mirror of
https://gitlab.gnome.org/GNOME/glib.git
synced 2024-12-27 07:56:14 +01:00
f952fdf3fc
It's unnecessary, and only adds visual noise; we have been fairly inconsistent in the past, but the semi-colon-less version clearly dominates in the code base. https://bugzilla.gnome.org/show_bug.cgi?id=669355
976 lines
35 KiB
C
976 lines
35 KiB
C
/* GIO - GLib Input, Output and Streaming Library
|
||
*
|
||
* Copyright © 2010 Red Hat, Inc
|
||
* Copyright © 2015 Collabora, Ltd.
|
||
*
|
||
* This library is free software; you can redistribute it and/or
|
||
* modify it under the terms of the GNU Lesser General Public
|
||
* License as published by the Free Software Foundation; either
|
||
* version 2 of the License, or (at your option) any later version.
|
||
*
|
||
* This library is distributed in the hope that it will be useful,
|
||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
* Lesser General Public License for more details.
|
||
*
|
||
* You should have received a copy of the GNU Lesser General
|
||
* Public License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
||
*/
|
||
|
||
#include "config.h"
|
||
#include "glib.h"
|
||
|
||
#include "gdtlsconnection.h"
|
||
#include "gcancellable.h"
|
||
#include "gioenumtypes.h"
|
||
#include "gsocket.h"
|
||
#include "gtlsbackend.h"
|
||
#include "gtlscertificate.h"
|
||
#include "gdtlsclientconnection.h"
|
||
#include "gtlsdatabase.h"
|
||
#include "gtlsinteraction.h"
|
||
#include "glibintl.h"
|
||
|
||
/**
|
||
* SECTION:gdtlsconnection
|
||
* @short_description: DTLS connection type
|
||
* @include: gio/gio.h
|
||
*
|
||
* #GDtlsConnection is the base DTLS connection class type, which wraps
|
||
* a #GDatagramBased and provides DTLS encryption on top of it. Its
|
||
* subclasses, #GDtlsClientConnection and #GDtlsServerConnection,
|
||
* implement client-side and server-side DTLS, respectively.
|
||
*
|
||
* For TLS support, see #GTlsConnection.
|
||
*
|
||
* As DTLS is datagram based, #GDtlsConnection implements #GDatagramBased,
|
||
* presenting a datagram-socket-like API for the encrypted connection. This
|
||
* operates over a base datagram connection, which is also a #GDatagramBased
|
||
* (#GDtlsConnection:base-socket).
|
||
*
|
||
* To close a DTLS connection, use g_dtls_connection_close().
|
||
*
|
||
* Neither #GDtlsServerConnection or #GDtlsClientConnection set the peer address
|
||
* on their base #GDatagramBased if it is a #GSocket — it is up to the caller to
|
||
* do that if they wish. If they do not, and g_socket_close() is called on the
|
||
* base socket, the #GDtlsConnection will not raise a %G_IO_ERROR_NOT_CONNECTED
|
||
* error on further I/O.
|
||
*
|
||
* Since: 2.48
|
||
*/
|
||
|
||
/**
|
||
* GDtlsConnection:
|
||
*
|
||
* Abstract base class for the backend-specific #GDtlsClientConnection
|
||
* and #GDtlsServerConnection types.
|
||
*
|
||
* Since: 2.48
|
||
*/
|
||
|
||
G_DEFINE_INTERFACE (GDtlsConnection, g_dtls_connection, G_TYPE_DATAGRAM_BASED)
|
||
|
||
enum {
|
||
ACCEPT_CERTIFICATE,
|
||
LAST_SIGNAL
|
||
};
|
||
|
||
static guint signals[LAST_SIGNAL] = { 0 };
|
||
|
||
enum {
|
||
PROP_BASE_SOCKET = 1,
|
||
PROP_REQUIRE_CLOSE_NOTIFY,
|
||
PROP_REHANDSHAKE_MODE,
|
||
PROP_DATABASE,
|
||
PROP_INTERACTION,
|
||
PROP_CERTIFICATE,
|
||
PROP_PEER_CERTIFICATE,
|
||
PROP_PEER_CERTIFICATE_ERRORS,
|
||
};
|
||
|
||
static void
|
||
g_dtls_connection_default_init (GDtlsConnectionInterface *iface)
|
||
{
|
||
/**
|
||
* GDtlsConnection:base-socket:
|
||
*
|
||
* The #GDatagramBased that the connection wraps. Note that this may be any
|
||
* implementation of #GDatagramBased, not just a #GSocket.
|
||
*
|
||
* Since: 2.48
|
||
*/
|
||
g_object_interface_install_property (iface,
|
||
g_param_spec_object ("base-socket",
|
||
P_("Base Socket"),
|
||
P_("The GDatagramBased that the connection wraps"),
|
||
G_TYPE_DATAGRAM_BASED,
|
||
G_PARAM_READWRITE |
|
||
G_PARAM_CONSTRUCT_ONLY |
|
||
G_PARAM_STATIC_STRINGS));
|
||
/**
|
||
* GDtlsConnection:database:
|
||
*
|
||
* The certificate database to use when verifying this TLS connection.
|
||
* If no certificate database is set, then the default database will be
|
||
* used. See g_dtls_backend_get_default_database().
