glib/glib/gmem.c
Matthias Clasen 53e132ed39 Fix the locking of the mem_chunks list. (#127096, Balazs Scheidler)
Sun Dec 21 22:42:42 2003  Matthias Clasen  <maclas@gmx.de>

	* glib/gmem.c (g_mem_chunk_destroy): Fix the locking of the
	mem_chunks list.  (#127096, Balazs Scheidler)
2003-12-21 21:51:39 +00:00

1274 lines
31 KiB
C

/* GLIB - Library of useful routines for C programming
* Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
/*
* Modified by the GLib Team and others 1997-2000. See the AUTHORS
* file for a list of people on the GLib Team. See the ChangeLog
* files for a list of changes. These files are distributed with
* GLib at ftp://ftp.gtk.org/pub/gtk/.
*/
/*
* MT safe
*/
#include "config.h"
#include <stdlib.h>
#include <string.h>
#include <signal.h>
#include "glib.h"
#include "gthreadinit.h"
/* notes on macros:
* having DISABLE_MEM_POOLS defined, disables mem_chunks alltogether, their
* allocations are performed through ordinary g_malloc/g_free.
* having G_DISABLE_CHECKS defined disables use of glib_mem_profiler_table and
* g_mem_profile().
* REALLOC_0_WORKS is defined if g_realloc (NULL, x) works.
* SANE_MALLOC_PROTOS is defined if the systems malloc() and friends functions
* match the corresponding GLib prototypes, keep configure.in and gmem.h in sync here.
* if ENABLE_GC_FRIENDLY is defined, freed memory should be 0-wiped.
*/
#define MEM_PROFILE_TABLE_SIZE 4096
#define MEM_AREA_SIZE 4L
#ifdef G_DISABLE_CHECKS
# define ENTER_MEM_CHUNK_ROUTINE()
# define LEAVE_MEM_CHUNK_ROUTINE()
# define IN_MEM_CHUNK_ROUTINE() FALSE
#else /* !G_DISABLE_CHECKS */
static GPrivate* mem_chunk_recursion = NULL;
# define MEM_CHUNK_ROUTINE_COUNT() GPOINTER_TO_UINT (g_private_get (mem_chunk_recursion))
# define ENTER_MEM_CHUNK_ROUTINE() g_private_set (mem_chunk_recursion, GUINT_TO_POINTER (MEM_CHUNK_ROUTINE_COUNT () + 1))
# define LEAVE_MEM_CHUNK_ROUTINE() g_private_set (mem_chunk_recursion, GUINT_TO_POINTER (MEM_CHUNK_ROUTINE_COUNT () - 1))
#endif /* !G_DISABLE_CHECKS */
#ifndef REALLOC_0_WORKS
static gpointer
standard_realloc (gpointer mem,
gsize n_bytes)
{
if (!mem)
return malloc (n_bytes);
else
return realloc (mem, n_bytes);
}
#endif /* !REALLOC_0_WORKS */
#ifdef SANE_MALLOC_PROTOS
# define standard_malloc malloc
# ifdef REALLOC_0_WORKS
# define standard_realloc realloc
# endif /* REALLOC_0_WORKS */
# define standard_free free
# define standard_calloc calloc
# define standard_try_malloc malloc
# define standard_try_realloc realloc
#else /* !SANE_MALLOC_PROTOS */
static gpointer
standard_malloc (gsize n_bytes)
{
return malloc (n_bytes);
}
# ifdef REALLOC_0_WORKS
static gpointer
standard_realloc (gpointer mem,
gsize n_bytes)
{
return realloc (mem, n_bytes);
}
# endif /* REALLOC_0_WORKS */
static void
standard_free (gpointer mem)
{
free (mem);
}
static gpointer
standard_calloc (gsize n_blocks,
gsize n_bytes)
{
return calloc (n_blocks, n_bytes);
}
#define standard_try_malloc standard_malloc
#define standard_try_realloc standard_realloc
#endif /* !SANE_MALLOC_PROTOS */
/* --- variables --- */
static GMemVTable glib_mem_vtable = {
standard_malloc,
standard_realloc,
standard_free,
standard_calloc,
standard_try_malloc,
standard_try_realloc,
};
/* --- functions --- */
gpointer
g_malloc (gulong n_bytes)
{
if (n_bytes)
{
gpointer mem;
mem = glib_mem_vtable.malloc (n_bytes);
if (mem)
return mem;
g_error ("%s: failed to allocate %lu bytes", G_STRLOC, n_bytes);
