glib/cmph/brz.c
Colin Walters f4e33baf3b cmph: Remove leftover statement-without-effect
Compiler warning introduced from MSVC patches.
2012-10-30 18:23:09 -04:00

1035 lines
30 KiB
C
Executable File

#include "graph.h"
#include "fch.h"
#include "fch_structs.h"
#include "bmz8.h"
#include "bmz8_structs.h"
#include "brz.h"
#include "cmph_structs.h"
#include "brz_structs.h"
#include "buffer_manager.h"
#include "cmph.h"
#include "hash.h"
#include "bitbool.h"
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include <assert.h>
#include <string.h>
#include <errno.h>
#define MAX_BUCKET_SIZE 255
//#define DEBUG
#include "debug.h"
static int brz_gen_mphf(cmph_config_t *mph);
static cmph_uint32 brz_min_index(cmph_uint32 * vector, cmph_uint32 n);
static void brz_destroy_keys_vd(cmph_uint8 ** keys_vd, cmph_uint32 nkeys);
static char * brz_copy_partial_fch_mphf(brz_config_data_t *brz, fch_data_t * fchf, cmph_uint32 index, cmph_uint32 *buflen);
static char * brz_copy_partial_bmz8_mphf(brz_config_data_t *brz, bmz8_data_t * bmzf, cmph_uint32 index, cmph_uint32 *buflen);
brz_config_data_t *brz_config_new(void)
{
brz_config_data_t *brz = NULL;
brz = (brz_config_data_t *)malloc(sizeof(brz_config_data_t));
brz->algo = CMPH_FCH;
brz->b = 128;
brz->hashfuncs[0] = CMPH_HASH_JENKINS;
brz->hashfuncs[1] = CMPH_HASH_JENKINS;
brz->hashfuncs[2] = CMPH_HASH_JENKINS;
brz->size = NULL;
brz->offset = NULL;
brz->g = NULL;
brz->h1 = NULL;
brz->h2 = NULL;
brz->h0 = NULL;
brz->memory_availability = 1024*1024;
brz->tmp_dir = (cmph_uint8 *)calloc((size_t)10, sizeof(cmph_uint8));
brz->mphf_fd = NULL;
strcpy((char *)(brz->tmp_dir), "/var/tmp/");
assert(brz);
return brz;
}
void brz_config_destroy(cmph_config_t *mph)
{
brz_config_data_t *data = (brz_config_data_t *)mph->data;
free(data->tmp_dir);
DEBUGP("Destroying algorithm dependent data\n");
free(data);
}
void brz_config_set_hashfuncs(cmph_config_t *mph, CMPH_HASH *hashfuncs)
{
brz_config_data_t *brz = (brz_config_data_t *)mph->data;
CMPH_HASH *hashptr = hashfuncs;
cmph_uint32 i = 0;
while(*hashptr != CMPH_HASH_COUNT)
{
if (i >= 3) break; //brz only uses three hash functions
brz->hashfuncs[i] = *hashptr;
++i, ++hashptr;
}
}
void brz_config_set_memory_availability(cmph_config_t *mph, cmph_uint32 memory_availability)
{
brz_config_data_t *brz = (brz_config_data_t *)mph->data;
if(memory_availability > 0) brz->memory_availability = memory_availability*1024*1024;
}
void brz_config_set_tmp_dir(cmph_config_t *mph, cmph_uint8 *tmp_dir)
{
brz_config_data_t *brz = (brz_config_data_t *)mph->data;
if(tmp_dir)
{
size_t len = strlen((char *)tmp_dir);
free(brz->tmp_dir);
if(tmp_dir[len-1] != '/')
{
brz->tmp_dir = (cmph_uint8 *)calloc((size_t)len+2, sizeof(cmph_uint8));
sprintf((char *)(brz->tmp_dir), "%s/", (char *)tmp_dir);
}
else
{
brz->tmp_dir = (cmph_uint8 *)calloc((size_t)len+1, sizeof(cmph_uint8));
sprintf((char *)(brz->tmp_dir), "%s", (char *)tmp_dir);
}
}
}
void brz_config_set_mphf_fd(cmph_config_t *mph, FILE *mphf_fd)
{
brz_config_data_t *brz = (brz_config_data_t *)mph->data;
brz->mphf_fd = mphf_fd;
assert(brz->mphf_fd);
}
void brz_config_set_b(cmph_config_t *mph, cmph_uint32 b)
{
brz_config_data_t *brz = (brz_config_data_t *)mph->data;
if(b <= 64 || b >= 175)
{
b = 128;
}
brz->b = (cmph_uint8)b;
}
void brz_config_set_algo(cmph_config_t *mph, CMPH_ALGO algo)
{
if (algo == CMPH_BMZ8 || algo == CMPH_FCH) // supported algorithms
{
brz_config_data_t *brz = (brz_config_data_t *)mph->data;
brz->algo = algo;
}
}
cmph_t *brz_new(cmph_config_t *mph, double c)
{
cmph_t *mphf = NULL;
brz_data_t *brzf = NULL;
cmph_uint32 i;
cmph_uint32 iterations = 20;
brz_config_data_t *brz;
DEBUGP("c: %f\n", c);
brz = (brz_config_data_t *)mph->data;
switch(brz->algo) // validating restrictions over parameter c.
