glib/glib/gtimezone.c
Руслан Ижбулатов 807e4fdcdb Fix the 6-days-until-the-end-of-the-month bug
The addition causes the date to shift
forward into 1st of the next month, because a 0-based offset
is compared to be "more than" the days in the month instead of "more than
or equal to".

This is triggered by corner-cases where transition date is 6 days
off the end of the month and our calculations put it at N+1th day of the
month (where N is the number of days in the month). The subtraction should
be triggered to move the date back a week, putting it 6 days off the end;
for example, October 25 for CET DST transition; but due to incorrect comparison
the date isn't shifted back, we add 31 days to October 1st and end up
at November 1st).

Fixes issue #2215.
2020-10-16 14:52:31 +01:00

2312 lines
65 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright © 2010 Codethink Limited
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*
* Author: Ryan Lortie <desrt@desrt.ca>
*/
/* Prologue {{{1 */
#include "config.h"
#include "gtimezone.h"
#include <string.h>
#include <stdlib.h>
#include <signal.h>
#include "gmappedfile.h"
#include "gtestutils.h"
#include "gfileutils.h"
#include "gstrfuncs.h"
#include "ghash.h"
#include "gthread.h"
#include "gbytes.h"
#include "gslice.h"
#include "gdatetime.h"
#include "gdate.h"
#include "genviron.h"
#ifdef G_OS_WIN32
#define STRICT
#include <windows.h>
#include <wchar.h>
#endif
/**
* SECTION:timezone
* @title: GTimeZone
* @short_description: a structure representing a time zone
* @see_also: #GDateTime
*
* #GTimeZone is a structure that represents a time zone, at no
* particular point in time. It is refcounted and immutable.
*
* Each time zone has an identifier (for example, Europe/London) which is
* platform dependent. See g_time_zone_new() for information on the identifier
* formats. The identifier of a time zone can be retrieved using
* g_time_zone_get_identifier().
*
* A time zone contains a number of intervals. Each interval has
* an abbreviation to describe it (for example, PDT), an offset to UTC and a
* flag indicating if the daylight savings time is in effect during that
* interval. A time zone always has at least one interval — interval 0. Note
* that interval abbreviations are not the same as time zone identifiers
* (apart from UTC), and cannot be passed to g_time_zone_new().
*
* Every UTC time is contained within exactly one interval, but a given
* local time may be contained within zero, one or two intervals (due to
* incontinuities associated with daylight savings time).
*
* An interval may refer to a specific period of time (eg: the duration
* of daylight savings time during 2010) or it may refer to many periods
* of time that share the same properties (eg: all periods of daylight
* savings time). It is also possible (usually for political reasons)
* that some properties (like the abbreviation) change between intervals
* without other properties changing.
*
* #GTimeZone is available since GLib 2.26.
*/
/**
* GTimeZone:
*
* #GTimeZone is an opaque structure whose members cannot be accessed
* directly.
*
* Since: 2.26
**/
/* IANA zoneinfo file format {{{1 */
/* unaligned */
typedef struct { gchar bytes[8]; } gint64_be;
typedef struct { gchar bytes[4]; } gint32_be;
typedef struct { gchar bytes[4]; } guint32_be;
static inline gint64 gint64_from_be (const gint64_be be) {
gint64 tmp; memcpy (&tmp, &be, sizeof tmp); return GINT64_FROM_BE (tmp);
}
static inline gint32 gint32_from_be (const gint32_be be) {
gint32 tmp; memcpy (&tmp, &be, sizeof tmp); return GINT32_FROM_BE (tmp);
}
static inline guint32 guint32_from_be (const guint32_be be) {
guint32 tmp; memcpy (&tmp, &be, sizeof tmp); return GUINT32_FROM_BE (tmp);
}
/* The layout of an IANA timezone file header */
struct tzhead
{
gchar tzh_magic[4];
gchar tzh_version;
guchar tzh_reserved[15];
guint32_be tzh_ttisgmtcnt;
guint32_be tzh_ttisstdcnt;
guint32_be tzh_leapcnt;
guint32_be tzh_timecnt;
guint32_be tzh_typecnt;
guint32_be tzh_charcnt;
};
struct ttinfo
{
gint32_be tt_gmtoff;
guint8 tt_isdst;
guint8 tt_abbrind;
};
/* A Transition Date structure for TZ Rules, an intermediate structure
for parsing MSWindows and Environment-variable time zones. It
Generalizes MSWindows's SYSTEMTIME struct.
*/
typedef struct
{
gint year;
gint mon;
gint mday;
gint wday;
gint week;
gint32 offset; /* hour*3600 + min*60 + sec; can be negative. */
} TimeZoneDate;
/* POSIX Timezone abbreviations are typically 3 or 4 characters, but
Microsoft uses 32-character names. We'll use one larger to ensure
we have room for the terminating \0.
*/
#define NAME_SIZE 33
/* A MSWindows-style time zone transition rule. Generalizes the
MSWindows TIME_ZONE_INFORMATION struct. Also used to compose time
zones from tzset-style identifiers.
*/
typedef struct
{
gint start_year;
gint32 std_offset;
gint32 dlt_offset;
TimeZoneDate dlt_start;
TimeZoneDate dlt_end;
gchar std_name[NAME_SIZE];
gchar dlt_name[NAME_SIZE];
} TimeZoneRule;
/* GTimeZone's internal representation of a Daylight Savings (Summer)
time interval.
*/
typedef struct
{
gint32 gmt_offset;
gboolean is_dst;
gchar *abbrev;
} TransitionInfo;
/* GTimeZone's representation of a transition time to or from Daylight
Savings (Summer) time and Standard time for the zone. */
typedef struct
{
gint64 time;
gint info_index;
} Transition;
/* GTimeZone structure */
struct _GTimeZone
{
gchar *name;
GArray *t_info; /* Array of TransitionInfo */
GArray *transitions; /* Array of Transition */
gint ref_count;
};
G_LOCK_DEFINE_STATIC (time_zones);
static GHashTable/*<string?, GTimeZone>*/ *time_zones;
G_LOCK_DEFINE_STATIC (tz_default);
static GTimeZone *tz_default = NULL;
G_LOCK_DEFINE_STATIC (tz_local);
static GTimeZone *tz_local = NULL;
#define MIN_TZYEAR 1916 /* Daylight Savings started in WWI */
#define MAX_TZYEAR 2999 /* And it's not likely ever to go away, but
there's no point in getting carried
away. */
#ifdef G_OS_UNIX
static GTimeZone *parse_footertz (const gchar *, size_t);
#endif
/**
* g_time_zone_unref:
* @tz: a #GTimeZone
*
* Decreases the reference count on @tz.
*
* Since: 2.26
**/
void
g_time_zone_unref (GTimeZone *tz)
{
int ref_count;
again:
ref_count = g_atomic_int_get (&tz->ref_count);
g_assert (ref_count > 0);
if (ref_count == 1)
{
if (tz->name != NULL)
{
G_LOCK(time_zones);
/* someone else might have grabbed a ref in the meantime */
if G_UNLIKELY (g_atomic_int_get (&tz->ref_count) != 1)
{
G_UNLOCK(time_zones);
goto again;
}
if (time_zones != NULL)
g_hash_table_remove (time_zones, tz->name);
G_UNLOCK(time_zones);
}
if (tz->t_info != NULL)
{
guint idx;
for (idx = 0; idx < tz->t_info->len; idx++)
{
TransitionInfo *info = &g_array_index (tz->t_info, TransitionInfo, idx);
g_free (info->abbrev);
}
g_array_free (tz->t_info, TRUE);
}
if (tz->transitions != NULL)
g_array_free (tz->transitions, TRUE);
g_free (tz->name);
g_slice_free (GTimeZone, tz);
}
else if G_UNLIKELY (!g_atomic_int_compare_and_exchange (&tz->ref_count,
ref_count,
ref_count - 1))
goto again;
}
/**
* g_time_zone_ref:
* @tz: a #GTimeZone
*
* Increases the reference count on @tz.
*
* Returns: a new reference to @tz.
*
* Since: 2.26
**/
GTimeZone *
g_time_zone_ref (GTimeZone *tz)
{
g_assert (tz->ref_count > 0);
g_atomic_int_inc (&tz->ref_count);
return tz;
}
/* fake zoneinfo creation (for RFC3339/ISO 8601 timezones) {{{1 */
/*
* parses strings of the form h or hh[[:]mm[[[:]ss]]] where:
* - h[h] is 0 to 24
* - mm is 00 to 59
* - ss is 00 to 59
* If RFC8536, TIME_ is a transition time sans sign,
* so colons are required before mm and ss, and hh can be up to 167.