}
return NULL;
}
gpointer
g_malloc0 (gulong n_bytes)
{
if (n_bytes)
{
gpointer mem;
mem = glib_mem_vtable.calloc (1, n_bytes);
if (mem)
return mem;
g_error ("%s: failed to allocate %lu bytes", G_STRLOC, n_bytes);
}
return NULL;
}
gpointer
g_realloc (gpointer mem,
gulong n_bytes)
{
if (n_bytes)
{
mem = glib_mem_vtable.realloc (mem, n_bytes);
if (mem)
return mem;
g_error ("%s: failed to allocate %lu bytes", G_STRLOC, n_bytes);
}
if (mem)
glib_mem_vtable.free (mem);
return NULL;
}
void
g_free (gpointer mem)
{
if (mem)
glib_mem_vtable.free (mem);
}
gpointer
g_try_malloc (gulong n_bytes)
{
if (n_bytes)
return glib_mem_vtable.try_malloc (n_bytes);
else
return NULL;
}
gpointer
g_try_realloc (gpointer mem,
gulong n_bytes)
{
if (n_bytes)
return glib_mem_vtable.try_realloc (mem, n_bytes);
if (mem)
glib_mem_vtable.free (mem);
return NULL;
}
static gpointer
fallback_calloc (gsize n_blocks,
gsize n_block_bytes)
{
gsize l = n_blocks * n_block_bytes;
gpointer mem = glib_mem_vtable.malloc (l);
if (mem)
memset (mem, 0, l);
return mem;
}
static gboolean vtable_set = FALSE;
/**
* g_mem_is_system_malloc
*
* Checks whether the allocator used by g_malloc() is the system's
* malloc implementation. If it returns %TRUE memory allocated with
* malloc() can be used interchangeable with memory allocated using g_malloc().
* This function is useful for avoiding an extra copy of allocated memory returned
* by a non-GLib-based API.
*
* A different allocator can be set using g_mem_set_vtable().
*
* Return value: if %TRUE, malloc() and g_malloc() can be mixed.
**/
gboolean
g_mem_is_system_malloc (void)
{
return !vtable_set;
}
void
g_mem_set_vtable (GMemVTable *vtable)
{
if (!vtable_set)
{
vtable_set = TRUE;
if (vtable->malloc && vtable->realloc && vtable->free)
{
glib_mem_vtable.malloc = vtable->malloc;
glib_mem_vtable.realloc = vtable->realloc;
glib_mem_vtable.free = vtable->free;
glib_mem_vtable.calloc = vtable->calloc ? vtable->calloc : fallback_calloc;
glib_mem_vtable.try_malloc = vtable->try_malloc ? vtable->try_malloc : glib_mem_vtable.malloc;
glib_mem_vtable.try_realloc = vtable->try_realloc ? vtable->try_realloc : glib_mem_vtable.realloc;
}
else
g_warning (G_STRLOC ": memory allocation vtable lacks one of malloc(), realloc() or free()");
}
else
g_warning (G_STRLOC ": memory allocation vtable can only be set once at startup");
}
/* --- memory profiling and checking --- */
#ifdef G_DISABLE_CHECKS
GMemVTable *glib_mem_profiler_table = &glib_mem_vtable;
void
g_mem_profile (void)
{
}
#else /* !G_DISABLE_CHECKS */
typedef enum {
PROFILER_FREE = 0,
PROFILER_ALLOC = 1,
PROFILER_RELOC = 2,
PROFILER_ZINIT = 4
} ProfilerJob;
static guint *profile_data = NULL;
static gulong profile_allocs = 0;
static gulong profile_mc_allocs = 0;
static gulong profile_zinit = 0;
static gulong profile_frees = 0;
static gulong profile_mc_frees = 0;
static GMutex *g_profile_mutex = NULL;
#ifdef G_ENABLE_DEBUG
static volatile gulong g_trap_free_size = 0;
static volatile gulong g_trap_realloc_size = 0;
static volatile gulong g_trap_malloc_size = 0;
#endif /* G_ENABLE_DEBUG */
#define PROFILE_TABLE(f1,f2,f3) ( ( ((f3) << 2) | ((f2) << 1) | (f1) ) * (MEM_PROFILE_TABLE_SIZE + 1))
static void
profiler_log (ProfilerJob job,
gulong n_bytes,
gboolean success)
{
g_mutex_lock (g_profile_mutex);
if (!profile_data)
{
profile_data = standard_malloc ((MEM_PROFILE_TABLE_SIZE + 1) * 8 * sizeof (profile_data[0]));