{
case CMPH_BMZ8:
if (c == 0 || c >= 2.0) c = 1;
break;
case CMPH_FCH:
if (c <= 2.0) c = 2.6;
break;
default:
assert(0);
}
brz->c = c;
brz->m = mph->key_source->nkeys;
DEBUGP("m: %u\n", brz->m);
brz->k = (cmph_uint32)ceil(brz->m/((double)brz->b));
DEBUGP("k: %u\n", brz->k);
brz->size = (cmph_uint8 *) calloc((size_t)brz->k, sizeof(cmph_uint8));
// Clustering the keys by graph id.
if (mph->verbosity)
{
fprintf(stderr, "Partioning the set of keys.\n");
}
while(1)
{
int ok;
DEBUGP("hash function 3\n");
brz->h0 = hash_state_new(brz->hashfuncs[2], brz->k);
DEBUGP("Generating graphs\n");
ok = brz_gen_mphf(mph);
if (!ok)
{
--iterations;
hash_state_destroy(brz->h0);
brz->h0 = NULL;
DEBUGP("%u iterations remaining to create the graphs in a external file\n", iterations);
if (mph->verbosity)
{
fprintf(stderr, "Failure: A graph with more than 255 keys was created - %u iterations remaining\n", iterations);
}
if (iterations == 0) break;
}
else break;
}
if (iterations == 0)
{
DEBUGP("Graphs with more than 255 keys were created in all 20 iterations\n");
free(brz->size);
return NULL;
}
DEBUGP("Graphs generated\n");
brz->offset = (cmph_uint32 *)calloc((size_t)brz->k, sizeof(cmph_uint32));
for (i = 1; i < brz->k; ++i)
{
brz->offset[i] = brz->size[i-1] + brz->offset[i-1];
}
// Generating a mphf
mphf = (cmph_t *)malloc(sizeof(cmph_t));
mphf->algo = mph->algo;
brzf = (brz_data_t *)malloc(sizeof(brz_data_t));
brzf->g = brz->g;
brz->g = NULL; //transfer memory ownership
brzf->h1 = brz->h1;
brz->h1 = NULL; //transfer memory ownership
brzf->h2 = brz->h2;
brz->h2 = NULL; //transfer memory ownership
brzf->h0 = brz->h0;
brz->h0 = NULL; //transfer memory ownership
brzf->size = brz->size;
brz->size = NULL; //transfer memory ownership
brzf->offset = brz->offset;
brz->offset = NULL; //transfer memory ownership
brzf->k = brz->k;
brzf->c = brz->c;
brzf->m = brz->m;
brzf->algo = brz->algo;
mphf->data = brzf;
mphf->size = brz->m;
DEBUGP("Successfully generated minimal perfect hash\n");
if (mph->verbosity)
{
fprintf(stderr, "Successfully generated minimal perfect hash function\n");
}
return mphf;
}
static int brz_gen_mphf(cmph_config_t *mph)
{
cmph_uint32 i, e, error;
brz_config_data_t *brz = (brz_config_data_t *)mph->data;
cmph_uint32 memory_usage = 0;
cmph_uint32 nkeys_in_buffer = 0;
cmph_uint8 *buffer = (cmph_uint8 *)malloc((size_t)brz->memory_availability);
cmph_uint32 *buckets_size = (cmph_uint32 *)calloc((size_t)brz->k, sizeof(cmph_uint32));
cmph_uint32 *keys_index = NULL;
cmph_uint8 **buffer_merge = NULL;
cmph_uint32 *buffer_h0 = NULL;
cmph_uint32 nflushes = 0;
cmph_uint32 h0;
register size_t nbytes;
FILE * tmp_fd = NULL;
buffer_manager_t * buff_manager = NULL;
char *filename = NULL;
char *key = NULL;
cmph_uint32 keylen;
cmph_uint32 cur_bucket = 0;
cmph_uint8 nkeys_vd = 0;
cmph_uint8 ** keys_vd = NULL;
mph->key_source->rewind(mph->key_source->data);
DEBUGP("Generating graphs from %u keys\n", brz->m);
// Partitioning
for (e = 0; e < brz->m; ++e)
{
mph->key_source->read(mph->key_source->data, &key, &keylen);
/* Buffers management */
if (memory_usage + keylen + sizeof(keylen) > brz->memory_availability) // flush buffers
{
cmph_uint32 value, sum, keylen1;