* See Internet RFC 8536 section 3.3.1:
* https://tools.ietf.org/html/rfc8536#section-3.3.1
* and POSIX Base Definitions 8.3 TZ rule time:
* https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap08.html#tag_08_03
*/
static gboolean
parse_time (const gchar *time_,
gint32 *offset,
gboolean rfc8536)
{
if (*time_ < '0' || '9' < *time_)
return FALSE;
*offset = 60 * 60 * (*time_++ - '0');
if (*time_ == '\0')
return TRUE;
if (*time_ != ':')
{
if (*time_ < '0' || '9' < *time_)
return FALSE;
*offset *= 10;
*offset += 60 * 60 * (*time_++ - '0');
if (rfc8536)
{
/* Internet RFC 8536 section 3.3.1 and POSIX 8.3 TZ together say
that a transition time must be of the form [+-]hh[:mm[:ss]] where
the hours part can range from -167 to 167. */
if ('0' <= *time_ && *time_ <= '9')
{
*offset *= 10;
*offset += 60 * 60 * (*time_++ - '0');
}
if (*offset > 167 * 60 * 60)
return FALSE;
}
else if (*offset > 24 * 60 * 60)
return FALSE;
if (*time_ == '\0')
return TRUE;
}
if (*time_ == ':')
time_++;
else if (rfc8536)
return FALSE;
if (*time_ < '0' || '5' < *time_)
return FALSE;
*offset += 10 * 60 * (*time_++ - '0');
if (*time_ < '0' || '9' < *time_)
return FALSE;
*offset += 60 * (*time_++ - '0');
if (*time_ == '\0')
return TRUE;
if (*time_ == ':')
time_++;
else if (rfc8536)
return FALSE;
if (*time_ < '0' || '5' < *time_)
return FALSE;
*offset += 10 * (*time_++ - '0');
if (*time_ < '0' || '9' < *time_)
return FALSE;
*offset += *time_++ - '0';
return *time_ == '\0';
}
static gboolean
parse_constant_offset (const gchar *name,
gint32 *offset,
gboolean rfc8536)
{
/* Internet RFC 8536 section 3.3.1 and POSIX 8.3 TZ together say
that a transition time must be numeric. */
if (!rfc8536 && g_strcmp0 (name, "UTC") == 0)
{
*offset = 0;
return TRUE;
}
if (*name >= '0' && '9' >= *name)
return parse_time (name, offset, rfc8536);
switch (*name++)
{
case 'Z':
*offset = 0;
/* Internet RFC 8536 section 3.3.1 requires a numeric zone. */
return !rfc8536 && !*name;
case '+':
return parse_time (name, offset, rfc8536);
case '-':
if (parse_time (name, offset, rfc8536))
{
*offset = -*offset;
return TRUE;
}
else
return FALSE;
default:
return FALSE;
}
}
static void
zone_for_constant_offset (GTimeZone *gtz, const gchar *name)
{
gint32 offset;
TransitionInfo info;
if (name == NULL || !parse_constant_offset (name, &offset, FALSE))
return;
info.gmt_offset = offset;
info.is_dst = FALSE;
info.abbrev = g_strdup (name);
gtz->name = g_strdup (name);
gtz->t_info = g_array_sized_new (FALSE, TRUE, sizeof (TransitionInfo), 1);
g_array_append_val (gtz->t_info, info);
/* Constant offset, no transitions */
gtz->transitions = NULL;
}
#ifdef G_OS_UNIX
static gchar *
zone_identifier_unix (void)
{
gchar *resolved_identifier = NULL;
gsize prefix_len = 0;
gchar *canonical_path = NULL;
GError *read_link_err = NULL;
const gchar *tzdir;
/* Resolve the actual timezone pointed to by /etc/localtime. */
resolved_identifier = g_file_read_link ("/etc/localtime", &read_link_err);
if (resolved_identifier == NULL)
{
gboolean not_a_symlink = g_error_matches (read_link_err,
G_FILE_ERROR,
G_FILE_ERROR_INVAL);
g_clear_error (&read_link_err);
/* Fallback to the content of /var/db/zoneinfo or /etc/timezone
* if /etc/localtime is not a symlink. /var/db/zoneinfo is
* where 'tzsetup' program on FreeBSD and DragonflyBSD stores
* the timezone chosen by the user. /etc/timezone is where user
* choice is expressed on Gentoo OpenRC and others. */
if (not_a_symlink && (g_file_get_contents ("/var/db/zoneinfo",
&resolved_identifier,
NULL, NULL) ||
g_file_get_contents ("/etc/timezone",
&resolved_identifier,
NULL, NULL)))
g_strchomp (resolved_identifier);
else
{
/* Error */
g_assert (resolved_identifier == NULL);
goto out;
}
}
else
{
/* Resolve relative path */
canonical_path = g_canonicalize_filename (resolved_identifier, "/etc");
g_free (resolved_identifier);
resolved_identifier = g_steal_pointer (&canonical_path);
}
tzdir = g_getenv ("TZDIR");
if (tzdir == NULL)
tzdir = "/usr/share/zoneinfo";
/* Strip the prefix and slashes if possible. */
if (g_str_has_prefix (resolved_identifier, tzdir))
{
prefix_len = strlen (tzdir);
while (*(resolved_identifier + prefix_len) == '/')
prefix_len++;
}
if (prefix_len > 0)
memmove (resolved_identifier, resolved_identifier + prefix_len,
strlen (resolved_identifier) - prefix_len + 1 /* nul terminator */);
g_assert (resolved_identifier != NULL);
out:
g_free (canonical_path);
return resolved_identifier;
}
static GBytes*
zone_info_unix (const gchar *identifier,
const gchar *resolved_identifier)
{
gchar *filename = NULL;
GMappedFile *file = NULL;
GBytes *zoneinfo = NULL;
const gchar *tzdir;
tzdir = g_getenv ("TZDIR");
if (tzdir == NULL)
tzdir = "/usr/share/zoneinfo";
/* identifier can be a relative or absolute path name;
if relative, it is interpreted starting from /usr/share/zoneinfo
while the POSIX standard says it should start with :,
glibc allows both syntaxes, so we should too */
if (identifier != NULL)
{
if (*identifier == ':')
identifier ++;
if (g_path_is_absolute (identifier))
filename = g_strdup (identifier);
else
filename = g_build_filename (tzdir, identifier, NULL);
}
else
{
if (resolved_identifier == NULL)
goto out;
filename = g_strdup ("/etc/localtime");
}
file = g_mapped_file_new (filename, FALSE, NULL);
if (file != NULL)
{
zoneinfo = g_bytes_new_with_free_func (g_mapped_file_get_contents (file),
g_mapped_file_get_length (file),
(GDestroyNotify)g_mapped_file_unref,
g_mapped_file_ref (file));
g_mapped_file_unref (file);
}
g_assert (resolved_identifier != NULL);
out:
g_free (filename);
return zoneinfo;
}
static void
init_zone_from_iana_info (GTimeZone *gtz,
GBytes *zoneinfo,
gchar *identifier /* (transfer full) */)
{
gsize size;
guint index;
guint32 time_count, type_count;
guint8 *tz_transitions, *tz_type_index, *tz_ttinfo;
guint8 *tz_abbrs;
gsize timesize = sizeof (gint32);
gconstpointer header_data = g_bytes_get_data (zoneinfo, &size);
const gchar *data = header_data;