if (!profile_data) /* memory system kiddin' me, eh? */
{
g_mutex_unlock (g_profile_mutex);
return;
}
}
if (MEM_CHUNK_ROUTINE_COUNT () == 0)
{
if (n_bytes < MEM_PROFILE_TABLE_SIZE)
profile_data[n_bytes + PROFILE_TABLE ((job & PROFILER_ALLOC) != 0,
(job & PROFILER_RELOC) != 0,
success != 0)] += 1;
else
profile_data[MEM_PROFILE_TABLE_SIZE + PROFILE_TABLE ((job & PROFILER_ALLOC) != 0,
(job & PROFILER_RELOC) != 0,
success != 0)] += 1;
if (success)
{
if (job & PROFILER_ALLOC)
{
profile_allocs += n_bytes;
if (job & PROFILER_ZINIT)
profile_zinit += n_bytes;
}
else
profile_frees += n_bytes;
}
}
else if (success)
{
if (job & PROFILER_ALLOC)
profile_mc_allocs += n_bytes;
else
profile_mc_frees += n_bytes;
}
g_mutex_unlock (g_profile_mutex);
}
static void
profile_print_locked (guint *local_data,
gboolean success)
{
gboolean need_header = TRUE;
guint i;
for (i = 0; i <= MEM_PROFILE_TABLE_SIZE; i++)
{
glong t_malloc = local_data[i + PROFILE_TABLE (1, 0, success)];
glong t_realloc = local_data[i + PROFILE_TABLE (1, 1, success)];
glong t_free = local_data[i + PROFILE_TABLE (0, 0, success)];
glong t_refree = local_data[i + PROFILE_TABLE (0, 1, success)];
if (!t_malloc && !t_realloc && !t_free && !t_refree)
continue;
else if (need_header)
{
need_header = FALSE;
g_print (" blocks of | allocated | freed | allocated | freed | n_bytes \n");
g_print (" n_bytes | n_times by | n_times by | n_times by | n_times by | remaining \n");
g_print (" | malloc() | free() | realloc() | realloc() | \n");
g_print ("===========|============|============|============|============|===========\n");
}
if (i < MEM_PROFILE_TABLE_SIZE)
g_print ("%10u | %10ld | %10ld | %10ld | %10ld |%+11ld\n",
i, t_malloc, t_free, t_realloc, t_refree,
(t_malloc - t_free + t_realloc - t_refree) * i);
else if (i >= MEM_PROFILE_TABLE_SIZE)
g_print (" >%6u | %10ld | %10ld | %10ld | %10ld | ***\n",
i, t_malloc, t_free, t_realloc, t_refree);
}
if (need_header)
g_print (" --- none ---\n");
}
void
g_mem_profile (void)
{
guint local_data[(MEM_PROFILE_TABLE_SIZE + 1) * 8 * sizeof (profile_data[0])];
gulong local_allocs;
gulong local_zinit;
gulong local_frees;
gulong local_mc_allocs;
gulong local_mc_frees;
g_mutex_lock (g_profile_mutex);
local_allocs = profile_allocs;
local_zinit = profile_zinit;
local_frees = profile_frees;
local_mc_allocs = profile_mc_allocs;
local_mc_frees = profile_mc_frees;
if (!profile_data)
{
g_mutex_unlock (g_profile_mutex);
return;
}
memcpy (local_data, profile_data,
(MEM_PROFILE_TABLE_SIZE + 1) * 8 * sizeof (profile_data[0]));
g_mutex_unlock (g_profile_mutex);
g_print ("GLib Memory statistics (successful operations):\n");
profile_print_locked (local_data, TRUE);
g_print ("GLib Memory statistics (failing operations):\n");
profile_print_locked (local_data, FALSE);
g_print ("Total bytes: allocated=%lu, zero-initialized=%lu (%.2f%%), freed=%lu (%.2f%%), remaining=%lu\n",
local_allocs,
local_zinit,
((gdouble) local_zinit) / local_allocs * 100.0,
local_frees,
((gdouble) local_frees) / local_allocs * 100.0,
local_allocs - local_frees);
g_print ("MemChunk bytes: allocated=%lu, freed=%lu (%.2f%%), remaining=%lu\n",
local_mc_allocs,
local_mc_frees,
((gdouble) local_mc_frees) / local_mc_allocs * 100.0,
local_mc_allocs - local_mc_frees);
}
static gpointer
profiler_try_malloc (gsize n_bytes)
{
gulong *p;
#ifdef G_ENABLE_DEBUG
if (g_trap_malloc_size == n_bytes)
G_BREAKPOINT ();