|
||
*
|
||
* Since: 2.48
|
||
*/
|
||
g_object_interface_install_property (iface,
|
||
g_param_spec_object ("database",
|
||
P_("Database"),
|
||
P_("Certificate database to use for looking up or verifying certificates"),
|
||
G_TYPE_TLS_DATABASE,
|
||
G_PARAM_READWRITE |
|
||
G_PARAM_STATIC_STRINGS));
|
||
/**
|
||
* GDtlsConnection:interaction:
|
||
*
|
||
* A #GTlsInteraction object to be used when the connection or certificate
|
||
* database need to interact with the user. This will be used to prompt the
|
||
* user for passwords where necessary.
|
||
*
|
||
* Since: 2.48
|
||
*/
|
||
g_object_interface_install_property (iface,
|
||
g_param_spec_object ("interaction",
|
||
P_("Interaction"),
|
||
P_("Optional object for user interaction"),
|
||
G_TYPE_TLS_INTERACTION,
|
||
G_PARAM_READWRITE |
|
||
G_PARAM_STATIC_STRINGS));
|
||
/**
|
||
* GDtlsConnection:require-close-notify:
|
||
*
|
||
* Whether or not proper TLS close notification is required.
|
||
* See g_dtls_connection_set_require_close_notify().
|
||
*
|
||
* Since: 2.48
|
||
*/
|
||
g_object_interface_install_property (iface,
|
||
g_param_spec_boolean ("require-close-notify",
|
||
P_("Require close notify"),
|
||
P_("Whether to require proper TLS close notification"),
|
||
TRUE,
|
||
G_PARAM_READWRITE |
|
||
G_PARAM_CONSTRUCT |
|
||
G_PARAM_STATIC_STRINGS));
|
||
/**
|
||
* GDtlsConnection:rehandshake-mode:
|
||
*
|
||
* The rehandshaking mode. See
|
||
* g_dtls_connection_set_rehandshake_mode().
|
||
*
|
||
* Since: 2.48
|
||
*/
|
||
g_object_interface_install_property (iface,
|
||
g_param_spec_enum ("rehandshake-mode",
|
||
P_("Rehandshake mode"),
|
||
P_("When to allow rehandshaking"),
|
||
G_TYPE_TLS_REHANDSHAKE_MODE,
|
||
G_TLS_REHANDSHAKE_NEVER,
|
||
G_PARAM_READWRITE |
|
||
G_PARAM_CONSTRUCT |
|
||
G_PARAM_STATIC_STRINGS));
|
||
/**
|
||
* GDtlsConnection:certificate:
|
||
*
|
||
* The connection's certificate; see
|
||
* g_dtls_connection_set_certificate().
|
||
*
|
||
* Since: 2.48
|
||
*/
|
||
g_object_interface_install_property (iface,
|
||
g_param_spec_object ("certificate",
|
||
P_("Certificate"),
|
||
P_("The connection’s certificate"),
|
||
G_TYPE_TLS_CERTIFICATE,
|
||
G_PARAM_READWRITE |
|
||
G_PARAM_STATIC_STRINGS));
|
||
/**
|
||
* GDtlsConnection:peer-certificate:
|
||
*
|
||
* The connection's peer's certificate, after the TLS handshake has
|
||
* completed and the certificate has been accepted. Note in
|
||
* particular that this is not yet set during the emission of
|
||
* #GDtlsConnection::accept-certificate.
|
||
*
|
||
* (You can watch for a #GObject::notify signal on this property to
|
||
* detect when a handshake has occurred.)
|
||
*
|
||
* Since: 2.48
|
||
*/
|
||
g_object_interface_install_property (iface,
|
||
g_param_spec_object ("peer-certificate",
|
||
P_("Peer Certificate"),
|
||
P_("The connection’s peer’s certificate"),
|
||
G_TYPE_TLS_CERTIFICATE,
|
||
G_PARAM_READABLE |
|
||
G_PARAM_STATIC_STRINGS));
|
||
/**
|
||
* GDtlsConnection:peer-certificate-errors:
|
||
*
|
||
* The errors noticed-and-ignored while verifying
|
||
* #GDtlsConnection:peer-certificate. Normally this should be 0, but
|
||
* it may not be if #GDtlsClientConnection:validation-flags is not
|
||
* %G_TLS_CERTIFICATE_VALIDATE_ALL, or if
|
||
* #GDtlsConnection::accept-certificate overrode the default
|
||
* behavior.
|
||
*
|
||
* Since: 2.48
|
||
*/
|
||
g_object_interface_install_property (iface,
|
||
g_param_spec_flags ("peer-certificate-errors",
|
||
P_("Peer Certificate Errors"),
|
||
P_("Errors found with the peer’s certificate"),
|
||
G_TYPE_TLS_CERTIFICATE_FLAGS,
|
||
0,
|
||
G_PARAM_READABLE |
|
||
G_PARAM_STATIC_STRINGS));
|
||
|
||
/**
|
||
* GDtlsConnection::accept-certificate:
|
||
* @conn: a #GDtlsConnection
|
||
* @peer_cert: the peer's #GTlsCertificate
|
||
* @errors: the problems with @peer_cert.
|
||
*
|
||
* Emitted during the TLS handshake after the peer certificate has
|
||
* been received. You can examine @peer_cert's certification path by
|
||
* calling g_tls_certificate_get_issuer() on it.