if(mph->verbosity)
{
fprintf(stderr, "Flushing %u\n", nkeys_in_buffer);
}
value = buckets_size[0];
sum = 0;
keylen1 = 0;
buckets_size[0] = 0;
for(i = 1; i < brz->k; i++)
{
if(buckets_size[i] == 0) continue;
sum += value;
value = buckets_size[i];
buckets_size[i] = sum;
}
memory_usage = 0;
keys_index = (cmph_uint32 *)calloc((size_t)nkeys_in_buffer, sizeof(cmph_uint32));
for(i = 0; i < nkeys_in_buffer; i++)
{
memcpy(&keylen1, buffer + memory_usage, sizeof(keylen1));
h0 = hash(brz->h0, (char *)(buffer + memory_usage + sizeof(keylen1)), keylen1) % brz->k;
keys_index[buckets_size[h0]] = memory_usage;
buckets_size[h0]++;
memory_usage += keylen1 + (cmph_uint32)sizeof(keylen1);
}
filename = (char *)calloc(strlen((char *)(brz->tmp_dir)) + 11, sizeof(char));
sprintf(filename, "%s%u.cmph",brz->tmp_dir, nflushes);
tmp_fd = fopen(filename, "wb");
free(filename);
filename = NULL;
for(i = 0; i < nkeys_in_buffer; i++)
{
memcpy(&keylen1, buffer + keys_index[i], sizeof(keylen1));
nbytes = fwrite(buffer + keys_index[i], (size_t)1, keylen1 + sizeof(keylen1), tmp_fd);
}
nkeys_in_buffer = 0;
memory_usage = 0;
memset((void *)buckets_size, 0, brz->k*sizeof(cmph_uint32));
nflushes++;
free(keys_index);
fclose(tmp_fd);
}
memcpy(buffer + memory_usage, &keylen, sizeof(keylen));
memcpy(buffer + memory_usage + sizeof(keylen), key, (size_t)keylen);
memory_usage += keylen + (cmph_uint32)sizeof(keylen);
h0 = hash(brz->h0, key, keylen) % brz->k;
if ((brz->size[h0] == MAX_BUCKET_SIZE) || (brz->algo == CMPH_BMZ8 && ((brz->c >= 1.0) && (cmph_uint8)(brz->c * brz->size[h0]) < brz->size[h0])))
{
free(buffer);
free(buckets_size);
return 0;
}
brz->size[h0] = (cmph_uint8)(brz->size[h0] + 1U);
buckets_size[h0] ++;
nkeys_in_buffer++;
mph->key_source->dispose(mph->key_source->data, key, keylen);
}
if (memory_usage != 0) // flush buffers
{
cmph_uint32 value;
cmph_uint32 sum, keylen1;
if(mph->verbosity)
{
fprintf(stderr, "Flushing %u\n", nkeys_in_buffer);
}
value = buckets_size[0];
sum = 0;
keylen1 = 0;
buckets_size[0] = 0;
for(i = 1; i < brz->k; i++)
{
if(buckets_size[i] == 0) continue;
sum += value;
value = buckets_size[i];
buckets_size[i] = sum;
}
memory_usage = 0;
keys_index = (cmph_uint32 *)calloc((size_t)nkeys_in_buffer, sizeof(cmph_uint32));
for(i = 0; i < nkeys_in_buffer; i++)
{
memcpy(&keylen1, buffer + memory_usage, sizeof(keylen1));
h0 = hash(brz->h0, (char *)(buffer + memory_usage + sizeof(keylen1)), keylen1) % brz->k;
keys_index[buckets_size[h0]] = memory_usage;
buckets_size[h0]++;
memory_usage += keylen1 + (cmph_uint32)sizeof(keylen1);
}
filename = (char *)calloc(strlen((char *)(brz->tmp_dir)) + 11, sizeof(char));
sprintf(filename, "%s%u.cmph",brz->tmp_dir, nflushes);
tmp_fd = fopen(filename, "wb");
free(filename);
filename = NULL;
for(i = 0; i < nkeys_in_buffer; i++)
{
memcpy(&keylen1, buffer + keys_index[i], sizeof(keylen1));
nbytes = fwrite(buffer + keys_index[i], (size_t)1, keylen1 + sizeof(keylen1), tmp_fd);
}
nkeys_in_buffer = 0;
memory_usage = 0;
memset((void *)buckets_size, 0, brz->k*sizeof(cmph_uint32));
nflushes++;
free(keys_index);
fclose(tmp_fd);
}
free(buffer);
free(buckets_size);
if(nflushes > 1024) return 0; // Too many files generated.