#endif /* G_ENABLE_DEBUG */
p = standard_malloc (sizeof (gulong) * 2 + n_bytes);
if (p)
{
p[0] = 0; /* free count */
p[1] = n_bytes; /* length */
profiler_log (PROFILER_ALLOC, n_bytes, TRUE);
p += 2;
}
else
profiler_log (PROFILER_ALLOC, n_bytes, FALSE);
return p;
}
static gpointer
profiler_malloc (gsize n_bytes)
{
gpointer mem = profiler_try_malloc (n_bytes);
if (!mem)
g_mem_profile ();
return mem;
}
static gpointer
profiler_calloc (gsize n_blocks,
gsize n_block_bytes)
{
gsize l = n_blocks * n_block_bytes;
gulong *p;
#ifdef G_ENABLE_DEBUG
if (g_trap_malloc_size == l)
G_BREAKPOINT ();
#endif /* G_ENABLE_DEBUG */
p = standard_calloc (1, sizeof (gulong) * 2 + l);
if (p)
{
p[0] = 0; /* free count */
p[1] = l; /* length */
profiler_log (PROFILER_ALLOC | PROFILER_ZINIT, l, TRUE);
p += 2;
}
else
{
profiler_log (PROFILER_ALLOC | PROFILER_ZINIT, l, FALSE);
g_mem_profile ();
}
return p;
}
static void
profiler_free (gpointer mem)
{
gulong *p = mem;
p -= 2;
if (p[0]) /* free count */
{
g_warning ("free(%p): memory has been freed %lu times already", p + 2, p[0]);
profiler_log (PROFILER_FREE,
p[1], /* length */
FALSE);
}
else
{
#ifdef G_ENABLE_DEBUG
if (g_trap_free_size == p[1])
G_BREAKPOINT ();
#endif /* G_ENABLE_DEBUG */
profiler_log (PROFILER_FREE,
p[1], /* length */
TRUE);
memset (p + 2, 0xaa, p[1]);
/* for all those that miss standard_free (p); in this place, yes,
* we do leak all memory when profiling, and that is intentional
* to catch double frees. patch submissions are futile.
*/
}
p[0] += 1;
}
static gpointer
profiler_try_realloc (gpointer mem,
gsize n_bytes)
{
gulong *p = mem;
p -= 2;
#ifdef G_ENABLE_DEBUG
if (g_trap_realloc_size == n_bytes)
G_BREAKPOINT ();
#endif /* G_ENABLE_DEBUG */
if (mem && p[0]) /* free count */
{
g_warning ("realloc(%p, %lu): memory has been freed %lu times already", p + 2, (gulong)n_bytes, p[0]);
profiler_log (PROFILER_ALLOC | PROFILER_RELOC, n_bytes, FALSE);
return NULL;
}
else
{
p = standard_realloc (mem ? p : NULL, sizeof (gulong) * 2 + n_bytes);
if (p)
{
if (mem)
profiler_log (PROFILER_FREE | PROFILER_RELOC, p[1], TRUE);
p[0] = 0;
p[1] = n_bytes;
profiler_log (PROFILER_ALLOC | PROFILER_RELOC, p[1], TRUE);
p += 2;
}
else
profiler_log (PROFILER_ALLOC | PROFILER_RELOC, n_bytes, FALSE);
return p;
}
}
static gpointer
profiler_realloc (gpointer mem,
gsize n_bytes)
{
mem = profiler_try_realloc (mem, n_bytes);
if (!mem)
g_mem_profile ();
return mem;
}
static GMemVTable profiler_table = {
profiler_malloc,
profiler_realloc,
profiler_free,
profiler_calloc,
profiler_try_malloc,
profiler_try_realloc,
};
GMemVTable *glib_mem_profiler_table = &profiler_table;
#endif /* !G_DISABLE_CHECKS */
/* --- MemChunks --- */
typedef struct _GFreeAtom GFreeAtom;
typedef struct _GMemArea GMemArea;
struct _GFreeAtom
{
GFreeAtom *next;
};
struct _GMemArea
{
GMemArea *next; /* the next mem area */
GMemArea *prev; /* the previous mem area */
gulong index; /* the current index into the "mem" array */
gulong free; /* the number of free bytes in this mem area */
gulong allocated; /* the number of atoms allocated from this area */
gulong mark; /* is this mem area marked for deletion */
gchar mem[MEM_AREA_SIZE]; /* the mem array from which atoms get allocated
* the actual size of this array is determined by
* the mem chunk "area_size". ANSI says that it
* must be declared to be the maximum size it
* can possibly be (even though the actual size
* may be less).