|
||
*
|
||
* For a client-side connection, @peer_cert is the server's
|
||
* certificate, and the signal will only be emitted if the
|
||
* certificate was not acceptable according to @conn's
|
||
* #GDtlsClientConnection:validation_flags. If you would like the
|
||
* certificate to be accepted despite @errors, return %TRUE from the
|
||
* signal handler. Otherwise, if no handler accepts the certificate,
|
||
* the handshake will fail with %G_TLS_ERROR_BAD_CERTIFICATE.
|
||
*
|
||
* For a server-side connection, @peer_cert is the certificate
|
||
* presented by the client, if this was requested via the server's
|
||
* #GDtlsServerConnection:authentication_mode. On the server side,
|
||
* the signal is always emitted when the client presents a
|
||
* certificate, and the certificate will only be accepted if a
|
||
* handler returns %TRUE.
|
||
*
|
||
* Note that if this signal is emitted as part of asynchronous I/O
|
||
* in the main thread, then you should not attempt to interact with
|
||
* the user before returning from the signal handler. If you want to
|
||
* let the user decide whether or not to accept the certificate, you
|
||
* would have to return %FALSE from the signal handler on the first
|
||
* attempt, and then after the connection attempt returns a
|
||
* %G_TLS_ERROR_HANDSHAKE, you can interact with the user, and if
|
||
* the user decides to accept the certificate, remember that fact,
|
||
* create a new connection, and return %TRUE from the signal handler
|
||
* the next time.
|
||
*
|
||
* If you are doing I/O in another thread, you do not
|
||
* need to worry about this, and can simply block in the signal
|
||
* handler until the UI thread returns an answer.
|
||
*
|
||
* Returns: %TRUE to accept @peer_cert (which will also
|
||
* immediately end the signal emission). %FALSE to allow the signal
|
||
* emission to continue, which will cause the handshake to fail if
|
||
* no one else overrides it.
|
||
*
|
||
* Since: 2.48
|
||
*/
|
||
signals[ACCEPT_CERTIFICATE] =
|
||
g_signal_new (I_("accept-certificate"),
|
||
G_TYPE_DTLS_CONNECTION,
|
||
G_SIGNAL_RUN_LAST,
|
||
G_STRUCT_OFFSET (GDtlsConnectionInterface, accept_certificate),
|
||
g_signal_accumulator_true_handled, NULL,
|
||
NULL,
|
||
G_TYPE_BOOLEAN, 2,
|
||
G_TYPE_TLS_CERTIFICATE,
|
||
G_TYPE_TLS_CERTIFICATE_FLAGS);
|
||
}
|
||
|
||
/**
|
||
* g_dtls_connection_set_database:
|
||
* @conn: a #GDtlsConnection
|
||
* @database: a #GTlsDatabase
|
||
*
|
||
* Sets the certificate database that is used to verify peer certificates.
|
||
* This is set to the default database by default. See
|
||
* g_dtls_backend_get_default_database(). If set to %NULL, then
|
||
* peer certificate validation will always set the
|
||
* %G_TLS_CERTIFICATE_UNKNOWN_CA error (meaning
|
||
* #GDtlsConnection::accept-certificate will always be emitted on
|
||
* client-side connections, unless that bit is not set in
|
||
* #GDtlsClientConnection:validation-flags).
|
||
*
|
||
* Since: 2.48
|
||
*/
|
||
void
|
||
g_dtls_connection_set_database (GDtlsConnection *conn,
|
||
GTlsDatabase *database)
|
||
{
|
||
g_return_if_fail (G_IS_DTLS_CONNECTION (conn));
|
||
g_return_if_fail (database == NULL || G_IS_TLS_DATABASE (database));
|
||
|
||
g_object_set (G_OBJECT (conn),
|
||
"database", database,
|
||
NULL);
|
||
}
|
||
|
||
/**
|
||
* g_dtls_connection_get_database:
|
||
* @conn: a #GDtlsConnection
|
||
*
|
||
* Gets the certificate database that @conn uses to verify
|
||
* peer certificates. See g_dtls_connection_set_database().
|
||
*
|
||
* Returns: (transfer none): the certificate database that @conn uses or %NULL
|
||
*
|
||
* Since: 2.48
|
||
*/
|
||
GTlsDatabase*
|
||
g_dtls_connection_get_database (GDtlsConnection *conn)
|
||
{
|
||
GTlsDatabase *database = NULL;
|
||
|
||
g_return_val_if_fail (G_IS_DTLS_CONNECTION (conn), NULL);
|
||
|
||
g_object_get (G_OBJECT (conn),
|
||
"database", &database,
|
||
NULL);
|
||
if (database)
|
||
g_object_unref (database);
|
||
return database;
|
||
}
|
||
|
||
/**
|
||
* g_dtls_connection_set_certificate:
|
||
* @conn: a #GDtlsConnection
|
||
* @certificate: the certificate to use for @conn
|
||
*
|
||
* This sets the certificate that @conn will present to its peer
|
||
* during the TLS handshake. For a #GDtlsServerConnection, it is
|
||
* mandatory to set this, and that will normally be done at construct
|
||
* time.
|
||
*
|
||
* For a #GDtlsClientConnection, this is optional. If a handshake fails
|
||
* with %G_TLS_ERROR_CERTIFICATE_REQUIRED, that means that the server
|
||
* requires a certificate, and if you try connecting again, you should
|
||
* call this method first. You can call
|
||
* g_dtls_client_connection_get_accepted_cas() on the failed connection
|
||
* to get a list of Certificate Authorities that the server will
|
||
* accept certificates from.
