glib/glib/garray.c
Ryan Lortie 37c740d509 Don't #include <glib/gslice.h> from gmem.h
It looks like this was done just to help people port from gmem to
gslice, but nothing in this header actually requires gslice.h to be
included.
2011-09-18 22:07:18 -04:00

1626 lines
44 KiB
C

/* GLIB - Library of useful routines for C programming
* Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
/*
* Modified by the GLib Team and others 1997-2000. See the AUTHORS
* file for a list of people on the GLib Team. See the ChangeLog
* files for a list of changes. These files are distributed with
* GLib at ftp://ftp.gtk.org/pub/gtk/.
*/
/*
* MT safe
*/
#include "config.h"
#include <string.h>
#include <stdlib.h>
#include "garray.h"
#include "gslice.h"
#include "gmem.h"
#include "gthread.h"
#include "gmessages.h"
#include "gqsort.h"
/**
* SECTION:arrays
* @title: Arrays
* @short_description: arrays of arbitrary elements which grow
* automatically as elements are added
*
* Arrays are similar to standard C arrays, except that they grow
* automatically as elements are added.
*
* Array elements can be of any size (though all elements of one array
* are the same size), and the array can be automatically cleared to
* '0's and zero-terminated.
*
* To create a new array use g_array_new().
*
* To add elements to an array, use g_array_append_val(),
* g_array_append_vals(), g_array_prepend_val(), and
* g_array_prepend_vals().
*
* To access an element of an array, use g_array_index().
*
* To set the size of an array, use g_array_set_size().
*
* To free an array, use g_array_free().
*
* <example>
* <title>Using a #GArray to store #gint values</title>
* <programlisting>
* GArray *garray;
* gint i;
* /<!-- -->* We create a new array to store gint values.
* We don't want it zero-terminated or cleared to 0's. *<!-- -->/
* garray = g_array_new (FALSE, FALSE, sizeof (gint));
* for (i = 0; i &lt; 10000; i++)
* g_array_append_val (garray, i);
* for (i = 0; i &lt; 10000; i++)
* if (g_array_index (garray, gint, i) != i)
* g_print ("ERROR: got &percnt;d instead of &percnt;d\n",
* g_array_index (garray, gint, i), i);
* g_array_free (garray, TRUE);
* </programlisting>
* </example>
**/
#define MIN_ARRAY_SIZE 16
typedef struct _GRealArray GRealArray;
/**
* GArray:
* @data: a pointer to the element data. The data may be moved as
* elements are added to the #GArray.
* @len: the number of elements in the #GArray not including the
* possible terminating zero element.
*
* Contains the public fields of an <link linkend="glib-Arrays">Array</link>.
**/
struct _GRealArray
{
guint8 *data;
guint len;
guint alloc;
guint elt_size;
guint zero_terminated : 1;
guint clear : 1;
gint ref_count;
};
/**
* g_array_index:
* @a: a #GArray.
* @t: the type of the elements.
* @i: the index of the element to return.
* @Returns: the element of the #GArray at the index given by @i.
*
* Returns the element of a #GArray at the given index. The return
* value is cast to the given type.
*
* <example>
* <title>Getting a pointer to an element in a #GArray</title>
* <programlisting>
* EDayViewEvent *event;
* /<!-- -->* This gets a pointer to the 4th element
* in the array of EDayViewEvent structs. *<!-- -->/
* event = &amp;g_array_index (events, EDayViewEvent, 3);
* </programlisting>
* </example>
**/
#define g_array_elt_len(array,i) ((array)->elt_size * (i))
#define g_array_elt_pos(array,i) ((array)->data + g_array_elt_len((array),(i)))
#define g_array_elt_zero(array, pos, len) \
(memset (g_array_elt_pos ((array), pos), 0, g_array_elt_len ((array), len)))
#define g_array_zero_terminate(array) G_STMT_START{ \
if ((array)->zero_terminated) \
g_array_elt_zero ((array), (array)->len, 1); \
}G_STMT_END
static guint g_nearest_pow (gint num) G_GNUC_CONST;
static void g_array_maybe_expand (GRealArray *array,
gint len);
/**
* g_array_new:
* @zero_terminated: %TRUE if the array should have an extra element at
* the end which is set to 0.
* @clear_: %TRUE if #GArray elements should be automatically cleared
* to 0 when they are allocated.
* @element_size: the size of each element in bytes.
* @Returns: the new #GArray.
*
* Creates a new #GArray with a reference count of 1.
**/
GArray*
g_array_new (gboolean zero_terminated,
gboolean clear,
guint elt_size)
{
return (GArray*) g_array_sized_new (zero_terminated, clear, elt_size, 0);
}
/**
* g_array_sized_new:
* @zero_terminated: %TRUE if the array should have an extra element at
* the end with all bits cleared.
* @clear_: %TRUE if all bits in the array should be cleared to 0 on
* allocation.
* @element_size: size of each element in the array.
* @reserved_size: number of elements preallocated.
* @Returns: the new #GArray.
*
* Creates a new #GArray with @reserved_size elements preallocated and
* a reference count of 1. This avoids frequent reallocation, if you
* are going to add many elements to the array. Note however that the
* size of the array is still 0.