*/
};
struct _GMemChunk
{
const gchar *name; /* name of this MemChunk...used for debugging output */
gint type; /* the type of MemChunk: ALLOC_ONLY or ALLOC_AND_FREE */
gint num_mem_areas; /* the number of memory areas */
gint num_marked_areas; /* the number of areas marked for deletion */
guint atom_size; /* the size of an atom */
gulong area_size; /* the size of a memory area */
GMemArea *mem_area; /* the current memory area */
GMemArea *mem_areas; /* a list of all the mem areas owned by this chunk */
GMemArea *free_mem_area; /* the free area...which is about to be destroyed */
GFreeAtom *free_atoms; /* the free atoms list */
GTree *mem_tree; /* tree of mem areas sorted by memory address */
GMemChunk *next; /* pointer to the next chunk */
GMemChunk *prev; /* pointer to the previous chunk */
};
#ifndef DISABLE_MEM_POOLS
static gulong g_mem_chunk_compute_size (gulong size,
gulong min_size) G_GNUC_CONST;
static gint g_mem_chunk_area_compare (GMemArea *a,
GMemArea *b);
static gint g_mem_chunk_area_search (GMemArea *a,
gchar *addr);
/* here we can't use StaticMutexes, as they depend upon a working
* g_malloc, the same holds true for StaticPrivate
*/
static GMutex *mem_chunks_lock = NULL;
static GMemChunk *mem_chunks = NULL;
GMemChunk*
g_mem_chunk_new (const gchar *name,
gint atom_size,
gulong area_size,
gint type)
{
GMemChunk *mem_chunk;
gulong rarea_size;
g_return_val_if_fail (atom_size > 0, NULL);
g_return_val_if_fail (area_size >= atom_size, NULL);
ENTER_MEM_CHUNK_ROUTINE ();
area_size = (area_size + atom_size - 1) / atom_size;
area_size *= atom_size;
mem_chunk = g_new (GMemChunk, 1);
mem_chunk->name = name;
mem_chunk->type = type;
mem_chunk->num_mem_areas = 0;
mem_chunk->num_marked_areas = 0;
mem_chunk->mem_area = NULL;
mem_chunk->free_mem_area = NULL;
mem_chunk->free_atoms = NULL;
mem_chunk->mem_tree = NULL;
mem_chunk->mem_areas = NULL;
mem_chunk->atom_size = atom_size;
if (mem_chunk->type == G_ALLOC_AND_FREE)
mem_chunk->mem_tree = g_tree_new ((GCompareFunc) g_mem_chunk_area_compare);
if (mem_chunk->atom_size % G_MEM_ALIGN)
mem_chunk->atom_size += G_MEM_ALIGN - (mem_chunk->atom_size % G_MEM_ALIGN);
rarea_size = area_size + sizeof (GMemArea) - MEM_AREA_SIZE;
rarea_size = g_mem_chunk_compute_size (rarea_size, atom_size + sizeof (GMemArea) - MEM_AREA_SIZE);
mem_chunk->area_size = rarea_size - (sizeof (GMemArea) - MEM_AREA_SIZE);
g_mutex_lock (mem_chunks_lock);
mem_chunk->next = mem_chunks;
mem_chunk->prev = NULL;
if (mem_chunks)
mem_chunks->prev = mem_chunk;
mem_chunks = mem_chunk;
g_mutex_unlock (mem_chunks_lock);
LEAVE_MEM_CHUNK_ROUTINE ();
return mem_chunk;
}
void
g_mem_chunk_destroy (GMemChunk *mem_chunk)
{
GMemArea *mem_areas;
GMemArea *temp_area;
g_return_if_fail (mem_chunk != NULL);
ENTER_MEM_CHUNK_ROUTINE ();
mem_areas = mem_chunk->mem_areas;
while (mem_areas)
{
temp_area = mem_areas;
mem_areas = mem_areas->next;
g_free (temp_area);
}
g_mutex_lock (mem_chunks_lock);
if (mem_chunk->next)
mem_chunk->next->prev = mem_chunk->prev;
if (mem_chunk->prev)
mem_chunk->prev->next = mem_chunk->next;
if (mem_chunk == mem_chunks)
mem_chunks = mem_chunks->next;
g_mutex_unlock (mem_chunks_lock);
if (mem_chunk->type == G_ALLOC_AND_FREE)
g_tree_destroy (mem_chunk->mem_tree);
g_free (mem_chunk);
LEAVE_MEM_CHUNK_ROUTINE ();
}
gpointer
g_mem_chunk_alloc (GMemChunk *mem_chunk)
{
GMemArea *temp_area;
gpointer mem;
ENTER_MEM_CHUNK_ROUTINE ();
g_return_val_if_fail (mem_chunk != NULL, NULL);
while (mem_chunk->free_atoms)
{
/* Get the first piece of memory on the "free_atoms" list.
* We can go ahead and destroy the list node we used to keep
* track of it with and to update the "free_atoms" list to
* point to its next element.
*/
mem = mem_chunk->free_atoms;
mem_chunk->free_atoms = mem_chunk->free_atoms->next;
/* Determine which area this piece of memory is allocated from */
temp_area = g_tree_search (mem_chunk->mem_tree,
(GCompareFunc) g_mem_chunk_area_search,
mem);
/* If the area has been marked, then it is being destroyed.