const struct tzhead *header = header_data;
GTimeZone *footertz = NULL;
guint extra_time_count = 0, extra_type_count = 0;
gint64 last_explicit_transition_time;
g_return_if_fail (size >= sizeof (struct tzhead) &&
memcmp (header, "TZif", 4) == 0);
/* FIXME: Handle invalid TZif files better (Issue#1088). */
if (header->tzh_version >= '2')
{
/* Skip ahead to the newer 64-bit data if it's available. */
header = (const struct tzhead *)
(((const gchar *) (header + 1)) +
guint32_from_be(header->tzh_ttisgmtcnt) +
guint32_from_be(header->tzh_ttisstdcnt) +
8 * guint32_from_be(header->tzh_leapcnt) +
5 * guint32_from_be(header->tzh_timecnt) +
6 * guint32_from_be(header->tzh_typecnt) +
guint32_from_be(header->tzh_charcnt));
timesize = sizeof (gint64);
}
time_count = guint32_from_be(header->tzh_timecnt);
type_count = guint32_from_be(header->tzh_typecnt);
if (header->tzh_version >= '2')
{
const gchar *footer = (((const gchar *) (header + 1))
+ guint32_from_be(header->tzh_ttisgmtcnt)
+ guint32_from_be(header->tzh_ttisstdcnt)
+ 12 * guint32_from_be(header->tzh_leapcnt)
+ 9 * time_count
+ 6 * type_count
+ guint32_from_be(header->tzh_charcnt));
const gchar *footerlast;
size_t footerlen;
g_return_if_fail (footer <= data + size - 2 && footer[0] == '\n');
footerlast = memchr (footer + 1, '\n', data + size - (footer + 1));
g_return_if_fail (footerlast);
footerlen = footerlast + 1 - footer;
if (footerlen != 2)
{
footertz = parse_footertz (footer, footerlen);
g_return_if_fail (footertz);
extra_type_count = footertz->t_info->len;
extra_time_count = footertz->transitions->len;
}
}
tz_transitions = ((guint8 *) (header) + sizeof (*header));
tz_type_index = tz_transitions + timesize * time_count;
tz_ttinfo = tz_type_index + time_count;
tz_abbrs = tz_ttinfo + sizeof (struct ttinfo) * type_count;
gtz->name = g_steal_pointer (&identifier);
gtz->t_info = g_array_sized_new (FALSE, TRUE, sizeof (TransitionInfo),
type_count + extra_type_count);
gtz->transitions = g_array_sized_new (FALSE, TRUE, sizeof (Transition),
time_count + extra_time_count);
for (index = 0; index < type_count; index++)
{
TransitionInfo t_info;
struct ttinfo info = ((struct ttinfo*)tz_ttinfo)[index];
t_info.gmt_offset = gint32_from_be (info.tt_gmtoff);
t_info.is_dst = info.tt_isdst ? TRUE : FALSE;
t_info.abbrev = g_strdup ((gchar *) &tz_abbrs[info.tt_abbrind]);
g_array_append_val (gtz->t_info, t_info);
}
for (index = 0; index < time_count; index++)
{
Transition trans;
if (header->tzh_version >= '2')
trans.time = gint64_from_be (((gint64_be*)tz_transitions)[index]);
else
trans.time = gint32_from_be (((gint32_be*)tz_transitions)[index]);
last_explicit_transition_time = trans.time;
trans.info_index = tz_type_index[index];
g_assert (trans.info_index >= 0);
g_assert ((guint) trans.info_index < gtz->t_info->len);
g_array_append_val (gtz->transitions, trans);
}
if (footertz)
{
/* Append footer time types. Don't bother to coalesce
duplicates with existing time types. */
for (index = 0; index < extra_type_count; index++)
{
TransitionInfo t_info;
TransitionInfo *footer_t_info
= &g_array_index (footertz->t_info, TransitionInfo, index);
t_info.gmt_offset = footer_t_info->gmt_offset;
t_info.is_dst = footer_t_info->is_dst;
t_info.abbrev = g_steal_pointer (&footer_t_info->abbrev);
g_array_append_val (gtz->t_info, t_info);
}
/* Append footer transitions that follow the last explicit
transition. */
for (index = 0; index < extra_time_count; index++)
{
Transition *footer_transition
= &g_array_index (footertz->transitions, Transition, index);
if (time_count <= 0
|| last_explicit_transition_time < footer_transition->time)
{
Transition trans;
trans.time = footer_transition->time;
trans.info_index = type_count + footer_transition->info_index;
g_array_append_val (gtz->transitions, trans);
}
}
g_time_zone_unref (footertz);
}
}
#elif defined (G_OS_WIN32)
static void
copy_windows_systemtime (SYSTEMTIME *s_time, TimeZoneDate *tzdate)
{
tzdate->offset
= s_time->wHour * 3600 + s_time->wMinute * 60 + s_time->wSecond;
tzdate->mon = s_time->wMonth;
tzdate->year = s_time->wYear;
tzdate->wday = s_time->wDayOfWeek ? s_time->wDayOfWeek : 7;
if (s_time->wYear)
{
tzdate->mday = s_time->wDay;
tzdate->wday = 0;
}
else
tzdate->week = s_time->wDay;
}
/* UTC = local time + bias while local time = UTC + offset */
static gboolean
rule_from_windows_time_zone_info (TimeZoneRule *rule,
TIME_ZONE_INFORMATION *tzi)
{
gchar *std_name, *dlt_name;
std_name = g_utf16_to_utf8 ((gunichar2 *)tzi->StandardName, -1, NULL, NULL, NULL);
if (std_name == NULL)
return FALSE;
dlt_name = g_utf16_to_utf8 ((gunichar2 *)tzi->DaylightName, -1, NULL, NULL, NULL);
if (dlt_name == NULL)
{
g_free (std_name);
return FALSE;
}
/* Set offset */
if (tzi->StandardDate.wMonth)
{
rule->std_offset = -(tzi->Bias + tzi->StandardBias) * 60;
rule->dlt_offset = -(tzi->Bias + tzi->DaylightBias) * 60;
copy_windows_systemtime (&(tzi->DaylightDate), &(rule->dlt_start));
copy_windows_systemtime (&(tzi->StandardDate), &(rule->dlt_end));
}
else
{
rule->std_offset = -tzi->Bias * 60;
rule->dlt_start.mon = 0;
}
strncpy (rule->std_name, std_name, NAME_SIZE - 1);
strncpy (rule->dlt_name, dlt_name, NAME_SIZE - 1);
g_free (std_name);
g_free (dlt_name);
return TRUE;
}
static gchar*
windows_default_tzname (void)
{
const gunichar2 *subkey =
L"SYSTEM\\CurrentControlSet\\Control\\TimeZoneInformation";
HKEY key;
gchar *key_name = NULL;
gunichar2 *key_name_w = NULL;
if (RegOpenKeyExW (HKEY_LOCAL_MACHINE, subkey, 0,
KEY_QUERY_VALUE, &key) == ERROR_SUCCESS)
{
DWORD size = 0;
if (RegQueryValueExW (key, L"TimeZoneKeyName", NULL, NULL,
NULL, &size) == ERROR_SUCCESS)
{
key_name_w = g_malloc ((gint)size);
if (key_name_w == NULL ||
RegQueryValueExW (key, L"TimeZoneKeyName", NULL, NULL,
(LPBYTE)key_name_w, &size) != ERROR_SUCCESS)
{
g_free (key_name_w);
key_name = NULL;
}
else
key_name = g_utf16_to_utf8 (key_name_w, -1, NULL, NULL, NULL);
}
RegCloseKey (key);
}
return key_name;
}
typedef struct
{
LONG Bias;
LONG StandardBias;