**/
GArray* g_array_sized_new (gboolean zero_terminated,
gboolean clear,
guint elt_size,
guint reserved_size)
{
GRealArray *array = g_slice_new (GRealArray);
array->data = NULL;
array->len = 0;
array->alloc = 0;
array->zero_terminated = (zero_terminated ? 1 : 0);
array->clear = (clear ? 1 : 0);
array->elt_size = elt_size;
array->ref_count = 1;
if (array->zero_terminated || reserved_size != 0)
{
g_array_maybe_expand (array, reserved_size);
g_array_zero_terminate(array);
}
return (GArray*) array;
}
/**
* g_array_ref:
* @array: A #GArray.
*
* Atomically increments the reference count of @array by one. This
* function is MT-safe and may be called from any thread.
*
* Returns: The passed in #GArray.
*
* Since: 2.22
**/
GArray *
g_array_ref (GArray *array)
{
GRealArray *rarray = (GRealArray*) array;
g_return_val_if_fail (array, NULL);
g_atomic_int_inc (&rarray->ref_count);
return array;
}
/**
* g_array_unref:
* @array: A #GArray.
*
* Atomically decrements the reference count of @array by one. If the
* reference count drops to 0, all memory allocated by the array is
* released. This function is MT-safe and may be called from any
* thread.
*
* Since: 2.22
**/
void
g_array_unref (GArray *array)
{
GRealArray *rarray = (GRealArray*) array;
g_return_if_fail (array);
if (g_atomic_int_dec_and_test (&rarray->ref_count))
g_array_free (array, TRUE);
}
/**
* g_array_get_element_size:
* @array: A #GArray.
*
* Gets the size of the elements in @array.
*
* Returns: Size of each element, in bytes.
*
* Since: 2.22
**/
guint
g_array_get_element_size (GArray *array)
{
GRealArray *rarray = (GRealArray*) array;
g_return_val_if_fail (array, 0);
return rarray->elt_size;
}
/**
* g_array_free:
* @array: a #GArray.
* @free_segment: if %TRUE the actual element data is freed as well.
* @Returns: the element data if @free_segment is %FALSE, otherwise
* %NULL. The element data should be freed using g_free().
*
* Frees the memory allocated for the #GArray. If @free_segment is
* %TRUE it frees the memory block holding the elements as well and
* also each element if @array has a @element_free_func set. Pass
* %FALSE if you want to free the #GArray wrapper but preserve the
* underlying array for use elsewhere. If the reference count of @array
* is greater than one, the #GArray wrapper is preserved but the size
* of @array will be set to zero.
*
* <note><para>If array elements contain dynamically-allocated memory,
* they should be freed separately.</para></note>
**/
gchar*
g_array_free (GArray *farray,
gboolean free_segment)
{
GRealArray *array = (GRealArray*) farray;
gchar* segment;
gboolean preserve_wrapper;
g_return_val_if_fail (array, NULL);
/* if others are holding a reference, preserve the wrapper but do free/return the data */
preserve_wrapper = FALSE;
if (g_atomic_int_get (&array->ref_count) > 1)
preserve_wrapper = TRUE;
if (free_segment)
{
g_free (array->data);
segment = NULL;
}
else
segment = (gchar*) array->data;
if (preserve_wrapper)
{
array->data = NULL;
array->len = 0;
array->alloc = 0;
}
else
{
g_slice_free1 (sizeof (GRealArray), array);
}
return segment;
}
/**
* g_array_append_vals:
* @array: a #GArray.
* @data: a pointer to the elements to append to the end of the array.
* @len: the number of elements to append.
* @Returns: the #GArray.
*
* Adds @len elements onto the end of the array.
**/
/**
* g_array_append_val:
* @a: a #GArray.
* @v: the value to append to the #GArray.
* @Returns: the #GArray.
*
* Adds the value on to the end of the array. The array will grow in
* size automatically if necessary.
*
* <note><para>g_array_append_val() is a macro which uses a reference
* to the value parameter @v. This means that you cannot use it with
* literal values such as "27". You must use variables.</para></note>
**/
GArray*
g_array_append_vals (GArray *farray,
gconstpointer data,
guint len)
{
GRealArray *array = (GRealArray*) farray;
g_return_val_if_fail (array, NULL);
g_array_maybe_expand (array, len);
memcpy (g_array_elt_pos (array, array->len), data,
g_array_elt_len (array, len));
array->len += len;
g_array_zero_terminate (array);
return farray;
}
/**
* g_array_prepend_vals:
* @array: a #GArray.
* @data: a pointer to the elements to prepend to the start of the
* array.
* @len: the number of elements to prepend.
* @Returns: the #GArray.
*
* Adds @len elements onto the start of the array.
*
* This operation is slower than g_array_append_vals() since the
* existing elements in the array have to be moved to make space for
* the new elements.
**/
/**
* g_array_prepend_val:
* @a: a #GArray.
* @v: the value to prepend to the #GArray.
* @Returns: the #GArray.
*
* Adds the value on to the start of the array. The array will grow in
* size automatically if necessary.
*
* This operation is slower than g_array_append_val() since the
* existing elements in the array have to be moved to make space for
* the new element.
*
* <note><para>g_array_prepend_val() is a macro which uses a reference
* to the value parameter @v. This means that you cannot use it with
* literal values such as "27". You must use variables.</para></note>
**/
GArray*
g_array_prepend_vals (GArray *farray,
gconstpointer data,
guint len)
{
GRealArray *array = (GRealArray*) farray;
g_return_val_if_fail (array, NULL);
g_array_maybe_expand (array, len);
g_memmove (g_array_elt_pos (array, len), g_array_elt_pos (array, 0),
g_array_elt_len (array, array->len));
memcpy (g_array_elt_pos (array, 0), data, g_array_elt_len (array, len));
array->len += len;
g_array_zero_terminate (array);
return farray;
}
/**
* g_array_insert_vals:
* @array: a #GArray.