// mphf generation
if(mph->verbosity)
{
fprintf(stderr, "\nMPHF generation \n");
}
/* Starting to dump to disk the resultant MPHF: __cmph_dump function */
nbytes = fwrite(cmph_names[CMPH_BRZ], (size_t)(strlen(cmph_names[CMPH_BRZ]) + 1), (size_t)1, brz->mphf_fd);
nbytes = fwrite(&(brz->m), sizeof(brz->m), (size_t)1, brz->mphf_fd);
nbytes = fwrite(&(brz->c), sizeof(double), (size_t)1, brz->mphf_fd);
nbytes = fwrite(&(brz->algo), sizeof(brz->algo), (size_t)1, brz->mphf_fd);
nbytes = fwrite(&(brz->k), sizeof(cmph_uint32), (size_t)1, brz->mphf_fd); // number of MPHFs
nbytes = fwrite(brz->size, sizeof(cmph_uint8)*(brz->k), (size_t)1, brz->mphf_fd);
if (nbytes == 0 && ferror(brz->mphf_fd)) {
fprintf(stderr, "ERROR: %s\n", strerror(errno));
return 0;
}
//tmp_fds = (FILE **)calloc(nflushes, sizeof(FILE *));
buff_manager = buffer_manager_new(brz->memory_availability, nflushes);
buffer_merge = (cmph_uint8 **)calloc((size_t)nflushes, sizeof(cmph_uint8 *));
buffer_h0 = (cmph_uint32 *)calloc((size_t)nflushes, sizeof(cmph_uint32));
memory_usage = 0;
for(i = 0; i < nflushes; i++)
{
filename = (char *)calloc(strlen((char *)(brz->tmp_dir)) + 11, sizeof(char));
sprintf(filename, "%s%u.cmph",brz->tmp_dir, i);
buffer_manager_open(buff_manager, i, filename);
free(filename);
filename = NULL;
key = (char *)buffer_manager_read_key(buff_manager, i, &keylen);
h0 = hash(brz->h0, key+sizeof(keylen), keylen) % brz->k;
buffer_h0[i] = h0;
buffer_merge[i] = (cmph_uint8 *)key;
key = NULL; //transfer memory ownership
}
e = 0;
keys_vd = (cmph_uint8 **)calloc((size_t)MAX_BUCKET_SIZE, sizeof(cmph_uint8 *));
nkeys_vd = 0;
error = 0;
while(e < brz->m)
{
i = brz_min_index(buffer_h0, nflushes);
cur_bucket = buffer_h0[i];
key = (char *)buffer_manager_read_key(buff_manager, i, &keylen);
if(key)
{
while(key)
{
//keylen = strlen(key);
h0 = hash(brz->h0, key+sizeof(keylen), keylen) % brz->k;
if (h0 != buffer_h0[i]) break;
keys_vd[nkeys_vd++] = (cmph_uint8 *)key;
key = NULL; //transfer memory ownership
e++;
key = (char *)buffer_manager_read_key(buff_manager, i, &keylen);
}
if (key)
{
assert(nkeys_vd < brz->size[cur_bucket]);
keys_vd[nkeys_vd++] = buffer_merge[i];
buffer_merge[i] = NULL; //transfer memory ownership
e++;
buffer_h0[i] = h0;
buffer_merge[i] = (cmph_uint8 *)key;
}
}
if(!key)
{
assert(nkeys_vd < brz->size[cur_bucket]);
keys_vd[nkeys_vd++] = buffer_merge[i];
buffer_merge[i] = NULL; //transfer memory ownership
e++;
buffer_h0[i] = UINT_MAX;
}
if(nkeys_vd == brz->size[cur_bucket]) // Generating mphf for each bucket.