* (ie marked to be destroyed).
* We check to see if all of the segments on the free list that
* reference this area have been removed. This occurs when
* the ammount of free memory is less than the allocatable size.
* If the chunk should be freed, then we place it in the "free_mem_area".
* This is so we make sure not to free the mem area here and then
* allocate it again a few lines down.
* If we don't allocate a chunk a few lines down then the "free_mem_area"
* will be freed.
* If there is already a "free_mem_area" then we'll just free this mem area.
*/
if (temp_area->mark)
{
/* Update the "free" memory available in that area */
temp_area->free += mem_chunk->atom_size;
if (temp_area->free == mem_chunk->area_size)
{
if (temp_area == mem_chunk->mem_area)
mem_chunk->mem_area = NULL;
if (mem_chunk->free_mem_area)
{
mem_chunk->num_mem_areas -= 1;
if (temp_area->next)
temp_area->next->prev = temp_area->prev;
if (temp_area->prev)
temp_area->prev->next = temp_area->next;
if (temp_area == mem_chunk->mem_areas)
mem_chunk->mem_areas = mem_chunk->mem_areas->next;
if (mem_chunk->type == G_ALLOC_AND_FREE)
g_tree_remove (mem_chunk->mem_tree, temp_area);
g_free (temp_area);
}
else
mem_chunk->free_mem_area = temp_area;
mem_chunk->num_marked_areas -= 1;
}
}
else
{
/* Update the number of allocated atoms count.
*/
temp_area->allocated += 1;
/* The area wasn't marked...return the memory
*/
goto outa_here;
}
}
/* If there isn't a current mem area or the current mem area is out of space
* then allocate a new mem area. We'll first check and see if we can use
* the "free_mem_area". Otherwise we'll just malloc the mem area.
*/
if ((!mem_chunk->mem_area) ||
((mem_chunk->mem_area->index + mem_chunk->atom_size) > mem_chunk->area_size))
{
if (mem_chunk->free_mem_area)
{
mem_chunk->mem_area = mem_chunk->free_mem_area;
mem_chunk->free_mem_area = NULL;
}
else
{
#ifdef ENABLE_GC_FRIENDLY
mem_chunk->mem_area = (GMemArea*) g_malloc0 (sizeof (GMemArea) -
MEM_AREA_SIZE +
mem_chunk->area_size);
#else /* !ENABLE_GC_FRIENDLY */
mem_chunk->mem_area = (GMemArea*) g_malloc (sizeof (GMemArea) -
MEM_AREA_SIZE +
mem_chunk->area_size);
#endif /* ENABLE_GC_FRIENDLY */
mem_chunk->num_mem_areas += 1;
mem_chunk->mem_area->next = mem_chunk->mem_areas;
mem_chunk->mem_area->prev = NULL;
if (mem_chunk->mem_areas)
mem_chunk->mem_areas->prev = mem_chunk->mem_area;
mem_chunk->mem_areas = mem_chunk->mem_area;
if (mem_chunk->type == G_ALLOC_AND_FREE)
g_tree_insert (mem_chunk->mem_tree, mem_chunk->mem_area, mem_chunk->mem_area);
}
mem_chunk->mem_area->index = 0;
mem_chunk->mem_area->free = mem_chunk->area_size;
mem_chunk->mem_area->allocated = 0;
mem_chunk->mem_area->mark = 0;
}
/* Get the memory and modify the state variables appropriately.