* @index_: the index to place the elements at.
* @data: a pointer to the elements to insert.
* @len: the number of elements to insert.
* @Returns: the #GArray.
*
* Inserts @len elements into a #GArray at the given index.
**/
/**
* g_array_insert_val:
* @a: a #GArray.
* @i: the index to place the element at.
* @v: the value to insert into the array.
* @Returns: the #GArray.
*
* Inserts an element into an array at the given index.
*
* <note><para>g_array_insert_val() is a macro which uses a reference
* to the value parameter @v. This means that you cannot use it with
* literal values such as "27". You must use variables.</para></note>
**/
GArray*
g_array_insert_vals (GArray *farray,
guint index_,
gconstpointer data,
guint len)
{
GRealArray *array = (GRealArray*) farray;
g_return_val_if_fail (array, NULL);
g_array_maybe_expand (array, len);
g_memmove (g_array_elt_pos (array, len + index_),
g_array_elt_pos (array, index_),
g_array_elt_len (array, array->len - index_));
memcpy (g_array_elt_pos (array, index_), data, g_array_elt_len (array, len));
array->len += len;
g_array_zero_terminate (array);
return farray;
}
/**
* g_array_set_size:
* @array: a #GArray.
* @length: the new size of the #GArray.
* @Returns: the #GArray.
*
* Sets the size of the array, expanding it if necessary. If the array
* was created with @clear_ set to %TRUE, the new elements are set to 0.
**/
GArray*
g_array_set_size (GArray *farray,
guint length)
{
GRealArray *array = (GRealArray*) farray;
g_return_val_if_fail (array, NULL);
if (length > array->len)
{
g_array_maybe_expand (array, length - array->len);
if (array->clear)
g_array_elt_zero (array, array->len, length - array->len);
}
else if (G_UNLIKELY (g_mem_gc_friendly) && length < array->len)
g_array_elt_zero (array, length, array->len - length);
array->len = length;
g_array_zero_terminate (array);
return farray;
}
/**
* g_array_remove_index:
* @array: a #GArray.
* @index_: the index of the element to remove.
* @Returns: the #GArray.
*
* Removes the element at the given index from a #GArray. The following
* elements are moved down one place.
**/
GArray*
g_array_remove_index (GArray *farray,
guint index_)
{
GRealArray* array = (GRealArray*) farray;
g_return_val_if_fail (array, NULL);
g_return_val_if_fail (index_ < array->len, NULL);
if (index_ != array->len - 1)
g_memmove (g_array_elt_pos (array, index_),
g_array_elt_pos (array, index_ + 1),
g_array_elt_len (array, array->len - index_ - 1));
array->len -= 1;
if (G_UNLIKELY (g_mem_gc_friendly))
g_array_elt_zero (array, array->len, 1);
else
g_array_zero_terminate (array);
return farray;
}
/**
* g_array_remove_index_fast:
* @array: a @GArray.
* @index_: the index of the element to remove.
* @Returns: the #GArray.
*
* Removes the element at the given index from a #GArray. The last
* element in the array is used to fill in the space, so this function
* does not preserve the order of the #GArray. But it is faster than
* g_array_remove_index().
**/
GArray*
g_array_remove_index_fast (GArray *farray,
guint index_)
{
GRealArray* array = (GRealArray*) farray;
g_return_val_if_fail (array, NULL);
g_return_val_if_fail (index_ < array->len, NULL);
if (index_ != array->len - 1)
memcpy (g_array_elt_pos (array, index_),
g_array_elt_pos (array, array->len - 1),
g_array_elt_len (array, 1));
array->len -= 1;
if (G_UNLIKELY (g_mem_gc_friendly))
g_array_elt_zero (array, array->len, 1);
else
g_array_zero_terminate (array);
return farray;
}
/**
* g_array_remove_range:
* @array: a @GArray.
* @index_: the index of the first element to remove.
* @length: the number of elements to remove.
* @Returns: the #GArray.
*
* Removes the given number of elements starting at the given index
* from a #GArray. The following elements are moved to close the gap.
*
* Since: 2.4
**/
GArray*
g_array_remove_range (GArray *farray,
guint index_,
guint length)
{
GRealArray *array = (GRealArray*) farray;
g_return_val_if_fail (array, NULL);
g_return_val_if_fail (index_ < array->len, NULL);
g_return_val_if_fail (index_ + length <= array->len, NULL);
if (index_ + length != array->len)
g_memmove (g_array_elt_pos (array, index_),
g_array_elt_pos (array, index_ + length),
(array->len - (index_ + length)) * array->elt_size);
array->len -= length;
if (G_UNLIKELY (g_mem_gc_friendly))
g_array_elt_zero (array, array->len, length);
else
g_array_zero_terminate (array);
return farray;
}
/**
* g_array_sort:
* @array: a #GArray.
* @compare_func: comparison function.
*
* Sorts a #GArray using @compare_func which should be a qsort()-style
* comparison function (returns less than zero for first arg is less
* than second arg, zero for equal, greater zero if first arg is
* greater than second arg).
*
* If two array elements compare equal, their order in the sorted array
* is undefined. If you want equal elements to keep their order &#8211; i.e.
* you want a stable sort &#8211; you can write a comparison function that,
* if two elements would otherwise compare equal, compares them by
* their addresses.