LONG DaylightBias;
SYSTEMTIME StandardDate;
SYSTEMTIME DaylightDate;
} RegTZI;
static void
system_time_copy (SYSTEMTIME *orig, SYSTEMTIME *target)
{
g_return_if_fail (orig != NULL);
g_return_if_fail (target != NULL);
target->wYear = orig->wYear;
target->wMonth = orig->wMonth;
target->wDayOfWeek = orig->wDayOfWeek;
target->wDay = orig->wDay;
target->wHour = orig->wHour;
target->wMinute = orig->wMinute;
target->wSecond = orig->wSecond;
target->wMilliseconds = orig->wMilliseconds;
}
static void
register_tzi_to_tzi (RegTZI *reg, TIME_ZONE_INFORMATION *tzi)
{
g_return_if_fail (reg != NULL);
g_return_if_fail (tzi != NULL);
tzi->Bias = reg->Bias;
system_time_copy (&(reg->StandardDate), &(tzi->StandardDate));
tzi->StandardBias = reg->StandardBias;
system_time_copy (&(reg->DaylightDate), &(tzi->DaylightDate));
tzi->DaylightBias = reg->DaylightBias;
}
static guint
rules_from_windows_time_zone (const gchar *identifier,
const gchar *resolved_identifier,
TimeZoneRule **rules)
{
HKEY key;
gchar *subkey = NULL;
gchar *subkey_dynamic = NULL;
const gchar *key_name;
const gchar *reg_key =
"SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion\\Time Zones\\";
TIME_ZONE_INFORMATION tzi;
DWORD size;
guint rules_num = 0;
RegTZI regtzi, regtzi_prev;
WCHAR winsyspath[MAX_PATH];
gunichar2 *subkey_w, *subkey_dynamic_w;
subkey_dynamic_w = NULL;
if (GetSystemDirectoryW (winsyspath, MAX_PATH) == 0)
return 0;
g_assert (rules != NULL);
*rules = NULL;
key_name = NULL;
if (!identifier)
key_name = resolved_identifier;
else
key_name = identifier;
if (!key_name)
return 0;
subkey = g_strconcat (reg_key, key_name, NULL);
subkey_w = g_utf8_to_utf16 (subkey, -1, NULL, NULL, NULL);
if (subkey_w == NULL)
goto utf16_conv_failed;
subkey_dynamic = g_strconcat (subkey, "\\Dynamic DST", NULL);
subkey_dynamic_w = g_utf8_to_utf16 (subkey_dynamic, -1, NULL, NULL, NULL);
if (subkey_dynamic_w == NULL)
goto utf16_conv_failed;
if (RegOpenKeyExW (HKEY_LOCAL_MACHINE, subkey_w, 0,
KEY_QUERY_VALUE, &key) != ERROR_SUCCESS)
goto utf16_conv_failed;
size = sizeof tzi.StandardName;
/* use RegLoadMUIStringW() to query MUI_Std from the registry if possible, otherwise
fallback to querying Std */
if (RegLoadMUIStringW (key, L"MUI_Std", tzi.StandardName,
size, &size, 0, winsyspath) != ERROR_SUCCESS)
{
size = sizeof tzi.StandardName;
if (RegQueryValueExW (key, L"Std", NULL, NULL,
(LPBYTE)&(tzi.StandardName), &size) != ERROR_SUCCESS)
goto registry_failed;
}
size = sizeof tzi.DaylightName;
/* use RegLoadMUIStringW() to query MUI_Dlt from the registry if possible, otherwise
fallback to querying Dlt */
if (RegLoadMUIStringW (key, L"MUI_Dlt", tzi.DaylightName,
size, &size, 0, winsyspath) != ERROR_SUCCESS)
{
size = sizeof tzi.DaylightName;
if (RegQueryValueExW (key, L"Dlt", NULL, NULL,
(LPBYTE)&(tzi.DaylightName), &size) != ERROR_SUCCESS)
goto registry_failed;
}
RegCloseKey (key);
if (RegOpenKeyExW (HKEY_LOCAL_MACHINE, subkey_dynamic_w, 0,
KEY_QUERY_VALUE, &key) == ERROR_SUCCESS)
{
DWORD first, last;
int year, i;
wchar_t s[12];
size = sizeof first;
if (RegQueryValueExW (key, L"FirstEntry", NULL, NULL,
(LPBYTE) &first, &size) != ERROR_SUCCESS)
goto registry_failed;
size = sizeof last;
if (RegQueryValueExW (key, L"LastEntry", NULL, NULL,
(LPBYTE) &last, &size) != ERROR_SUCCESS)
goto registry_failed;
rules_num = last - first + 2;
*rules = g_new0 (TimeZoneRule, rules_num);
for (year = first, i = 0; *rules != NULL && year <= last; year++)
{
gboolean failed = FALSE;
swprintf_s (s, 11, L"%d", year);
if (!failed)
{
size = sizeof regtzi;
if (RegQueryValueExW (key, s, NULL, NULL,
(LPBYTE) &regtzi, &size) != ERROR_SUCCESS)
failed = TRUE;
}
if (failed)
{
g_free (*rules);
*rules = NULL;
break;
}
if (year > first && memcmp (&regtzi_prev, &regtzi, sizeof regtzi) == 0)
continue;
else
memcpy (&regtzi_prev, &regtzi, sizeof regtzi);
register_tzi_to_tzi (&regtzi, &tzi);
if (!rule_from_windows_time_zone_info (&(*rules)[i], &tzi))
{
g_free (*rules);
*rules = NULL;
break;
}
(*rules)[i++].start_year = year;
}
rules_num = i + 1;
registry_failed:
RegCloseKey (key);
}
else if (RegOpenKeyExW (HKEY_LOCAL_MACHINE, subkey_w, 0,
KEY_QUERY_VALUE, &key) == ERROR_SUCCESS)
{
size = sizeof regtzi;
if (RegQueryValueExW (key, L"TZI", NULL, NULL,
(LPBYTE) &regtzi, &size) == ERROR_SUCCESS)
{
rules_num = 2;
*rules = g_new0 (TimeZoneRule, 2);
register_tzi_to_tzi (&regtzi, &tzi);
if (!rule_from_windows_time_zone_info (&(*rules)[0], &tzi))
{
g_free (*rules);
*rules = NULL;
}
}
RegCloseKey (key);
}
utf16_conv_failed:
g_free (subkey_dynamic_w);
g_free (subkey_dynamic);
g_free (subkey_w);
g_free (subkey);
if (*rules)
{
(*rules)[0].start_year = MIN_TZYEAR;
if ((*rules)[rules_num - 2].start_year < MAX_TZYEAR)
(*rules)[rules_num - 1].start_year = MAX_TZYEAR;
else
(*rules)[rules_num - 1].start_year = (*rules)[rules_num - 2].start_year + 1;
return rules_num;
}
return 0;
}
#endif
static void
find_relative_date (TimeZoneDate *buffer)
{
guint wday;
GDate date;
g_date_clear (&date, 1);
wday = buffer->wday;
/* Get last day if last is needed, first day otherwise */
if (buffer->mon == 13 || buffer->mon == 14) /* Julian Date */
{
g_date_set_dmy (&date, 1, 1, buffer->year);
if (wday >= 59 && buffer->mon == 13 && g_date_is_leap_year (buffer->year))
g_date_add_days (&date, wday);
else
g_date_add_days (&date, wday - 1);
buffer->mon = (int) g_date_get_month (&date);
buffer->mday = (int) g_date_get_day (&date);
buffer->wday = 0;
}
else /* M.W.D */
{
guint days;
guint days_in_month = g_date_get_days_in_month (buffer->mon, buffer->year);
GDateWeekday first_wday;
g_date_set_dmy (&date, 1, buffer->mon, buffer->year);
first_wday = g_date_get_weekday (&date);
if (first_wday > wday)
++(buffer->week);
/* week is 1 <= w <= 5, we need 0-based */
days = 7 * (buffer->week - 1) + wday - first_wday;
/* "days" is a 0-based offset from the 1st of the month.
* Adding days == days_in_month would bring us into the next month,
* hence the ">=" instead of just ">".