|
||
*
|
||
* (It is also possible that a server will allow the connection with
|
||
* or without a certificate; in that case, if you don't provide a
|
||
* certificate, you can tell that the server requested one by the fact
|
||
* that g_dtls_client_connection_get_accepted_cas() will return
|
||
* non-%NULL.)
|
||
*
|
||
* Since: 2.48
|
||
*/
|
||
void
|
||
g_dtls_connection_set_certificate (GDtlsConnection *conn,
|
||
GTlsCertificate *certificate)
|
||
{
|
||
g_return_if_fail (G_IS_DTLS_CONNECTION (conn));
|
||
g_return_if_fail (G_IS_TLS_CERTIFICATE (certificate));
|
||
|
||
g_object_set (G_OBJECT (conn), "certificate", certificate, NULL);
|
||
}
|
||
|
||
/**
|
||
* g_dtls_connection_get_certificate:
|
||
* @conn: a #GDtlsConnection
|
||
*
|
||
* Gets @conn's certificate, as set by
|
||
* g_dtls_connection_set_certificate().
|
||
*
|
||
* Returns: (transfer none): @conn's certificate, or %NULL
|
||
*
|
||
* Since: 2.48
|
||
*/
|
||
GTlsCertificate *
|
||
g_dtls_connection_get_certificate (GDtlsConnection *conn)
|
||
{
|
||
GTlsCertificate *certificate;
|
||
|
||
g_return_val_if_fail (G_IS_DTLS_CONNECTION (conn), NULL);
|
||
|
||
g_object_get (G_OBJECT (conn), "certificate", &certificate, NULL);
|
||
if (certificate)
|
||
g_object_unref (certificate);
|
||
|
||
return certificate;
|
||
}
|
||
|
||
/**
|
||
* g_dtls_connection_set_interaction:
|
||
* @conn: a connection
|
||
* @interaction: (nullable): an interaction object, or %NULL
|
||
*
|
||
* Set the object that will be used to interact with the user. It will be used
|
||
* for things like prompting the user for passwords.
|
||
*
|
||
* The @interaction argument will normally be a derived subclass of
|
||
* #GTlsInteraction. %NULL can also be provided if no user interaction
|
||
* should occur for this connection.
|
||
*
|
||
* Since: 2.48
|
||
*/
|
||
void
|
||
g_dtls_connection_set_interaction (GDtlsConnection *conn,
|
||
GTlsInteraction *interaction)
|
||
{
|
||
g_return_if_fail (G_IS_DTLS_CONNECTION (conn));
|
||
g_return_if_fail (interaction == NULL || G_IS_TLS_INTERACTION (interaction));
|
||
|
||
g_object_set (G_OBJECT (conn), "interaction", interaction, NULL);
|
||
}
|
||
|
||
/**
|
||
* g_dtls_connection_get_interaction:
|
||
* @conn: a connection
|
||
*
|
||
* Get the object that will be used to interact with the user. It will be used
|
||
* for things like prompting the user for passwords. If %NULL is returned, then
|
||
* no user interaction will occur for this connection.
|
||
*
|
||
* Returns: (transfer none): The interaction object.
|
||
*
|
||
* Since: 2.48
|
||
*/
|
||
GTlsInteraction *
|
||
g_dtls_connection_get_interaction (GDtlsConnection *conn)
|
||
{
|
||
GTlsInteraction *interaction = NULL;
|
||
|
||
g_return_val_if_fail (G_IS_DTLS_CONNECTION (conn), NULL);
|
||
|
||
g_object_get (G_OBJECT (conn), "interaction", &interaction, NULL);
|
||
if (interaction)
|
||
g_object_unref (interaction);
|
||
|
||
return interaction;
|
||
}
|
||
|
||
/**
|
||
* g_dtls_connection_get_peer_certificate:
|
||
* @conn: a #GDtlsConnection
|
||
*
|
||
* Gets @conn's peer's certificate after the handshake has completed.
|
||
* (It is not set during the emission of
|
||
* #GDtlsConnection::accept-certificate.)
|
||
*
|
||
* Returns: (transfer none): @conn's peer's certificate, or %NULL
|
||
*
|
||
* Since: 2.48
|
||
*/
|
||
GTlsCertificate *
|
||
g_dtls_connection_get_peer_certificate (GDtlsConnection *conn)
|
||
{
|
||
GTlsCertificate *peer_certificate;
|
||
|
||
g_return_val_if_fail (G_IS_DTLS_CONNECTION (conn), NULL);
|
||
|
||
g_object_get (G_OBJECT (conn), "peer-certificate", &peer_certificate, NULL);
|
||
if (peer_certificate)
|
||
g_object_unref (peer_certificate);
|
||
|
||
return peer_certificate;
|
||
}
|
||
|
||
/**
|
||
* g_dtls_connection_get_peer_certificate_errors:
|
||
* @conn: a #GDtlsConnection
|
||
*
|
||
* Gets the errors associated with validating @conn's peer's
|
||
* certificate, after the handshake has completed. (It is not set
|
||
* during the emission of #GDtlsConnection::accept-certificate.)