**/
void
g_array_sort (GArray *farray,
GCompareFunc compare_func)
{
GRealArray *array = (GRealArray*) farray;
g_return_if_fail (array != NULL);
qsort (array->data,
array->len,
array->elt_size,
compare_func);
}
/**
* g_array_sort_with_data:
* @array: a #GArray.
* @compare_func: comparison function.
* @user_data: data to pass to @compare_func.
*
* Like g_array_sort(), but the comparison function receives an extra
* user data argument.
**/
void
g_array_sort_with_data (GArray *farray,
GCompareDataFunc compare_func,
gpointer user_data)
{
GRealArray *array = (GRealArray*) farray;
g_return_if_fail (array != NULL);
g_qsort_with_data (array->data,
array->len,
array->elt_size,
compare_func,
user_data);
}
/* Returns the smallest power of 2 greater than n, or n if
* such power does not fit in a guint
*/
static guint
g_nearest_pow (gint num)
{
guint n = 1;
while (n < num && n > 0)
n <<= 1;
return n ? n : num;
}
static void
g_array_maybe_expand (GRealArray *array,
gint len)
{
guint want_alloc = g_array_elt_len (array, array->len + len +
array->zero_terminated);
if (want_alloc > array->alloc)
{
want_alloc = g_nearest_pow (want_alloc);
want_alloc = MAX (want_alloc, MIN_ARRAY_SIZE);
array->data = g_realloc (array->data, want_alloc);
if (G_UNLIKELY (g_mem_gc_friendly))
memset (array->data + array->alloc, 0, want_alloc - array->alloc);
array->alloc = want_alloc;
}
}
/**
* SECTION:arrays_pointer
* @title: Pointer Arrays
* @short_description: arrays of pointers to any type of data, which
* grow automatically as new elements are added
*
* Pointer Arrays are similar to Arrays but are used only for storing
* pointers.
*
* <note><para>If you remove elements from the array, elements at the
* end of the array are moved into the space previously occupied by the
* removed element. This means that you should not rely on the index of
* particular elements remaining the same. You should also be careful
* when deleting elements while iterating over the array.</para></note>
*
* To create a pointer array, use g_ptr_array_new().
*
* To add elements to a pointer array, use g_ptr_array_add().
*
* To remove elements from a pointer array, use g_ptr_array_remove(),
* g_ptr_array_remove_index() or g_ptr_array_remove_index_fast().
*
* To access an element of a pointer array, use g_ptr_array_index().
*
* To set the size of a pointer array, use g_ptr_array_set_size().
*
* To free a pointer array, use g_ptr_array_free().
*
* <example>
* <title>Using a #GPtrArray</title>
* <programlisting>
* GPtrArray *gparray;
* gchar *string1 = "one", *string2 = "two", *string3 = "three";
*
* gparray = g_ptr_array_new (<!-- -->);
* g_ptr_array_add (gparray, (gpointer) string1);
* g_ptr_array_add (gparray, (gpointer) string2);
* g_ptr_array_add (gparray, (gpointer) string3);
*
* if (g_ptr_array_index (gparray, 0) != (gpointer) string1)
* g_print ("ERROR: got &percnt;p instead of &percnt;p\n",
* g_ptr_array_index (gparray, 0), string1);
*
* g_ptr_array_free (gparray, TRUE);
* </programlisting>
* </example>
**/
typedef struct _GRealPtrArray GRealPtrArray;
/**
* GPtrArray:
* @pdata: points to the array of pointers, which may be moved when the
* array grows.
* @len: number of pointers in the array.
*
* Contains the public fields of a pointer array.
**/
struct _GRealPtrArray
{
gpointer *pdata;
guint len;
guint alloc;
gint ref_count;
GDestroyNotify element_free_func;
};
/**
* g_ptr_array_index:
* @array: a #GPtrArray.
* @index_: the index of the pointer to return.
* @Returns: the pointer at the given index.
*
* Returns the pointer at the given index of the pointer array.
**/
static void g_ptr_array_maybe_expand (GRealPtrArray *array,
gint len);
/**
* g_ptr_array_new:
* @Returns: the new #GPtrArray.
*
* Creates a new #GPtrArray with a reference count of 1.
**/
GPtrArray*
g_ptr_array_new (void)
{
return g_ptr_array_sized_new (0);
}
/**
* g_ptr_array_sized_new:
* @reserved_size: number of pointers preallocated.
* @Returns: the new #GPtrArray.
*
* Creates a new #GPtrArray with @reserved_size pointers preallocated
* and a reference count of 1. This avoids frequent reallocation, if
* you are going to add many pointers to the array. Note however that
* the size of the array is still 0.
**/
GPtrArray*
g_ptr_array_sized_new (guint reserved_size)
{
GRealPtrArray *array = g_slice_new (GRealPtrArray);
array->pdata = NULL;
array->len = 0;
array->alloc = 0;
array->ref_count = 1;
array->element_free_func = NULL;
if (reserved_size != 0)
g_ptr_array_maybe_expand (array, reserved_size);
return (GPtrArray*) array;
}
/**
* g_ptr_array_new_with_free_func:
* @element_free_func: A function to free elements with destroy @array or %NULL.
*
* Creates a new #GPtrArray with a reference count of 1 and use @element_free_func
* for freeing each element when the array is destroyed either via
* g_ptr_array_unref(), when g_ptr_array_free() is called with @free_segment
* set to %TRUE or when removing elements.
*
* Returns: A new #GPtrArray.