*/
while (days >= days_in_month)
days -= 7;
g_date_add_days (&date, days);
buffer->mday = g_date_get_day (&date);
}
}
/* Offset is previous offset of local time. Returns 0 if month is 0 */
static gint64
boundary_for_year (TimeZoneDate *boundary,
gint year,
gint32 offset)
{
TimeZoneDate buffer;
GDate date;
const guint64 unix_epoch_start = 719163L;
const guint64 seconds_per_day = 86400L;
if (!boundary->mon)
return 0;
buffer = *boundary;
if (boundary->year == 0)
{
buffer.year = year;
if (buffer.wday)
find_relative_date (&buffer);
}
g_assert (buffer.year == year);
g_date_clear (&date, 1);
g_date_set_dmy (&date, buffer.mday, buffer.mon, buffer.year);
return ((g_date_get_julian (&date) - unix_epoch_start) * seconds_per_day +
buffer.offset - offset);
}
static void
fill_transition_info_from_rule (TransitionInfo *info,
TimeZoneRule *rule,
gboolean is_dst)
{
gint offset = is_dst ? rule->dlt_offset : rule->std_offset;
gchar *name = is_dst ? rule->dlt_name : rule->std_name;
info->gmt_offset = offset;
info->is_dst = is_dst;
if (name)
info->abbrev = g_strdup (name);
else
info->abbrev = g_strdup_printf ("%+03d%02d",
(int) offset / 3600,
(int) abs (offset / 60) % 60);
}
static void
init_zone_from_rules (GTimeZone *gtz,
TimeZoneRule *rules,
guint rules_num,
gchar *identifier /* (transfer full) */)
{
guint type_count = 0, trans_count = 0, info_index = 0;
guint ri; /* rule index */
gboolean skip_first_std_trans = TRUE;
gint32 last_offset;
type_count = 0;
trans_count = 0;
/* Last rule only contains max year */
for (ri = 0; ri < rules_num - 1; ri++)
{
if (rules[ri].dlt_start.mon || rules[ri].dlt_end.mon)
{
guint rulespan = (rules[ri + 1].start_year - rules[ri].start_year);
guint transitions = rules[ri].dlt_start.mon > 0 ? 1 : 0;
transitions += rules[ri].dlt_end.mon > 0 ? 1 : 0;
type_count += rules[ri].dlt_start.mon > 0 ? 2 : 1;
trans_count += transitions * rulespan;
}
else
type_count++;
}
gtz->name = g_steal_pointer (&identifier);
gtz->t_info = g_array_sized_new (FALSE, TRUE, sizeof (TransitionInfo), type_count);
gtz->transitions = g_array_sized_new (FALSE, TRUE, sizeof (Transition), trans_count);
last_offset = rules[0].std_offset;
for (ri = 0; ri < rules_num - 1; ri++)
{
if ((rules[ri].std_offset || rules[ri].dlt_offset) &&
rules[ri].dlt_start.mon == 0 && rules[ri].dlt_end.mon == 0)
{
TransitionInfo std_info;
/* Standard */
fill_transition_info_from_rule (&std_info, &(rules[ri]), FALSE);
g_array_append_val (gtz->t_info, std_info);
if (ri > 0 &&
((rules[ri - 1].dlt_start.mon > 12 &&
rules[ri - 1].dlt_start.wday > rules[ri - 1].dlt_end.wday) ||
rules[ri - 1].dlt_start.mon > rules[ri - 1].dlt_end.mon))
{
/* The previous rule was a southern hemisphere rule that
starts the year with DST, so we need to add a
transition to return to standard time */
guint year = rules[ri].start_year;
gint64 std_time = boundary_for_year (&rules[ri].dlt_end,
year, last_offset);
Transition std_trans = {std_time, info_index};
g_array_append_val (gtz->transitions, std_trans);
}
last_offset = rules[ri].std_offset;
++info_index;
skip_first_std_trans = TRUE;
}
else
{
const guint start_year = rules[ri].start_year;
const guint end_year = rules[ri + 1].start_year;
gboolean dlt_first;
guint year;
TransitionInfo std_info, dlt_info;
if (rules[ri].dlt_start.mon > 12)
dlt_first = rules[ri].dlt_start.wday > rules[ri].dlt_end.wday;
else
dlt_first = rules[ri].dlt_start.mon > rules[ri].dlt_end.mon;
/* Standard rules are always even, because before the first
transition is always standard time, and 0 is even. */
fill_transition_info_from_rule (&std_info, &(rules[ri]), FALSE);
fill_transition_info_from_rule (&dlt_info, &(rules[ri]), TRUE);
g_array_append_val (gtz->t_info, std_info);
g_array_append_val (gtz->t_info, dlt_info);
/* Transition dates. We hope that a year which ends daylight
time in a southern-hemisphere country (i.e., one that
begins the year in daylight time) will include a rule
which has only a dlt_end. */
for (year = start_year; year < end_year; year++)
{
gint32 dlt_offset = (dlt_first ? last_offset :
rules[ri].dlt_offset);
gint32 std_offset = (dlt_first ? rules[ri].std_offset :
last_offset);
/* NB: boundary_for_year returns 0 if mon == 0 */
gint64 std_time = boundary_for_year (&rules[ri].dlt_end,
year, dlt_offset);
gint64 dlt_time = boundary_for_year (&rules[ri].dlt_start,
year, std_offset);
Transition std_trans = {std_time, info_index};
Transition dlt_trans = {dlt_time, info_index + 1};
last_offset = (dlt_first ? rules[ri].dlt_offset :
rules[ri].std_offset);
if (dlt_first)
{
if (skip_first_std_trans)
skip_first_std_trans = FALSE;
else if (std_time)
g_array_append_val (gtz->transitions, std_trans);
if (dlt_time)
g_array_append_val (gtz->transitions, dlt_trans);
}
else
{
if (dlt_time)
g_array_append_val (gtz->transitions, dlt_trans);
if (std_time)
g_array_append_val (gtz->transitions, std_trans);
}
}
info_index += 2;
}
}
if (ri > 0 &&
((rules[ri - 1].dlt_start.mon > 12 &&
rules[ri - 1].dlt_start.wday > rules[ri - 1].dlt_end.wday) ||
rules[ri - 1].dlt_start.mon > rules[ri - 1].dlt_end.mon))
{
/* The previous rule was a southern hemisphere rule that
starts the year with DST, so we need to add a
transition to return to standard time */
TransitionInfo info;
guint year = rules[ri].start_year;
Transition trans;
fill_transition_info_from_rule (&info, &(rules[ri - 1]), FALSE);
g_array_append_val (gtz->t_info, info);
trans.time = boundary_for_year (&rules[ri - 1].dlt_end,
year, last_offset);
trans.info_index = info_index;
g_array_append_val (gtz->transitions, trans);
}
}
/*
* parses date[/time] for parsing TZ environment variable
*
* date is either Mm.w.d, Jn or N
* - m is 1 to 12
* - w is 1 to 5
* - d is 0 to 6
* - n is 1 to 365
* - N is 0 to 365
*
* time is either h or hh[[:]mm[[[:]ss]]]
* - h[h] is 0 to 24
* - mm is 00 to 59
* - ss is 00 to 59
*/
static gboolean
parse_mwd_boundary (gchar **pos, TimeZoneDate *boundary)
{
gint month, week, day;
if (**pos == '\0' || **pos < '0' || '9' < **pos)
return FALSE;
month = *(*pos)++ - '0';
if ((month == 1 && **pos >= '0' && '2' >= **pos) ||
(month == 0 && **pos >= '0' && '9' >= **pos))
{
month *= 10;
month += *(*pos)++ - '0';
}
if (*(*pos)++ != '.' || month == 0)
return FALSE;
if (**pos == '\0' || **pos < '1' || '5' < **pos)
return FALSE;
week = *(*pos)++ - '0';
if (*(*pos)++ != '.')
return FALSE;
if (**pos == '\0' || **pos < '0' || '6' < **pos)
return FALSE;
day = *(*pos)++ - '0';
if (!day)
day += 7;
boundary->year = 0;
boundary->mon = month;
boundary->week = week;
boundary->wday = day;
return TRUE;
}
/*
* This parses two slightly different ways of specifying
* the Julian day:
*
* - ignore_leap == TRUE
*
* Jn This specifies the Julian day with n between 1 and 365. Leap days
* are not counted. In this format, February 29 can't be represented;
* February 28 is day 59, and March 1 is always day 60.
*
* - ignore_leap == FALSE
*
* n This specifies the zero-based Julian day with n between 0 and 365.
* February 29 is counted in leap years.
*/
static gboolean
parse_julian_boundary (gchar** pos, TimeZoneDate *boundary,
gboolean ignore_leap)
{
gint day = 0;
GDate date;
while (**pos >= '0' && '9' >= **pos)
{
day *= 10;
day += *(*pos)++ - '0';
}
if (ignore_leap)
{
if (day < 1 || 365 < day)
return FALSE;
if (day >= 59)
day++;
}
else
{
if (day < 0 || 365 < day)
return FALSE;
/* GDate wants day in range 1->366 */
day++;
}
g_date_clear (&date, 1);
g_date_set_julian (&date, day);
boundary->year = 0;
boundary->mon = (int) g_date_get_month (&date);
boundary->mday = (int) g_date_get_day (&date);
boundary->wday = 0;
return TRUE;
}
static gboolean
parse_tz_boundary (const gchar *identifier,
TimeZoneDate *boundary)
{
gchar *pos;
pos = (gchar*)identifier;
/* Month-week-weekday */
if (*pos == 'M')
{
++pos;
if (!parse_mwd_boundary (&pos, boundary))
return FALSE;
}
/* Julian date which ignores Feb 29 in leap years */
else if (*pos == 'J')
{
++pos;
if (!parse_julian_boundary (&pos, boundary, TRUE))
return FALSE ;
}
/* Julian date which counts Feb 29 in leap years */
else if (*pos >= '0' && '9' >= *pos)
{
if (!parse_julian_boundary (&pos, boundary, FALSE))
return FALSE;
}
else
return FALSE;
/* Time */
if (*pos == '/')
return parse_constant_offset (pos + 1, &boundary->offset, TRUE);
else
{
boundary->offset = 2 * 60 * 60;
return *pos == '\0';
}
}
static guint
create_ruleset_from_rule (TimeZoneRule **rules, TimeZoneRule *rule)
{
*rules = g_new0 (TimeZoneRule, 2);
(*rules)[0].start_year = MIN_TZYEAR;
(*rules)[1].start_year = MAX_TZYEAR;
(*rules)[0].std_offset = -rule->std_offset;
(*rules)[0].dlt_offset = -rule->dlt_offset;
(*rules)[0].dlt_start = rule->dlt_start;
(*rules)[0].dlt_end = rule->dlt_end;
strcpy ((*rules)[0].std_name, rule->std_name);
strcpy ((*rules)[0].dlt_name, rule->dlt_name);
return 2;
}
static gboolean
parse_offset (gchar **pos, gint32 *target)
{
gchar *buffer;
gchar *target_pos = *pos;
gboolean ret;
while (**pos == '+' || **pos == '-' || **pos == ':' ||
(**pos >= '0' && '9' >= **pos))
++(*pos);
buffer = g_strndup (target_pos, *pos - target_pos);
ret = parse_constant_offset (buffer, target, FALSE);
g_free (buffer);
return ret;
}
static gboolean
parse_identifier_boundary (gchar **pos, TimeZoneDate *target)
{
gchar *buffer;
gchar *target_pos = *pos;
gboolean ret;
while (**pos != ',' && **pos != '\0')
++(*pos);
buffer = g_strndup (target_pos, *pos - target_pos);
ret = parse_tz_boundary (buffer, target);
g_free (buffer);
return ret;
}
static gboolean
set_tz_name (gchar **pos, gchar *buffer, guint size)
{
gboolean quoted = **pos == '<';
gchar *name_pos = *pos;
guint len;
if (quoted)
{
name_pos++;
do
++(*pos);
while (g_ascii_isalnum (**pos) || **pos == '-' || **pos == '+');
if (**pos != '>')
return FALSE;
}
else
while (g_ascii_isalpha (**pos))
++(*pos);
/* Name should be three or more characters */
/* FIXME: Should return FALSE if the name is too long.