|
||
*
|
||
* Returns: @conn's peer's certificate errors
|
||
*
|
||
* Since: 2.48
|
||
*/
|
||
GTlsCertificateFlags
|
||
g_dtls_connection_get_peer_certificate_errors (GDtlsConnection *conn)
|
||
{
|
||
GTlsCertificateFlags errors;
|
||
|
||
g_return_val_if_fail (G_IS_DTLS_CONNECTION (conn), 0);
|
||
|
||
g_object_get (G_OBJECT (conn), "peer-certificate-errors", &errors, NULL);
|
||
return errors;
|
||
}
|
||
|
||
/**
|
||
* g_dtls_connection_set_require_close_notify:
|
||
* @conn: a #GDtlsConnection
|
||
* @require_close_notify: whether or not to require close notification
|
||
*
|
||
* Sets whether or not @conn expects a proper TLS close notification
|
||
* before the connection is closed. If this is %TRUE (the default),
|
||
* then @conn will expect to receive a TLS close notification from its
|
||
* peer before the connection is closed, and will return a
|
||
* %G_TLS_ERROR_EOF error if the connection is closed without proper
|
||
* notification (since this may indicate a network error, or
|
||
* man-in-the-middle attack).
|
||
*
|
||
* In some protocols, the application will know whether or not the
|
||
* connection was closed cleanly based on application-level data
|
||
* (because the application-level data includes a length field, or is
|
||
* somehow self-delimiting); in this case, the close notify is
|
||
* redundant and may be omitted. You
|
||
* can use g_dtls_connection_set_require_close_notify() to tell @conn
|
||
* to allow an "unannounced" connection close, in which case the close
|
||
* will show up as a 0-length read, as in a non-TLS
|
||
* #GDatagramBased, and it is up to the application to check that
|
||
* the data has been fully received.
|
||
*
|
||
* Note that this only affects the behavior when the peer closes the
|
||
* connection; when the application calls g_dtls_connection_close_async() on
|
||
* @conn itself, this will send a close notification regardless of the
|
||
* setting of this property. If you explicitly want to do an unclean
|
||
* close, you can close @conn's #GDtlsConnection:base-socket rather
|
||
* than closing @conn itself.
|
||
*
|
||
* Since: 2.48
|
||
*/
|
||
void
|
||
g_dtls_connection_set_require_close_notify (GDtlsConnection *conn,
|
||
gboolean require_close_notify)
|
||
{
|
||
g_return_if_fail (G_IS_DTLS_CONNECTION (conn));
|
||
|
||
g_object_set (G_OBJECT (conn),
|
||
"require-close-notify", require_close_notify,
|
||
NULL);
|
||
}
|
||
|
||
/**
|
||
* g_dtls_connection_get_require_close_notify:
|
||
* @conn: a #GDtlsConnection
|
||
*
|
||
* Tests whether or not @conn expects a proper TLS close notification
|
||
* when the connection is closed. See
|
||
* g_dtls_connection_set_require_close_notify() for details.
|
||
*
|
||
* Returns: %TRUE if @conn requires a proper TLS close notification.
|
||
*
|
||
* Since: 2.48
|
||
*/
|
||
gboolean
|
||
g_dtls_connection_get_require_close_notify (GDtlsConnection *conn)
|
||
{
|
||
gboolean require_close_notify;
|
||
|
||
g_return_val_if_fail (G_IS_DTLS_CONNECTION (conn), TRUE);
|
||
|
||
g_object_get (G_OBJECT (conn),
|
||
"require-close-notify", &require_close_notify,
|
||
NULL);
|
||
return require_close_notify;
|
||
}
|
||
|
||
/**
|
||
* g_dtls_connection_set_rehandshake_mode:
|
||
* @conn: a #GDtlsConnection
|
||
* @mode: the rehandshaking mode
|
||
*
|
||
* Sets how @conn behaves with respect to rehandshaking requests.
|
||
*
|
||
* %G_TLS_REHANDSHAKE_NEVER means that it will never agree to
|
||
* rehandshake after the initial handshake is complete. (For a client,
|
||
* this means it will refuse rehandshake requests from the server, and
|
||
* for a server, this means it will close the connection with an error
|
||
* if the client attempts to rehandshake.)
|
||
*
|
||
* %G_TLS_REHANDSHAKE_SAFELY means that the connection will allow a
|
||
* rehandshake only if the other end of the connection supports the
|
||
* TLS `renegotiation_info` extension. This is the default behavior,
|
||
* but means that rehandshaking will not work against older
|
||
* implementations that do not support that extension.
|
||
*
|
||
* %G_TLS_REHANDSHAKE_UNSAFELY means that the connection will allow
|
||
* rehandshaking even without the `renegotiation_info` extension. On
|
||
* the server side in particular, this is not recommended, since it
|
||
* leaves the server open to certain attacks. However, this mode is
|
||
* necessary if you need to allow renegotiation with older client
|
||
* software.
|
||
*
|
||
* Since: 2.48
|
||
*/
|
||
void
|
||
g_dtls_connection_set_rehandshake_mode (GDtlsConnection *conn,
|
||
GTlsRehandshakeMode mode)
|
||
{
|
||
g_return_if_fail (G_IS_DTLS_CONNECTION (conn));
|
||
|
||
g_object_set (G_OBJECT (conn),
|
||
"rehandshake-mode", mode,
|
||
NULL);
|
||
}
|
||
|
||
/**
|
||
* g_dtls_connection_get_rehandshake_mode:
|
||
* @conn: a #GDtlsConnection
|
||
*
|
||
* Gets @conn rehandshaking mode. See
|
||
* g_dtls_connection_set_rehandshake_mode() for details.