*
* Since: 2.22
**/
GPtrArray *
g_ptr_array_new_with_free_func (GDestroyNotify element_free_func)
{
GPtrArray *array;
array = g_ptr_array_new ();
g_ptr_array_set_free_func (array, element_free_func);
return array;
}
/**
* g_ptr_array_new_full:
* @reserved_size: number of pointers preallocated.
* @element_free_func: A function to free elements with destroy @array or %NULL.
*
* Creates a new #GPtrArray with @reserved_size pointers preallocated
* and a reference count of 1. This avoids frequent reallocation, if
* you are going to add many pointers to the array. Note however that
* the size of the array is still 0. It also set @element_free_func
* for freeing each element when the array is destroyed either via
* g_ptr_array_unref(), when g_ptr_array_free() is called with @free_segment
* set to %TRUE or when removing elements.
*
* Returns: A new #GPtrArray.
*
* Since: 2.30
**/
GPtrArray *
g_ptr_array_new_full (guint reserved_size,
GDestroyNotify element_free_func)
{
GPtrArray *array;
array = g_ptr_array_sized_new (reserved_size);
g_ptr_array_set_free_func (array, element_free_func);
return array;
}
/**
* g_ptr_array_set_free_func:
* @array: A #GPtrArray.
* @element_free_func: A function to free elements with destroy @array or %NULL.
*
* Sets a function for freeing each element when @array is destroyed
* either via g_ptr_array_unref(), when g_ptr_array_free() is called
* with @free_segment set to %TRUE or when removing elements.
*
* Since: 2.22
**/
void
g_ptr_array_set_free_func (GPtrArray *array,
GDestroyNotify element_free_func)
{
GRealPtrArray* rarray = (GRealPtrArray*) array;
g_return_if_fail (array);
rarray->element_free_func = element_free_func;
}
/**
* g_ptr_array_ref:
* @array: A #GArray.
*
* Atomically increments the reference count of @array by one. This
* function is MT-safe and may be called from any thread.
*
* Returns: The passed in #GPtrArray.
*
* Since: 2.22
**/
GPtrArray *
g_ptr_array_ref (GPtrArray *array)
{
GRealPtrArray *rarray = (GRealPtrArray*) array;
g_return_val_if_fail (array, NULL);
g_atomic_int_inc (&rarray->ref_count);
return array;
}
/**
* g_ptr_array_unref:
* @array: A #GPtrArray.
*
* Atomically decrements the reference count of @array by one. If the
* reference count drops to 0, the effect is the same as calling
* g_ptr_array_free() with @free_segment set to %TRUE. This function
* is MT-safe and may be called from any thread.
*
* Since: 2.22
**/
void
g_ptr_array_unref (GPtrArray *array)
{
GRealPtrArray *rarray = (GRealPtrArray*) array;
g_return_if_fail (array);
if (g_atomic_int_dec_and_test (&rarray->ref_count))
g_ptr_array_free (array, TRUE);
}
/**
* g_ptr_array_free:
* @array: a #GPtrArray.
* @free_seg: if %TRUE the actual pointer array is freed as well.
* @Returns: the pointer array if @free_seg is %FALSE, otherwise %NULL.
* The pointer array should be freed using g_free().
*
* Frees the memory allocated for the #GPtrArray. If @free_seg is %TRUE
* it frees the memory block holding the elements as well. Pass %FALSE
* if you want to free the #GPtrArray wrapper but preserve the
* underlying array for use elsewhere. If the reference count of @array
* is greater than one, the #GPtrArray wrapper is preserved but the
* size of @array will be set to zero.
*
* <note><para>If array contents point to dynamically-allocated
* memory, they should be freed separately if @free_seg is %TRUE and no
* #GDestroyNotify function has been set for @array.</para></note>
**/
gpointer*
g_ptr_array_free (GPtrArray *farray,
gboolean free_segment)
{
GRealPtrArray *array = (GRealPtrArray*) farray;
gpointer* segment;
gboolean preserve_wrapper;
g_return_val_if_fail (array, NULL);
/* if others are holding a reference, preserve the wrapper but do free/return the data */
preserve_wrapper = FALSE;
if (g_atomic_int_get (&array->ref_count) > 1)
preserve_wrapper = TRUE;
if (free_segment)
{
if (array->element_free_func != NULL)
g_ptr_array_foreach (farray, (GFunc) array->element_free_func, NULL);
g_free (array->pdata);
segment = NULL;
}
else
segment = array->pdata;
if (preserve_wrapper)
{
array->pdata = NULL;
array->len = 0;
array->alloc = 0;
}
else
{
g_slice_free1 (sizeof (GRealPtrArray), array);
}
return segment;
}
static void
g_ptr_array_maybe_expand (GRealPtrArray *array,
gint len)
{
if ((array->len + len) > array->alloc)
{
guint old_alloc = array->alloc;
array->alloc = g_nearest_pow (array->len + len);
array->alloc = MAX (array->alloc, MIN_ARRAY_SIZE);
array->pdata = g_realloc (array->pdata, sizeof (gpointer) * array->alloc);
if (G_UNLIKELY (g_mem_gc_friendly))
for ( ; old_alloc < array->alloc; old_alloc++)
array->pdata [old_alloc] = NULL;
}
}
/**
* g_ptr_array_set_size:
* @array: a #GPtrArray.
* @length: the new length of the pointer array.
*
* Sets the size of the array. When making the array larger,
* newly-added elements will be set to %NULL. When making it smaller,
* if @array has a non-%NULL #GDestroyNotify function then it will be
* called for the removed elements.