*/
mem = (gpointer) &mem_chunk->mem_area->mem[mem_chunk->mem_area->index];
mem_chunk->mem_area->index += mem_chunk->atom_size;
mem_chunk->mem_area->free -= mem_chunk->atom_size;
mem_chunk->mem_area->allocated += 1;
outa_here:
LEAVE_MEM_CHUNK_ROUTINE ();
return mem;
}
gpointer
g_mem_chunk_alloc0 (GMemChunk *mem_chunk)
{
gpointer mem;
mem = g_mem_chunk_alloc (mem_chunk);
if (mem)
{
memset (mem, 0, mem_chunk->atom_size);
}
return mem;
}
void
g_mem_chunk_free (GMemChunk *mem_chunk,
gpointer mem)
{
GMemArea *temp_area;
GFreeAtom *free_atom;
g_return_if_fail (mem_chunk != NULL);
g_return_if_fail (mem != NULL);
ENTER_MEM_CHUNK_ROUTINE ();
#ifdef ENABLE_GC_FRIENDLY
memset (mem, 0, mem_chunk->atom_size);
#endif /* ENABLE_GC_FRIENDLY */
/* Don't do anything if this is an ALLOC_ONLY chunk
*/
if (mem_chunk->type == G_ALLOC_AND_FREE)
{
/* Place the memory on the "free_atoms" list
*/
free_atom = (GFreeAtom*) mem;
free_atom->next = mem_chunk->free_atoms;
mem_chunk->free_atoms = free_atom;
temp_area = g_tree_search (mem_chunk->mem_tree,
(GCompareFunc) g_mem_chunk_area_search,
mem);
temp_area->allocated -= 1;
if (temp_area->allocated == 0)
{
temp_area->mark = 1;
mem_chunk->num_marked_areas += 1;
}
}
LEAVE_MEM_CHUNK_ROUTINE ();
}
/* This doesn't free the free_area if there is one */
void
g_mem_chunk_clean (GMemChunk *mem_chunk)
{
GMemArea *mem_area;
GFreeAtom *prev_free_atom;
GFreeAtom *temp_free_atom;
gpointer mem;
g_return_if_fail (mem_chunk != NULL);
ENTER_MEM_CHUNK_ROUTINE ();
if (mem_chunk->type == G_ALLOC_AND_FREE)
{
prev_free_atom = NULL;
temp_free_atom = mem_chunk->free_atoms;
while (temp_free_atom)
{
mem = (gpointer) temp_free_atom;
mem_area = g_tree_search (mem_chunk->mem_tree,
(GCompareFunc) g_mem_chunk_area_search,
mem);
/* If this mem area is marked for destruction then delete the
* area and list node and decrement the free mem.
*/
if (mem_area->mark)
{
if (prev_free_atom)
prev_free_atom->next = temp_free_atom->next;
else
mem_chunk->free_atoms = temp_free_atom->next;
temp_free_atom = temp_free_atom->next;
mem_area->free += mem_chunk->atom_size;
if (mem_area->free == mem_chunk->area_size)
{
mem_chunk->num_mem_areas -= 1;
mem_chunk->num_marked_areas -= 1;
if (mem_area->next)
mem_area->next->prev = mem_area->prev;
if (mem_area->prev)
mem_area->prev->next = mem_area->next;
if (mem_area == mem_chunk->mem_areas)
mem_chunk->mem_areas = mem_chunk->mem_areas->next;
if (mem_area == mem_chunk->mem_area)
mem_chunk->mem_area = NULL;
if (mem_chunk->type == G_ALLOC_AND_FREE)
g_tree_remove (mem_chunk->mem_tree, mem_area);
g_free (mem_area);
}
}
else
{
prev_free_atom = temp_free_atom;
temp_free_atom = temp_free_atom->next;
}
}
}
LEAVE_MEM_CHUNK_ROUTINE ();
}
void
g_mem_chunk_reset (GMemChunk *mem_chunk)
{
GMemArea *mem_areas;
GMemArea *temp_area;
g_return_if_fail (mem_chunk != NULL);
ENTER_MEM_CHUNK_ROUTINE ();
mem_areas = mem_chunk->mem_areas;
mem_chunk->num_mem_areas = 0;
mem_chunk->mem_areas = NULL;
mem_chunk->mem_area = NULL;
while (mem_areas)
{
temp_area = mem_areas;
mem_areas = mem_areas->next;
g_free (temp_area);
}
mem_chunk->free_atoms = NULL;
if (mem_chunk->mem_tree)
{
g_tree_destroy (mem_chunk->mem_tree);
mem_chunk->mem_tree = g_tree_new ((GCompareFunc) g_mem_chunk_area_compare);
}
LEAVE_MEM_CHUNK_ROUTINE ();
}
void
g_mem_chunk_print (GMemChunk *mem_chunk)
{
GMemArea *mem_areas;
gulong mem;
g_return_if_fail (mem_chunk != NULL);
mem_areas = mem_chunk->mem_areas;
mem = 0;
while (mem_areas)
{
mem += mem_chunk->area_size - mem_areas->free;
mem_areas = mem_areas->next;
}
g_log (G_LOG_DOMAIN, G_LOG_LEVEL_INFO,
"%s: %ld bytes using %d mem areas",
mem_chunk->name, mem, mem_chunk->num_mem_areas);
}
void
g_mem_chunk_info (void)
{
GMemChunk *mem_chunk;
gint count;
count = 0;