|
||
*
|
||
* Returns: @conn's rehandshaking mode
|
||
*
|
||
* Since: 2.48
|
||
*/
|
||
GTlsRehandshakeMode
|
||
g_dtls_connection_get_rehandshake_mode (GDtlsConnection *conn)
|
||
{
|
||
GTlsRehandshakeMode mode;
|
||
|
||
g_return_val_if_fail (G_IS_DTLS_CONNECTION (conn), G_TLS_REHANDSHAKE_NEVER);
|
||
|
||
g_object_get (G_OBJECT (conn),
|
||
"rehandshake-mode", &mode,
|
||
NULL);
|
||
return mode;
|
||
}
|
||
|
||
/**
|
||
* g_dtls_connection_handshake:
|
||
* @conn: a #GDtlsConnection
|
||
* @cancellable: (nullable): a #GCancellable, or %NULL
|
||
* @error: a #GError, or %NULL
|
||
*
|
||
* Attempts a TLS handshake on @conn.
|
||
*
|
||
* On the client side, it is never necessary to call this method;
|
||
* although the connection needs to perform a handshake after
|
||
* connecting (or after sending a "STARTTLS"-type command) and may
|
||
* need to rehandshake later if the server requests it,
|
||
* #GDtlsConnection will handle this for you automatically when you try
|
||
* to send or receive data on the connection. However, you can call
|
||
* g_dtls_connection_handshake() manually if you want to know for sure
|
||
* whether the initial handshake succeeded or failed (as opposed to
|
||
* just immediately trying to write to @conn, in which
|
||
* case if it fails, it may not be possible to tell if it failed
|
||
* before or after completing the handshake).
|
||
*
|
||
* Likewise, on the server side, although a handshake is necessary at
|
||
* the beginning of the communication, you do not need to call this
|
||
* function explicitly unless you want clearer error reporting.
|
||
* However, you may call g_dtls_connection_handshake() later on to
|
||
* renegotiate parameters (encryption methods, etc) with the client.
|
||
*
|
||
* #GDtlsConnection::accept_certificate may be emitted during the
|
||
* handshake.
|
||
*
|
||
* Returns: success or failure
|
||
*
|
||
* Since: 2.48
|
||
*/
|
||
gboolean
|
||
g_dtls_connection_handshake (GDtlsConnection *conn,
|
||
GCancellable *cancellable,
|
||
GError **error)
|
||
{
|
||
g_return_val_if_fail (G_IS_DTLS_CONNECTION (conn), FALSE);
|
||
|
||
return G_DTLS_CONNECTION_GET_INTERFACE (conn)->handshake (conn, cancellable,
|
||
error);
|
||
}
|
||
|
||
/**
|
||
* g_dtls_connection_handshake_async:
|
||
* @conn: a #GDtlsConnection
|
||
* @io_priority: the [I/O priority][io-priority] of the request
|
||
* @cancellable: (nullable): a #GCancellable, or %NULL
|
||
* @callback: callback to call when the handshake is complete
|
||
* @user_data: the data to pass to the callback function
|
||
*
|
||
* Asynchronously performs a TLS handshake on @conn. See
|
||
* g_dtls_connection_handshake() for more information.
|
||
*
|
||
* Since: 2.48
|
||
*/
|
||
void
|
||
g_dtls_connection_handshake_async (GDtlsConnection *conn,
|
||
int io_priority,
|
||
GCancellable *cancellable,
|
||
GAsyncReadyCallback callback,
|
||
gpointer user_data)
|
||
{
|
||
g_return_if_fail (G_IS_DTLS_CONNECTION (conn));
|
||
|
||
G_DTLS_CONNECTION_GET_INTERFACE (conn)->handshake_async (conn, io_priority,
|
||
cancellable,
|
||
callback, user_data);
|
||
}
|
||
|
||
/**
|
||
* g_dtls_connection_handshake_finish:
|
||
* @conn: a #GDtlsConnection
|
||
* @result: a #GAsyncResult.
|
||
* @error: a #GError pointer, or %NULL
|
||
*
|
||
* Finish an asynchronous TLS handshake operation. See
|
||
* g_dtls_connection_handshake() for more information.
|
||
*
|
||
* Returns: %TRUE on success, %FALSE on failure, in which
|
||
* case @error will be set.
|
||
*
|
||
* Since: 2.48
|
||
*/
|
||
gboolean
|
||
g_dtls_connection_handshake_finish (GDtlsConnection *conn,
|
||
GAsyncResult *result,
|
||
GError **error)
|
||
{
|
||
g_return_val_if_fail (G_IS_DTLS_CONNECTION (conn), FALSE);
|
||
|
||
return G_DTLS_CONNECTION_GET_INTERFACE (conn)->handshake_finish (conn,
|
||
result,
|
||
error);
|
||
}
|
||
|
||
/**
|
||
* g_dtls_connection_shutdown:
|
||
* @conn: a #GDtlsConnection
|
||
* @shutdown_read: %TRUE to stop reception of incoming datagrams
|
||
* @shutdown_write: %TRUE to stop sending outgoing datagrams
|
||
* @cancellable: (nullable): a #GCancellable, or %NULL
|
||
* @error: a #GError, or %NULL
|
||
*
|
||
* Shut down part or all of a DTLS connection.