**/
void
g_ptr_array_set_size (GPtrArray *farray,
gint length)
{
GRealPtrArray* array = (GRealPtrArray*) farray;
g_return_if_fail (array);
if (length > array->len)
{
int i;
g_ptr_array_maybe_expand (array, (length - array->len));
/* This is not
* memset (array->pdata + array->len, 0,
* sizeof (gpointer) * (length - array->len));
* to make it really portable. Remember (void*)NULL needn't be
* bitwise zero. It of course is silly not to use memset (..,0,..).
*/
for (i = array->len; i < length; i++)
array->pdata[i] = NULL;
}
else if (length < array->len)
g_ptr_array_remove_range (farray, length, array->len - length);
array->len = length;
}
/**
* g_ptr_array_remove_index:
* @array: a #GPtrArray.
* @index_: the index of the pointer to remove.
* @Returns: the pointer which was removed.
*
* Removes the pointer at the given index from the pointer array. The
* following elements are moved down one place. If @array has a
* non-%NULL #GDestroyNotify function it is called for the removed
* element.
**/
gpointer
g_ptr_array_remove_index (GPtrArray *farray,
guint index_)
{
GRealPtrArray* array = (GRealPtrArray*) farray;
gpointer result;
g_return_val_if_fail (array, NULL);
g_return_val_if_fail (index_ < array->len, NULL);
result = array->pdata[index_];
if (array->element_free_func != NULL)
array->element_free_func (array->pdata[index_]);
if (index_ != array->len - 1)
g_memmove (array->pdata + index_, array->pdata + index_ + 1,
sizeof (gpointer) * (array->len - index_ - 1));
array->len -= 1;
if (G_UNLIKELY (g_mem_gc_friendly))
array->pdata[array->len] = NULL;
return result;
}
/**
* g_ptr_array_remove_index_fast:
* @array: a #GPtrArray.
* @index_: the index of the pointer to remove.
* @Returns: the pointer which was removed.
*
* Removes the pointer at the given index from the pointer array. The
* last element in the array is used to fill in the space, so this
* function does not preserve the order of the array. But it is faster
* than g_ptr_array_remove_index(). If @array has a non-%NULL
* #GDestroyNotify function it is called for the removed element.
**/
gpointer
g_ptr_array_remove_index_fast (GPtrArray *farray,
guint index_)
{
GRealPtrArray* array = (GRealPtrArray*) farray;
gpointer result;
g_return_val_if_fail (array, NULL);
g_return_val_if_fail (index_ < array->len, NULL);
result = array->pdata[index_];
if (array->element_free_func != NULL)
array->element_free_func (array->pdata[index_]);
if (index_ != array->len - 1)
array->pdata[index_] = array->pdata[array->len - 1];
array->len -= 1;
if (G_UNLIKELY (g_mem_gc_friendly))
array->pdata[array->len] = NULL;
return result;
}
/**
* g_ptr_array_remove_range:
* @array: a @GPtrArray.
* @index_: the index of the first pointer to remove.
* @length: the number of pointers to remove.
*
* Removes the given number of pointers starting at the given index
* from a #GPtrArray. The following elements are moved to close the
* gap. If @array has a non-%NULL #GDestroyNotify function it is called
* for the removed elements.
*
* Since: 2.4
**/
void
g_ptr_array_remove_range (GPtrArray *farray,
guint index_,
guint length)
{
GRealPtrArray* array = (GRealPtrArray*) farray;
guint n;
g_return_if_fail (array);
g_return_if_fail (index_ < array->len);
g_return_if_fail (index_ + length <= array->len);
if (array->element_free_func != NULL)
{
for (n = index_; n < index_ + length; n++)
array->element_free_func (array->pdata[n]);
}
if (index_ + length != array->len)
{
g_memmove (&array->pdata[index_],
&array->pdata[index_ + length],
(array->len - (index_ + length)) * sizeof (gpointer));
}
array->len -= length;
if (G_UNLIKELY (g_mem_gc_friendly))
{
guint i;
for (i = 0; i < length; i++)
array->pdata[array->len + i] = NULL;
}
}
/**
* g_ptr_array_remove:
* @array: a #GPtrArray.
* @data: the pointer to remove.
* @Returns: %TRUE if the pointer is removed. %FALSE if the pointer is
* not found in the array.
*
* Removes the first occurrence of the given pointer from the pointer
* array. The following elements are moved down one place. If @array
* has a non-%NULL #GDestroyNotify function it is called for the
* removed element.
*
* It returns %TRUE if the pointer was removed, or %FALSE if the
* pointer was not found.
**/
gboolean
g_ptr_array_remove (GPtrArray *farray,
gpointer data)
{
GRealPtrArray* array = (GRealPtrArray*) farray;
guint i;
g_return_val_if_fail (array, FALSE);
for (i = 0; i < array->len; i += 1)
{
if (array->pdata[i] == data)
{
g_ptr_array_remove_index (farray, i);
return TRUE;
}
}
return FALSE;
}
/**
* g_ptr_array_remove_fast:
* @array: a #GPtrArray.
* @data: the pointer to remove.
* @Returns: %TRUE if the pointer was found in the array.
*
* Removes the first occurrence of the given pointer from the pointer
* array. The last element in the array is used to fill in the space,
* so this function does not preserve the order of the array. But it is
* faster than g_ptr_array_remove(). If @array has a non-%NULL
* #GDestroyNotify function it is called for the removed element.
*
* It returns %TRUE if the pointer was removed, or %FALSE if the
* pointer was not found.