This should simplify code later in this function. */
if (*pos - name_pos < 3)
return FALSE;
memset (buffer, 0, size);
/* name_pos isn't 0-terminated, so we have to limit the length expressly */
len = *pos - name_pos > size - 1 ? size - 1 : *pos - name_pos;
strncpy (buffer, name_pos, len);
*pos += quoted;
return TRUE;
}
static gboolean
parse_identifier_boundaries (gchar **pos, TimeZoneRule *tzr)
{
if (*(*pos)++ != ',')
return FALSE;
/* Start date */
if (!parse_identifier_boundary (pos, &(tzr->dlt_start)) || *(*pos)++ != ',')
return FALSE;
/* End date */
if (!parse_identifier_boundary (pos, &(tzr->dlt_end)))
return FALSE;
return TRUE;
}
/*
* Creates an array of TimeZoneRule from a TZ environment variable
* type of identifier. Should free rules afterwards
*/
static guint
rules_from_identifier (const gchar *identifier,
TimeZoneRule **rules)
{
gchar *pos;
TimeZoneRule tzr;
g_assert (rules != NULL);
*rules = NULL;
if (!identifier)
return 0;
pos = (gchar*)identifier;
memset (&tzr, 0, sizeof (tzr));
/* Standard offset */
if (!(set_tz_name (&pos, tzr.std_name, NAME_SIZE)) ||
!parse_offset (&pos, &(tzr.std_offset)))
return 0;
if (*pos == 0)
{
return create_ruleset_from_rule (rules, &tzr);
}
/* Format 2 */
if (!(set_tz_name (&pos, tzr.dlt_name, NAME_SIZE)))
return 0;
parse_offset (&pos, &(tzr.dlt_offset));
if (tzr.dlt_offset == 0) /* No daylight offset given, assume it's 1
hour earlier that standard */
tzr.dlt_offset = tzr.std_offset - 3600;
if (*pos == '\0')
#ifdef G_OS_WIN32
/* Windows allows us to use the US DST boundaries if they're not given */
{
int i;
guint rules_num = 0;
/* Use US rules, Windows' default is Pacific Standard Time */
if ((rules_num = rules_from_windows_time_zone ("Pacific Standard Time",
NULL,
rules)))
{
for (i = 0; i < rules_num - 1; i++)
{
(*rules)[i].std_offset = - tzr.std_offset;
(*rules)[i].dlt_offset = - tzr.dlt_offset;
strcpy ((*rules)[i].std_name, tzr.std_name);
strcpy ((*rules)[i].dlt_name, tzr.dlt_name);
}
return rules_num;
}
else
return 0;
}
#else
return 0;
#endif
/* Start and end required (format 2) */
if (!parse_identifier_boundaries (&pos, &tzr))
return 0;
return create_ruleset_from_rule (rules, &tzr);
}
#ifdef G_OS_UNIX
static GTimeZone *
parse_footertz (const gchar *footer, size_t footerlen)
{
gchar *tzstring = g_strndup (footer + 1, footerlen - 2);
GTimeZone *footertz = NULL;
/* FIXME: The allocation for tzstring could be avoided by
passing a gsize identifier_len argument to rules_from_identifier
and changing the code in that function to stop assuming that
identifier is nul-terminated. */
TimeZoneRule *rules;
guint rules_num = rules_from_identifier (tzstring, &rules);
g_free (tzstring);
if (rules_num > 1)
{
footertz = g_slice_new0 (GTimeZone);
init_zone_from_rules (footertz, rules, rules_num, NULL);
footertz->ref_count++;
}
g_free (rules);
return footertz;
}
#endif
/* Construction {{{1 */
/**
* g_time_zone_new:
* @identifier: (nullable): a timezone identifier
*
* Creates a #GTimeZone corresponding to @identifier.
*
* @identifier can either be an RFC3339/ISO 8601 time offset or
* something that would pass as a valid value for the `TZ` environment
* variable (including %NULL).
*
* In Windows, @identifier can also be the unlocalized name of a time
* zone for standard time, for example "Pacific Standard Time".
*
* Valid RFC3339 time offsets are `"Z"` (for UTC) or
* `"±hh:mm"`. ISO 8601 additionally specifies
* `"±hhmm"` and `"±hh"`. Offsets are
* time values to be added to Coordinated Universal Time (UTC) to get
* the local time.
*
* In UNIX, the `TZ` environment variable typically corresponds
* to the name of a file in the zoneinfo database, an absolute path to a file
* somewhere else, or a string in
* "std offset [dst [offset],start[/time],end[/time]]" (POSIX) format.
* There are no spaces in the specification. The name of standard
* and daylight savings time zone must be three or more alphabetic
* characters. Offsets are time values to be added to local time to
* get Coordinated Universal Time (UTC) and should be
* `"[±]hh[[:]mm[:ss]]"`. Dates are either
* `"Jn"` (Julian day with n between 1 and 365, leap
* years not counted), `"n"` (zero-based Julian day
* with n between 0 and 365) or `"Mm.w.d"` (day d
* (0 <= d <= 6) of week w (1 <= w <= 5) of month m (1 <= m <= 12), day
* 0 is a Sunday). Times are in local wall clock time, the default is
* 02:00:00.
*
* In Windows, the "tzn[+|]hh[:mm[:ss]][dzn]" format is used, but also
* accepts POSIX format. The Windows format uses US rules for all time
* zones; daylight savings time is 60 minutes behind the standard time
* with date and time of change taken from Pacific Standard Time.
* Offsets are time values to be added to the local time to get
* Coordinated Universal Time (UTC).
*
* g_time_zone_new_local() calls this function with the value of the
* `TZ` environment variable. This function itself is independent of
* the value of `TZ`, but if @identifier is %NULL then `/etc/localtime`
* will be consulted to discover the correct time zone on UNIX and the
* registry will be consulted or GetTimeZoneInformation() will be used
* to get the local time zone on Windows.
*
* If intervals are not available, only time zone rules from `TZ`
* environment variable or other means, then they will be computed
* from year 1900 to 2037. If the maximum year for the rules is
* available and it is greater than 2037, then it will followed
* instead.
*
* See
* [RFC3339 §5.6](http://tools.ietf.org/html/rfc3339#section-5.6)
* for a precise definition of valid RFC3339 time offsets
* (the `time-offset` expansion) and ISO 8601 for the
* full list of valid time offsets. See
* [The GNU C Library manual](http://www.gnu.org/s/libc/manual/html_node/TZ-Variable.html)
* for an explanation of the possible
* values of the `TZ` environment variable. See
* [Microsoft Time Zone Index Values](http://msdn.microsoft.com/en-us/library/ms912391%28v=winembedded.11%29.aspx)
* for the list of time zones on Windows.
*
* You should release the return value by calling g_time_zone_unref()
* when you are done with it.
