERROR_SUCCESS)
|
|
{
|
|
GResolverError errnum;
|
|
const gchar *format;
|
|
|
|
if (status == DNS_ERROR_RCODE_NAME_ERROR)
|
|
{
|
|
errnum = G_RESOLVER_ERROR_NOT_FOUND;
|
|
format = _("No DNS record of the requested type for '%s'");
|
|
}
|
|
else if (status == DNS_ERROR_RCODE_SERVER_FAILURE)
|
|
{
|
|
errnum = G_RESOLVER_ERROR_TEMPORARY_FAILURE;
|
|
format = _("Temporarily unable to resolve '%s'");
|
|
}
|
|
else
|
|
{
|
|
errnum = G_RESOLVER_ERROR_INTERNAL;
|
|
format = _("Error resolving '%s'");
|
|
}
|
|
|
|
g_set_error (error, G_RESOLVER_ERROR, errnum, format, rrname);
|
|
return NULL;
|
|
}
|
|
|
|
records = NULL;
|
|
for (rec = results; rec; rec = rec->pNext)
|
|
{
|
|
if (rec->wType != dnstype)
|
|
continue;
|
|
switch (dnstype)
|
|
{
|
|
case DNS_TYPE_SRV:
|
|
record = parse_dns_srv (rec);
|
|
break;
|
|
case DNS_TYPE_SOA:
|
|
record = parse_dns_soa (rec);
|
|
break;
|
|
case DNS_TYPE_NS:
|
|
record = parse_dns_ns (rec);
|
|
break;
|
|
case DNS_TYPE_MX:
|
|
record = parse_dns_mx (rec);
|
|
break;
|
|
case DNS_TYPE_TEXT:
|
|
record = parse_dns_txt (rec);
|
|
break;
|
|
default:
|
|
g_warn_if_reached ();
|
|
record = NULL;
|
|
break;
|
|
}
|
|
if (record != NULL)
|
|
records = g_list_prepend (records, g_variant_ref_sink (record));
|
|
}
|
|
|
|
return records;
|
|
}
|
|
|
|
#endif
|