**/
gboolean
g_ptr_array_remove_fast (GPtrArray *farray,
gpointer data)
{
GRealPtrArray* array = (GRealPtrArray*) farray;
guint i;
g_return_val_if_fail (array, FALSE);
for (i = 0; i < array->len; i += 1)
{
if (array->pdata[i] == data)
{
g_ptr_array_remove_index_fast (farray, i);
return TRUE;
}
}
return FALSE;
}
/**
* g_ptr_array_add:
* @array: a #GPtrArray.
* @data: the pointer to add.
*
* Adds a pointer to the end of the pointer array. The array will grow
* in size automatically if necessary.
**/
void
g_ptr_array_add (GPtrArray *farray,
gpointer data)
{
GRealPtrArray* array = (GRealPtrArray*) farray;
g_return_if_fail (array);
g_ptr_array_maybe_expand (array, 1);
array->pdata[array->len++] = data;
}
/**
* g_ptr_array_sort:
* @array: a #GPtrArray.
* @compare_func: comparison function.
*
* Sorts the array, using @compare_func which should be a qsort()-style
* comparison function (returns less than zero for first arg is less
* than second arg, zero for equal, greater than zero if irst arg is
* greater than second arg).
*
* If two array elements compare equal, their order in the sorted array
* is undefined. If you want equal elements to keep their order &#8211; i.e.
* you want a stable sort &#8211; you can write a comparison function that,
* if two elements would otherwise compare equal, compares them by
* their addresses.
*
* <note><para>The comparison function for g_ptr_array_sort() doesn't
* take the pointers from the array as arguments, it takes pointers to
* the pointers in the array.</para></note>
**/
void
g_ptr_array_sort (GPtrArray *array,
GCompareFunc compare_func)
{
g_return_if_fail (array != NULL);
qsort (array->pdata,
array->len,
sizeof (gpointer),
compare_func);
}
/**
* g_ptr_array_sort_with_data:
* @array: a #GPtrArray.
* @compare_func: comparison function.
* @user_data: data to pass to @compare_func.
*
* Like g_ptr_array_sort(), but the comparison function has an extra
* user data argument.
*
* <note><para>The comparison function for g_ptr_array_sort_with_data()
* doesn't take the pointers from the array as arguments, it takes
* pointers to the pointers in the array.</para></note>
**/
void
g_ptr_array_sort_with_data (GPtrArray *array,
GCompareDataFunc compare_func,
gpointer user_data)
{
g_return_if_fail (array != NULL);
g_qsort_with_data (array->pdata,
array->len,
sizeof (gpointer),
compare_func,
user_data);
}
/**
* g_ptr_array_foreach:
* @array: a #GPtrArray
* @func: the function to call for each array element
* @user_data: user data to pass to the function
*
* Calls a function for each element of a #GPtrArray.
*
* Since: 2.4
**/
void
g_ptr_array_foreach (GPtrArray *array,
GFunc func,
gpointer user_data)
{
guint i;
g_return_if_fail (array);
for (i = 0; i < array->len; i++)
(*func) (array->pdata[i], user_data);
}
/**
* SECTION:arrays_byte
* @title: Byte Arrays
* @short_description: arrays of bytes, which grow automatically as
* elements are added
*
* #GByteArray is based on #GArray, to provide arrays of bytes which
* grow automatically as elements are added.
*
* To create a new #GByteArray use g_byte_array_new().
*
* To add elements to a #GByteArray, use g_byte_array_append(), and
* g_byte_array_prepend().
*
* To set the size of a #GByteArray, use g_byte_array_set_size().
*
* To free a #GByteArray, use g_byte_array_free().
*
* <example>
* <title>Using a #GByteArray</title>
* <programlisting>
* GByteArray *gbarray;
* gint i;
*
* gbarray = g_byte_array_new (<!-- -->);
* for (i = 0; i &lt; 10000; i++)
* g_byte_array_append (gbarray, (guint8*) "abcd", 4);
*
* for (i = 0; i &lt; 10000; i++)
* {
* g_assert (gbarray->data[4*i] == 'a');
* g_assert (gbarray->data[4*i+1] == 'b');
* g_assert (gbarray->data[4*i+2] == 'c');
* g_assert (gbarray->data[4*i+3] == 'd');
* }
*
* g_byte_array_free (gbarray, TRUE);
* </programlisting>
* </example>
**/
/**
* GByteArray:
* @data: a pointer to the element data. The data may be moved as
* elements are added to the #GByteArray.
* @len: the number of elements in the #GByteArray.
*
* The <structname>GByteArray</structname> struct allows access to the
* public fields of a <structname>GByteArray</structname>.
**/
/**
* g_byte_array_new:
* @Returns: the new #GByteArray.
*
* Creates a new #GByteArray with a reference count of 1.
**/
GByteArray* g_byte_array_new (void)
{
return (GByteArray*) g_array_sized_new (FALSE, FALSE, 1, 0);
}
/**
* g_byte_array_sized_new:
* @reserved_size: number of bytes preallocated.
* @Returns: the new #GByteArray.
*
* Creates a new #GByteArray with @reserved_size bytes preallocated.
* This avoids frequent reallocation, if you are going to add many
* bytes to the array. Note however that the size of the array is still
* 0.
**/
GByteArray* g_byte_array_sized_new (guint reserved_size)
{
return (GByteArray*) g_array_sized_new (FALSE, FALSE, 1, reserved_size);
}
/**
* g_byte_array_free:
* @array: a #GByteArray.