|
||
*
|
||
* If @shutdown_read is %TRUE then the receiving side of the connection is shut
|
||
* down, and further reading is disallowed. Subsequent calls to
|
||
* g_datagram_based_receive_messages() will return %G_IO_ERROR_CLOSED.
|
||
*
|
||
* If @shutdown_write is %TRUE then the sending side of the connection is shut
|
||
* down, and further writing is disallowed. Subsequent calls to
|
||
* g_datagram_based_send_messages() will return %G_IO_ERROR_CLOSED.
|
||
*
|
||
* It is allowed for both @shutdown_read and @shutdown_write to be TRUE — this
|
||
* is equivalent to calling g_dtls_connection_close().
|
||
*
|
||
* If @cancellable is cancelled, the #GDtlsConnection may be left
|
||
* partially-closed and any pending untransmitted data may be lost. Call
|
||
* g_dtls_connection_shutdown() again to complete closing the #GDtlsConnection.
|
||
*
|
||
* Returns: %TRUE on success, %FALSE otherwise
|
||
*
|
||
* Since: 2.48
|
||
*/
|
||
gboolean
|
||
g_dtls_connection_shutdown (GDtlsConnection *conn,
|
||
gboolean shutdown_read,
|
||
gboolean shutdown_write,
|
||
GCancellable *cancellable,
|
||
GError **error)
|
||
{
|
||
GDtlsConnectionInterface *iface;
|
||
|
||
g_return_val_if_fail (G_IS_DTLS_CONNECTION (conn), FALSE);
|
||
g_return_val_if_fail (cancellable == NULL || G_IS_CANCELLABLE (cancellable),
|
||
FALSE);
|
||
g_return_val_if_fail (error == NULL || *error == NULL, FALSE);
|
||
|
||
if (!shutdown_read && !shutdown_write)
|
||
return TRUE;
|
||
|
||
iface = G_DTLS_CONNECTION_GET_INTERFACE (conn);
|
||
g_assert (iface->shutdown != NULL);
|
||
|
||
return iface->shutdown (conn, shutdown_read, shutdown_write,
|
||
cancellable, error);
|
||
}
|
||
|
||
/**
|
||
* g_dtls_connection_shutdown_async:
|
||
* @conn: a #GDtlsConnection
|
||
* @shutdown_read: %TRUE to stop reception of incoming datagrams
|
||
* @shutdown_write: %TRUE to stop sending outgoing datagrams
|
||
* @io_priority: the [I/O priority][io-priority] of the request
|
||
* @cancellable: (nullable): a #GCancellable, or %NULL
|
||
* @callback: callback to call when the shutdown operation is complete
|
||
* @user_data: the data to pass to the callback function
|
||
*
|
||
* Asynchronously shut down part or all of the DTLS connection. See
|
||
* g_dtls_connection_shutdown() for more information.
|
||
*
|
||
* Since: 2.48
|
||
*/
|
||
void
|
||
g_dtls_connection_shutdown_async (GDtlsConnection *conn,
|
||
gboolean shutdown_read,
|
||
gboolean shutdown_write,
|
||
int io_priority,
|
||
GCancellable *cancellable,
|
||
GAsyncReadyCallback callback,
|
||
gpointer user_data)
|
||
{
|
||
GDtlsConnectionInterface *iface;
|
||
|
||
g_return_if_fail (G_IS_DTLS_CONNECTION (conn));
|
||
g_return_if_fail (cancellable == NULL || G_IS_CANCELLABLE (cancellable));
|
||
|
||
iface = G_DTLS_CONNECTION_GET_INTERFACE (conn);
|
||
g_assert (iface->shutdown_async != NULL);
|
||
|
||
iface->shutdown_async (conn, TRUE, TRUE, io_priority, cancellable,
|
||
callback, user_data);
|
||
}
|
||
|
||
/**
|
||
* g_dtls_connection_shutdown_finish:
|
||
* @conn: a #GDtlsConnection
|
||
* @result: a #GAsyncResult
|
||
* @error: a #GError pointer, or %NULL
|
||
*
|
||
* Finish an asynchronous TLS shutdown operation. See
|
||
* g_dtls_connection_shutdown() for more information.
|
||
*
|
||
* Returns: %TRUE on success, %FALSE on failure, in which
|
||
* case @error will be set
|
||
*
|
||
* Since: 2.48
|
||
*/
|
||
gboolean
|
||
g_dtls_connection_shutdown_finish (GDtlsConnection *conn,
|
||
GAsyncResult *result,
|
||
GError **error)
|
||
{
|
||
GDtlsConnectionInterface *iface;
|
||
|
||
g_return_val_if_fail (G_IS_DTLS_CONNECTION (conn), FALSE);
|
||
g_return_val_if_fail (error == NULL || *error == NULL, FALSE);
|
||
|
||
iface = G_DTLS_CONNECTION_GET_INTERFACE (conn);
|
||
g_assert (iface->shutdown_finish != NULL);
|
||
|
||
return iface->shutdown_finish (conn, result, error);
|
||
}
|
||
|
||
/**
|
||
* g_dtls_connection_close:
|
||
* @conn: a #GDtlsConnection
|
||
* @cancellable: (nullable): a #GCancellable, or %NULL
|
||
* @error: a #GError, or %NULL
|
||
*
|
||
* Close the DTLS connection. This is equivalent to calling
|
||
* g_dtls_connection_shutdown() to shut down both sides of the connection.