g_mutex_lock (mem_chunks_lock);
mem_chunk = mem_chunks;
while (mem_chunk)
{
count += 1;
mem_chunk = mem_chunk->next;
}
g_mutex_unlock (mem_chunks_lock);
g_log (G_LOG_DOMAIN, G_LOG_LEVEL_INFO, "%d mem chunks", count);
g_mutex_lock (mem_chunks_lock);
mem_chunk = mem_chunks;
g_mutex_unlock (mem_chunks_lock);
while (mem_chunk)
{
g_mem_chunk_print ((GMemChunk*) mem_chunk);
mem_chunk = mem_chunk->next;
}
}
void
g_blow_chunks (void)
{
GMemChunk *mem_chunk;
g_mutex_lock (mem_chunks_lock);
mem_chunk = mem_chunks;
g_mutex_unlock (mem_chunks_lock);
while (mem_chunk)
{
g_mem_chunk_clean ((GMemChunk*) mem_chunk);
mem_chunk = mem_chunk->next;
}
}
static gulong
g_mem_chunk_compute_size (gulong size,
gulong min_size)
{
gulong power_of_2;
gulong lower, upper;
power_of_2 = 16;
while (power_of_2 < size)
power_of_2 <<= 1;
lower = power_of_2 >> 1;
upper = power_of_2;
if (size - lower < upper - size && lower >= min_size)
return lower;
else
return upper;
}
static gint
g_mem_chunk_area_compare (GMemArea *a,
GMemArea *b)
{
if (a->mem > b->mem)
return 1;
else if (a->mem < b->mem)
return -1;
return 0;
}
static gint
g_mem_chunk_area_search (GMemArea *a,
gchar *addr)
{
if (a->mem <= addr)
{
if (addr < &a->mem[a->index])
return 0;
return 1;
}
return -1;
}
#else /* DISABLE_MEM_POOLS */
typedef struct {
guint alloc_size; /* the size of an atom */
} GMinimalMemChunk;
GMemChunk*
g_mem_chunk_new (const gchar *name,
gint atom_size,
gulong area_size,
gint type)
{
GMinimalMemChunk *mem_chunk;
g_return_val_if_fail (atom_size > 0, NULL);
mem_chunk = g_new (GMinimalMemChunk, 1);
mem_chunk->alloc_size = atom_size;
return ((GMemChunk*) mem_chunk);
}
void
g_mem_chunk_destroy (GMemChunk *mem_chunk)
{
g_return_if_fail (mem_chunk != NULL);
g_free (mem_chunk);
}
gpointer
g_mem_chunk_alloc (GMemChunk *mem_chunk)
{
GMinimalMemChunk *minimal = (GMinimalMemChunk *)mem_chunk;
g_return_val_if_fail (mem_chunk != NULL, NULL);
return g_malloc (minimal->alloc_size);
}
gpointer
g_mem_chunk_alloc0 (GMemChunk *mem_chunk)
{
GMinimalMemChunk *minimal = (GMinimalMemChunk *)mem_chunk;
g_return_val_if_fail (mem_chunk != NULL, NULL);
return g_malloc0 (minimal->alloc_size);
}
void
g_mem_chunk_free (GMemChunk *mem_chunk,
gpointer mem)
{
g_return_if_fail (mem_chunk != NULL);
g_free (mem);
}
void g_mem_chunk_clean (GMemChunk *mem_chunk) {}
void g_mem_chunk_reset (GMemChunk *mem_chunk) {}
void g_mem_chunk_print (GMemChunk *mem_chunk) {}
void g_mem_chunk_info (void) {}
void g_blow_chunks (void) {}
#endif /* DISABLE_MEM_POOLS */
/* generic allocators
*/
struct _GAllocator /* from gmem.c */
{
gchar *name;
guint16 n_preallocs;
guint is_unused : 1;
guint type : 4;
GAllocator *last;
GMemChunk *mem_chunk;
gpointer dummy; /* implementation specific */
};
GAllocator*
g_allocator_new (const gchar *name,
guint n_preallocs)
{
GAllocator *allocator;
g_return_val_if_fail (name != NULL, NULL);
allocator = g_new0 (GAllocator, 1);
allocator->name = g_strdup (name);
allocator->n_preallocs = CLAMP (n_preallocs, 1, 65535);
allocator->is_unused = TRUE;
allocator->type = 0;
allocator->last = NULL;
allocator->mem_chunk = NULL;
allocator->dummy = NULL;
return allocator;
}
void
g_allocator_free (GAllocator *allocator)
{
g_return_if_fail (allocator != NULL);
g_return_if_fail (allocator->is_unused == TRUE);
g_free (allocator->name);
if (allocator->mem_chunk)
g_mem_chunk_destroy (allocator->mem_chunk);
g_free (allocator);
}
void
_g_mem_thread_init (void)
{
#ifndef DISABLE_MEM_POOLS
mem_chunks_lock = g_mutex_new ();
#endif
#ifndef G_DISABLE_CHECKS
g_profile_mutex = g_mutex_new ();
#endif
}
void
_g_mem_thread_private_init (void)
{
#ifndef G_DISABLE_CHECKS
g_assert (mem_chunk_recursion == NULL);
mem_chunk_recursion = g_private_new (NULL);
#endif
}