*
* Returns: the requested timezone
*
* Since: 2.26
**/
GTimeZone *
g_time_zone_new (const gchar *identifier)
{
GTimeZone *tz = NULL;
TimeZoneRule *rules;
gint rules_num;
gchar *resolved_identifier = NULL;
if (identifier)
{
G_LOCK (time_zones);
if (time_zones == NULL)
time_zones = g_hash_table_new (g_str_hash, g_str_equal);
tz = g_hash_table_lookup (time_zones, identifier);
if (tz)
{
g_atomic_int_inc (&tz->ref_count);
G_UNLOCK (time_zones);
return tz;
}
else
resolved_identifier = g_strdup (identifier);
}
else
{
G_LOCK (tz_default);
#ifdef G_OS_UNIX
resolved_identifier = zone_identifier_unix ();
#elif defined (G_OS_WIN32)
resolved_identifier = windows_default_tzname ();
#endif
if (tz_default)
{
/* Flush default if changed. If the identifier couldnt be resolved,
* were going to fall back to UTC eventually, so dont clear out the
* cache if its already UTC. */
if (!(resolved_identifier == NULL && g_str_equal (tz_default->name, "UTC")) &&
g_strcmp0 (tz_default->name, resolved_identifier) != 0)
{
g_clear_pointer (&tz_default, g_time_zone_unref);
}
else
{
tz = g_time_zone_ref (tz_default);
G_UNLOCK (tz_default);
g_free (resolved_identifier);
return tz;
}
}
}
tz = g_slice_new0 (GTimeZone);
tz->ref_count = 0;
zone_for_constant_offset (tz, identifier);
if (tz->t_info == NULL &&
(rules_num = rules_from_identifier (identifier, &rules)))
{
init_zone_from_rules (tz, rules, rules_num, g_steal_pointer (&resolved_identifier));
g_free (rules);
}
if (tz->t_info == NULL)
{
#ifdef G_OS_UNIX
GBytes *zoneinfo = zone_info_unix (identifier, resolved_identifier);
if (zoneinfo != NULL)
{
init_zone_from_iana_info (tz, zoneinfo, g_steal_pointer (&resolved_identifier));
g_bytes_unref (zoneinfo);
}
#elif defined (G_OS_WIN32)
if ((rules_num = rules_from_windows_time_zone (identifier,
resolved_identifier,
&rules)))
{
init_zone_from_rules (tz, rules, rules_num, g_steal_pointer (&resolved_identifier));
g_free (rules);
}
#endif
}
#if defined (G_OS_WIN32)
if (tz->t_info == NULL)
{
if (identifier == NULL)
{
TIME_ZONE_INFORMATION tzi;
if (GetTimeZoneInformation (&tzi) != TIME_ZONE_ID_INVALID)
{
rules = g_new0 (TimeZoneRule, 2);
if (rule_from_windows_time_zone_info (&rules[0], &tzi))
{
memset (rules[0].std_name, 0, NAME_SIZE);
memset (rules[0].dlt_name, 0, NAME_SIZE);
rules[0].start_year = MIN_TZYEAR;
rules[1].start_year = MAX_TZYEAR;
init_zone_from_rules (tz, rules, 2, g_steal_pointer (&resolved_identifier));
}
g_free (rules);
}
}
}
#endif
g_free (resolved_identifier);
/* Always fall back to UTC. */
if (tz->t_info == NULL)
zone_for_constant_offset (tz, "UTC");
g_assert (tz->name != NULL);
g_assert (tz->t_info != NULL);
if (tz->t_info != NULL)
{
if (identifier)
g_hash_table_insert (time_zones, tz->name, tz);
else if (tz->name)
{
/* Caching reference */
g_atomic_int_inc (&tz->ref_count);
tz_default = tz;
}
}
g_atomic_int_inc (&tz->ref_count);
if (identifier)
G_UNLOCK (time_zones);
else
G_UNLOCK (tz_default);
return tz;
}
/**
* g_time_zone_new_utc:
*
* Creates a #GTimeZone corresponding to UTC.
*
* This is equivalent to calling g_time_zone_new() with a value like
* "Z", "UTC", "+00", etc.
*
* You should release the return value by calling g_time_zone_unref()
* when you are done with it.
*
* Returns: the universal timezone
*
* Since: 2.26
**/
GTimeZone *
g_time_zone_new_utc (void)
{
static GTimeZone *utc = NULL;
static gsize initialised;
if (g_once_init_enter (&initialised))
{
utc = g_time_zone_new ("UTC");
g_once_init_leave (&initialised, TRUE);
}
return g_time_zone_ref (utc);
}
/**
* g_time_zone_new_local:
*
* Creates a #GTimeZone corresponding to local time. The local time
* zone may change between invocations to this function; for example,
* if the system administrator changes it.
*
* This is equivalent to calling g_time_zone_new() with the value of
* the `TZ` environment variable (including the possibility of %NULL).
*
* You should release the return value by calling g_time_zone_unref()
* when you are done with it.
*
* Returns: the local timezone
*
* Since: 2.26
**/
GTimeZone *
g_time_zone_new_local (void)
{
const gchar *tzenv = g_getenv ("TZ");
GTimeZone *tz;
G_LOCK (tz_local);
/* Is time zone changed and must be flushed? */
if (tz_local && g_strcmp0 (g_time_zone_get_identifier (tz_local), tzenv))
g_clear_pointer (&tz_local, g_time_zone_unref);
if (tz_local == NULL)
tz_local = g_time_zone_new (tzenv);
tz = g_time_zone_ref (tz_local);
G_UNLOCK (tz_local);
return tz;
}
/**
* g_time_zone_new_offset:
* @seconds: offset to UTC, in seconds
*
* Creates a #GTimeZone corresponding to the given constant offset from UTC,
* in seconds.
*
* This is equivalent to calling g_time_zone_new() with a string in the form
* `[+|-]hh[:mm[:ss]]`.
*
* Returns: (transfer full): a timezone at the given offset from UTC
* Since: 2.58
*/
GTimeZone *
g_time_zone_new_offset (gint32 seconds)
{
GTimeZone *tz = NULL;
gchar *identifier = NULL;
/* Seemingly, we should be using @seconds directly to set the
* #TransitionInfo.gmt_offset to avoid all this string building and parsing.
* However, we always need to set the #GTimeZone.name to a constructed
* string anyway, so we might as well reuse its code. */
identifier = g_strdup_printf ("%c%02u:%02u:%02u",
(seconds >= 0) ? '+' : '-',
(ABS (seconds) / 60) / 60,
(ABS (seconds) / 60) % 60,
ABS (seconds) % 60);
tz = g_time_zone_new (identifier);
g_free (identifier);
g_assert (g_time_zone_get_offset (tz, 0) == seconds);
return tz;
}
#define TRANSITION(n) g_array_index (tz->transitions, Transition, n)
#define TRANSITION_INFO(n) g_array_index (tz->t_info, TransitionInfo, n)
/* Internal helpers {{{1 */
/* NB: Interval 0 is before the first transition, so there's no
* transition structure to point to which TransitionInfo to
* use. Rule-based zones are set up so that TI 0 is always standard
* time (which is what's in effect before Daylight time got started
* in the early 20th century), but IANA tzfiles don't follow that
* convention. The tzfile documentation says to use the first
* standard-time (i.e., non-DST) tinfo, so that's what we do.
*/
inline static const TransitionInfo*
interval_info (GTimeZone *tz,
guint interval)
{
guint index;
g_return_val_if_fail (tz->t_info != NULL, NULL);
if (interval && tz->transitions && interval <= tz->transitions->len)
index = (TRANSITION(interval - 1)).info_index;
else
{
for (index = 0; index < tz->t_info->len; index++)
{
TransitionInfo *tzinfo = &(TRANSITION_INFO(index));
if (!tzinfo->is_dst)
return tzinfo;
}
index = 0;
}
return &(TRANSITION_INFO(index));
}
inline static gint64
interval_start (GTimeZone *tz,
guint interval)
{
if (!interval || tz->transitions == NULL || tz->transitions->len == 0)
return G_MININT64;
if (interval > tz->transitions->len)
interval = tz->transitions->len;
return (TRANSITION(interval - 1)).time;
}
inline static gint64
interval_end (GTimeZone *tz,
guint interval)
{
if (tz->transitions && interval < tz->transitions->len)
{
gint64 lim = (TRANSITION(interval)).time;
return lim - (lim != G_MININT64);
}
return G_MAXINT64;
}
inline static gint32
interval_offset (GTimeZone *tz,
guint interval)
{
g_return_val_if_fail (tz->t_info != NULL, 0);
return interval_info (tz, interval)->gmt_offset;
}
inline static gboolean
interval_isdst (GTimeZone *tz,
guint interval)
{
g_return_val_if_fail (tz->t_info != NULL, 0);
return interval_info (tz, interval)->is_dst;
}
inline static gchar*
interval_abbrev (GTimeZone *tz,
guint interval)
{
g_return_val_if_fail (tz->t_info != NULL, 0);
return interval_info (tz, interval)->abbrev;
}
inline static gint64
interval_local_start (GTimeZone *tz,
guint interval)
{
if (interval)
return interval_start (tz, interval) + interval_offset (tz, interval);
return G_MININT64;
}
inline static gint64
interval_local_end (GTimeZone *tz,
guint interval)
{
if (tz->transitions && interval < tz->transitions->len)
return interval_end (tz, interval) + interval_offset (tz, interval);
return G_MAXINT64;
}
static gboolean
interval_valid (GTimeZone *tz,
guint interval)
{
if ( tz->transitions == NULL)
return interval == 0;
return interval <= tz->transitions->len;
}
/* g_time_zone_find_interval() {{{1 */
/**
* g_time_zone_adjust_time:
* @tz: a #GTimeZone
* @type: the #GTimeType of @time_
* @time_: a pointer to a number of seconds since January 1, 1970
*
* Finds an interval within @tz that corresponds to the given @time_,
* possibly adjusting @time_ if required to fit into an interval.