|
||
*
|
||
* Closing a #GDtlsConnection waits for all buffered but untransmitted data to
|
||
* be sent before it completes. It then sends a `close_notify` DTLS alert to the
|
||
* peer and may wait for a `close_notify` to be received from the peer. It does
|
||
* not close the underlying #GDtlsConnection:base-socket; that must be closed
|
||
* separately.
|
||
*
|
||
* Once @conn is closed, all other operations will return %G_IO_ERROR_CLOSED.
|
||
* Closing a #GDtlsConnection multiple times will not return an error.
|
||
*
|
||
* #GDtlsConnections will be automatically closed when the last reference is
|
||
* dropped, but you might want to call this function to make sure resources are
|
||
* released as early as possible.
|
||
*
|
||
* If @cancellable is cancelled, the #GDtlsConnection may be left
|
||
* partially-closed and any pending untransmitted data may be lost. Call
|
||
* g_dtls_connection_close() again to complete closing the #GDtlsConnection.
|
||
*
|
||
* Returns: %TRUE on success, %FALSE otherwise
|
||
*
|
||
* Since: 2.48
|
||
*/
|
||
gboolean
|
||
g_dtls_connection_close (GDtlsConnection *conn,
|
||
GCancellable *cancellable,
|
||
GError **error)
|
||
{
|
||
g_return_val_if_fail (G_IS_DTLS_CONNECTION (conn), FALSE);
|
||
g_return_val_if_fail (cancellable == NULL || G_IS_CANCELLABLE (cancellable),
|
||
FALSE);
|
||
g_return_val_if_fail (error == NULL || *error == NULL, FALSE);
|
||
|
||
return G_DTLS_CONNECTION_GET_INTERFACE (conn)->shutdown (conn, TRUE, TRUE,
|
||
cancellable, error);
|
||
}
|
||
|
||
/**
|
||
* g_dtls_connection_close_async:
|
||
* @conn: a #GDtlsConnection
|
||
* @io_priority: the [I/O priority][io-priority] of the request
|
||
* @cancellable: (nullable): a #GCancellable, or %NULL
|
||
* @callback: callback to call when the close operation is complete
|
||
* @user_data: the data to pass to the callback function
|
||
*
|
||
* Asynchronously close the DTLS connection. See g_dtls_connection_close() for
|
||
* more information.
|
||
*
|
||
* Since: 2.48
|
||
*/
|
||
void
|
||
g_dtls_connection_close_async (GDtlsConnection *conn,
|
||
int io_priority,
|
||
GCancellable *cancellable,
|
||
GAsyncReadyCallback callback,
|
||
gpointer user_data)
|
||
{
|
||
g_return_if_fail (G_IS_DTLS_CONNECTION (conn));
|
||
g_return_if_fail (cancellable == NULL || G_IS_CANCELLABLE (cancellable));
|
||
|
||
G_DTLS_CONNECTION_GET_INTERFACE (conn)->shutdown_async (conn, TRUE, TRUE,
|
||
io_priority,
|
||
cancellable,
|
||
callback, user_data);
|
||
}
|
||
|
||
/**
|
||
* g_dtls_connection_close_finish:
|
||
* @conn: a #GDtlsConnection
|
||
* @result: a #GAsyncResult
|
||
* @error: a #GError pointer, or %NULL
|
||
*
|
||
* Finish an asynchronous TLS close operation. See g_dtls_connection_close()
|
||
* for more information.
|
||
*
|
||
* Returns: %TRUE on success, %FALSE on failure, in which
|
||
* case @error will be set
|
||
*
|
||
* Since: 2.48
|
||
*/
|
||
gboolean
|
||
g_dtls_connection_close_finish (GDtlsConnection *conn,
|
||
GAsyncResult *result,
|
||
GError **error)
|
||
{
|
||
g_return_val_if_fail (G_IS_DTLS_CONNECTION (conn), FALSE);
|
||
g_return_val_if_fail (error == NULL || *error == NULL, FALSE);
|
||
|
||
return G_DTLS_CONNECTION_GET_INTERFACE (conn)->shutdown_finish (conn, result,
|
||
error);
|
||
}
|
||
|
||
/**
|
||
* g_dtls_connection_emit_accept_certificate:
|
||
* @conn: a #GDtlsConnection
|
||
* @peer_cert: the peer's #GTlsCertificate
|
||
* @errors: the problems with @peer_cert
|
||
*
|
||
* Used by #GDtlsConnection implementations to emit the
|
||
* #GDtlsConnection::accept-certificate signal.
|
||
*
|
||
* Returns: %TRUE if one of the signal handlers has returned
|
||
* %TRUE to accept @peer_cert
|
||
*
|
||
* Since: 2.48
|
||
*/
|
||
gboolean
|
||
g_dtls_connection_emit_accept_certificate (GDtlsConnection *conn,
|
||
GTlsCertificate *peer_cert,
|
||
GTlsCertificateFlags errors)
|
||
{
|
||
gboolean accept = FALSE;
|
||
|
||
g_signal_emit (conn, signals[ACCEPT_CERTIFICATE], 0,
|
||
peer_cert, errors, &accept);
|
||
return accept;
|
||
}
|