* @free_segment: if %TRUE the actual byte data is freed as well.
* @Returns: the element data if @free_segment is %FALSE, otherwise
* %NULL. The element data should be freed using g_free().
*
* Frees the memory allocated by the #GByteArray. If @free_segment is
* %TRUE it frees the actual byte data. If the reference count of
* @array is greater than one, the #GByteArray wrapper is preserved but
* the size of @array will be set to zero.
**/
guint8* g_byte_array_free (GByteArray *array,
gboolean free_segment)
{
return (guint8*) g_array_free ((GArray*) array, free_segment);
}
/**
* g_byte_array_ref:
* @array: A #GByteArray.
*
* Atomically increments the reference count of @array by one. This
* function is MT-safe and may be called from any thread.
*
* Returns: The passed in #GByteArray.
*
* Since: 2.22
**/
GByteArray *
g_byte_array_ref (GByteArray *array)
{
return (GByteArray *) g_array_ref ((GArray *) array);
}
/**
* g_byte_array_unref:
* @array: A #GByteArray.
*
* Atomically decrements the reference count of @array by one. If the
* reference count drops to 0, all memory allocated by the array is
* released. This function is MT-safe and may be called from any
* thread.
*
* Since: 2.22
**/
void
g_byte_array_unref (GByteArray *array)
{
g_array_unref ((GArray *) array);
}
/**
* g_byte_array_append:
* @array: a #GByteArray.
* @data: the byte data to be added.
* @len: the number of bytes to add.
* @Returns: the #GByteArray.
*
* Adds the given bytes to the end of the #GByteArray. The array will
* grow in size automatically if necessary.
**/
GByteArray* g_byte_array_append (GByteArray *array,
const guint8 *data,
guint len)
{
g_array_append_vals ((GArray*) array, (guint8*)data, len);
return array;
}
/**
* g_byte_array_prepend:
* @array: a #GByteArray.
* @data: the byte data to be added.
* @len: the number of bytes to add.
* @Returns: the #GByteArray.
*
* Adds the given data to the start of the #GByteArray. The array will
* grow in size automatically if necessary.
**/
GByteArray* g_byte_array_prepend (GByteArray *array,
const guint8 *data,
guint len)
{
g_array_prepend_vals ((GArray*) array, (guint8*)data, len);
return array;
}
/**
* g_byte_array_set_size:
* @array: a #GByteArray.
* @length: the new size of the #GByteArray.
* @Returns: the #GByteArray.
*
* Sets the size of the #GByteArray, expanding it if necessary.
**/
GByteArray* g_byte_array_set_size (GByteArray *array,
guint length)
{
g_array_set_size ((GArray*) array, length);
return array;
}
/**
* g_byte_array_remove_index:
* @array: a #GByteArray.
* @index_: the index of the byte to remove.
* @Returns: the #GByteArray.
*
* Removes the byte at the given index from a #GByteArray. The
* following bytes are moved down one place.
**/
GByteArray* g_byte_array_remove_index (GByteArray *array,
guint index_)
{
g_array_remove_index ((GArray*) array, index_);
return array;
}
/**
* g_byte_array_remove_index_fast:
* @array: a #GByteArray.
* @index_: the index of the byte to remove.
* @Returns: the #GByteArray.
*
* Removes the byte at the given index from a #GByteArray. The last
* element in the array is used to fill in the space, so this function
* does not preserve the order of the #GByteArray. But it is faster
* than g_byte_array_remove_index().
**/
GByteArray* g_byte_array_remove_index_fast (GByteArray *array,
guint index_)
{
g_array_remove_index_fast ((GArray*) array, index_);
return array;
}
/**
* g_byte_array_remove_range:
* @array: a @GByteArray.
* @index_: the index of the first byte to remove.
* @length: the number of bytes to remove.
* @Returns: the #GByteArray.
*
* Removes the given number of bytes starting at the given index from a
* #GByteArray. The following elements are moved to close the gap.
*
* Since: 2.4
**/
GByteArray*
g_byte_array_remove_range (GByteArray *array,
guint index_,
guint length)
{
g_return_val_if_fail (array, NULL);
g_return_val_if_fail (index_ < array->len, NULL);
g_return_val_if_fail (index_ + length <= array->len, NULL);
return (GByteArray *)g_array_remove_range ((GArray*) array, index_, length);
}
/**
* g_byte_array_sort:
* @array: a #GByteArray.
* @compare_func: comparison function.
*
* Sorts a byte array, using @compare_func which should be a
* qsort()-style comparison function (returns less than zero for first
* arg is less than second arg, zero for equal, greater than zero if
* first arg is greater than second arg).
*
* If two array elements compare equal, their order in the sorted array
* is undefined. If you want equal elements to keep their order &#8211; i.e.
* you want a stable sort &#8211; you can write a comparison function that,
* if two elements would otherwise compare equal, compares them by
* their addresses.
**/
void
g_byte_array_sort (GByteArray *array,
GCompareFunc compare_func)
{
g_array_sort ((GArray *) array, compare_func);
}
/**
* g_byte_array_sort_with_data:
* @array: a #GByteArray.
* @compare_func: comparison function.
* @user_data: data to pass to @compare_func.
*
* Like g_byte_array_sort(), but the comparison function takes an extra
* user data argument.
**/
void
g_byte_array_sort_with_data (GByteArray *array,
GCompareDataFunc compare_func,
gpointer user_data)
{
g_array_sort_with_data ((GArray *) array, compare_func, user_data);
}