* The meaning of @time_ depends on @type.
*
* This function is similar to g_time_zone_find_interval(), with the
* difference that it always succeeds (by making the adjustments
* described below).
*
* In any of the cases where g_time_zone_find_interval() succeeds then
* this function returns the same value, without modifying @time_.
*
* This function may, however, modify @time_ in order to deal with
* non-existent times. If the non-existent local @time_ of 02:30 were
* requested on March 14th 2010 in Toronto then this function would
* adjust @time_ to be 03:00 and return the interval containing the
* adjusted time.
*
* Returns: the interval containing @time_, never -1
*
* Since: 2.26
**/
gint
g_time_zone_adjust_time (GTimeZone *tz,
GTimeType type,
gint64 *time_)
{
guint i, intervals;
gboolean interval_is_dst;
if (tz->transitions == NULL)
return 0;
intervals = tz->transitions->len;
/* find the interval containing *time UTC
* TODO: this could be binary searched (or better) */
for (i = 0; i <= intervals; i++)
if (*time_ <= interval_end (tz, i))
break;
g_assert (interval_start (tz, i) <= *time_ && *time_ <= interval_end (tz, i));
if (type != G_TIME_TYPE_UNIVERSAL)
{
if (*time_ < interval_local_start (tz, i))
/* if time came before the start of this interval... */
{
i--;
/* if it's not in the previous interval... */
if (*time_ > interval_local_end (tz, i))
{
/* it doesn't exist. fast-forward it. */
i++;
*time_ = interval_local_start (tz, i);
}
}
else if (*time_ > interval_local_end (tz, i))
/* if time came after the end of this interval... */
{
i++;
/* if it's not in the next interval... */
if (*time_ < interval_local_start (tz, i))
/* it doesn't exist. fast-forward it. */
*time_ = interval_local_start (tz, i);
}
else
{
interval_is_dst = interval_isdst (tz, i);
if ((interval_is_dst && type != G_TIME_TYPE_DAYLIGHT) ||
(!interval_is_dst && type == G_TIME_TYPE_DAYLIGHT))
{
/* it's in this interval, but dst flag doesn't match.
* check neighbours for a better fit. */
if (i && *time_ <= interval_local_end (tz, i - 1))
i--;
else if (i < intervals &&
*time_ >= interval_local_start (tz, i + 1))
i++;
}
}
}
return i;
}
/**
* g_time_zone_find_interval:
* @tz: a #GTimeZone
* @type: the #GTimeType of @time_
* @time_: a number of seconds since January 1, 1970
*
* Finds an interval within @tz that corresponds to the given @time_.
* The meaning of @time_ depends on @type.
*
* If @type is %G_TIME_TYPE_UNIVERSAL then this function will always
* succeed (since universal time is monotonic and continuous).
*
* Otherwise @time_ is treated as local time. The distinction between
* %G_TIME_TYPE_STANDARD and %G_TIME_TYPE_DAYLIGHT is ignored except in
* the case that the given @time_ is ambiguous. In Toronto, for example,
* 01:30 on November 7th 2010 occurred twice (once inside of daylight
* savings time and the next, an hour later, outside of daylight savings
* time). In this case, the different value of @type would result in a
* different interval being returned.
*
* It is still possible for this function to fail. In Toronto, for
* example, 02:00 on March 14th 2010 does not exist (due to the leap
* forward to begin daylight savings time). -1 is returned in that
* case.
*
* Returns: the interval containing @time_, or -1 in case of failure
*
* Since: 2.26
*/
gint
g_time_zone_find_interval (GTimeZone *tz,
GTimeType type,
gint64 time_)
{
guint i, intervals;
gboolean interval_is_dst;
if (tz->transitions == NULL)
return 0;
intervals = tz->transitions->len;
for (i = 0; i <= intervals; i++)
if (time_ <= interval_end (tz, i))
break;
if (type == G_TIME_TYPE_UNIVERSAL)
return i;
if (time_ < interval_local_start (tz, i))
{
if (time_ > interval_local_end (tz, --i))
return -1;
}
else if (time_ > interval_local_end (tz, i))
{
if (time_ < interval_local_start (tz, ++i))
return -1;
}
else
{
interval_is_dst = interval_isdst (tz, i);
if ((interval_is_dst && type != G_TIME_TYPE_DAYLIGHT) ||
(!interval_is_dst && type == G_TIME_TYPE_DAYLIGHT))
{
if (i && time_ <= interval_local_end (tz, i - 1))
i--;
else if (i < intervals && time_ >= interval_local_start (tz, i + 1))
i++;
}
}
return i;
}
/* Public API accessors {{{1 */
/**
* g_time_zone_get_abbreviation:
* @tz: a #GTimeZone
* @interval: an interval within the timezone
*
* Determines the time zone abbreviation to be used during a particular
* @interval of time in the time zone @tz.
*
* For example, in Toronto this is currently "EST" during the winter
* months and "EDT" during the summer months when daylight savings time
* is in effect.
*
* Returns: the time zone abbreviation, which belongs to @tz
*
* Since: 2.26
**/
const gchar *
g_time_zone_get_abbreviation (GTimeZone *tz,
gint interval)
{
g_return_val_if_fail (interval_valid (tz, (guint)interval), NULL);
return interval_abbrev (tz, (guint)interval);
}
/**
* g_time_zone_get_offset:
* @tz: a #GTimeZone
* @interval: an interval within the timezone
*
* Determines the offset to UTC in effect during a particular @interval
* of time in the time zone @tz.
*
* The offset is the number of seconds that you add to UTC time to
* arrive at local time for @tz (ie: negative numbers for time zones
* west of GMT, positive numbers for east).
*
* Returns: the number of seconds that should be added to UTC to get the
* local time in @tz
*
* Since: 2.26
**/
gint32
g_time_zone_get_offset (GTimeZone *tz,
gint interval)
{
g_return_val_if_fail (interval_valid (tz, (guint)interval), 0);
return interval_offset (tz, (guint)interval);
}
/**
* g_time_zone_is_dst:
* @tz: a #GTimeZone
* @interval: an interval within the timezone
*
* Determines if daylight savings time is in effect during a particular
* @interval of time in the time zone @tz.
*
* Returns: %TRUE if daylight savings time is in effect
*
* Since: 2.26
**/
gboolean
g_time_zone_is_dst (GTimeZone *tz,
gint interval)
{
g_return_val_if_fail (interval_valid (tz, interval), FALSE);
if (tz->transitions == NULL)
return FALSE;
return interval_isdst (tz, (guint)interval);
}
/**
* g_time_zone_get_identifier:
* @tz: a #GTimeZone
*
* Get the identifier of this #GTimeZone, as passed to g_time_zone_new().
* If the identifier passed at construction time was not recognised, `UTC` will
* be returned. If it was %NULL, the identifier of the local timezone at
* construction time will be returned.
*
* The identifier will be returned in the same format as provided at
* construction time: if provided as a time offset, that will be returned by
* this function.
*
* Returns: identifier for this timezone
* Since: 2.58
*/
const gchar *
g_time_zone_get_identifier (GTimeZone *tz)
{
g_return_val_if_fail (tz != NULL, NULL);
return tz->name;
}
/* Epilogue {{{1 */
/* vim:set foldmethod=marker: */