{
cmph_io_adapter_t *source = NULL;
cmph_config_t *config = NULL;
cmph_t *mphf_tmp = NULL;
char *bufmphf = NULL;
cmph_uint32 buflenmphf = 0;
// Source of keys
source = cmph_io_byte_vector_adapter(keys_vd, (cmph_uint32)nkeys_vd);
config = cmph_config_new(source);
cmph_config_set_algo(config, brz->algo);
//cmph_config_set_algo(config, CMPH_BMZ8);
cmph_config_set_graphsize(config, brz->c);
mphf_tmp = cmph_new(config);
if (mphf_tmp == NULL)
{
if(mph->verbosity) fprintf(stderr, "ERROR: Can't generate MPHF for bucket %u out of %u\n", cur_bucket + 1, brz->k);
error = 1;
cmph_config_destroy(config);
brz_destroy_keys_vd(keys_vd, nkeys_vd);
cmph_io_byte_vector_adapter_destroy(source);
break;
}
if(mph->verbosity)
{
if (cur_bucket % 1000 == 0)
{
fprintf(stderr, "MPHF for bucket %u out of %u was generated.\n", cur_bucket + 1, brz->k);
}
}
switch(brz->algo)
{
case CMPH_FCH:
{
fch_data_t * fchf = NULL;
fchf = (fch_data_t *)mphf_tmp->data;
bufmphf = brz_copy_partial_fch_mphf(brz, fchf, cur_bucket, &buflenmphf);
}
break;
case CMPH_BMZ8:
{
bmz8_data_t * bmzf = NULL;
bmzf = (bmz8_data_t *)mphf_tmp->data;
bufmphf = brz_copy_partial_bmz8_mphf(brz, bmzf, cur_bucket, &buflenmphf);
}
break;
default: assert(0);
}
nbytes = fwrite(bufmphf, (size_t)buflenmphf, (size_t)1, brz->mphf_fd);
free(bufmphf);
bufmphf = NULL;
cmph_config_destroy(config);
brz_destroy_keys_vd(keys_vd, nkeys_vd);
cmph_destroy(mphf_tmp);
cmph_io_byte_vector_adapter_destroy(source);
nkeys_vd = 0;
}
}
buffer_manager_destroy(buff_manager);
free(keys_vd);
free(buffer_merge);
free(buffer_h0);
if (error) return 0;
return 1;
}
static cmph_uint32 brz_min_index(cmph_uint32 * vector, cmph_uint32 n)
{
cmph_uint32 i, min_index = 0;
for(i = 1; i < n; i++)
{
if(vector[i] < vector[min_index]) min_index = i;
}
return min_index;
}
static void brz_destroy_keys_vd(cmph_uint8 ** keys_vd, cmph_uint32 nkeys)
{
cmph_uint8 i;
for(i = 0; i < nkeys; i++) { free(keys_vd[i]); keys_vd[i] = NULL;}
}
static char * brz_copy_partial_fch_mphf(brz_config_data_t *brz, fch_data_t * fchf, cmph_uint32 index, cmph_uint32 *buflen)
{
cmph_uint32 i = 0;
cmph_uint32 buflenh1 = 0;
cmph_uint32 buflenh2 = 0;
char * bufh1 = NULL;
char * bufh2 = NULL;
char * buf = NULL;
cmph_uint32 n = fchf->b;//brz->size[index];
hash_state_dump(fchf->h1, &bufh1, &buflenh1);
hash_state_dump(fchf->h2, &bufh2, &buflenh2);
*buflen = buflenh1 + buflenh2 + n + 2U * (cmph_uint32)sizeof(cmph_uint32);
buf = (char *)malloc((size_t)(*buflen));
memcpy(buf, &buflenh1, sizeof(cmph_uint32));
memcpy(buf+sizeof(cmph_uint32), bufh1, (size_t)buflenh1);
memcpy(buf+sizeof(cmph_uint32)+buflenh1, &buflenh2, sizeof(cmph_uint32));
memcpy(buf+2*sizeof(cmph_uint32)+buflenh1, bufh2, (size_t)buflenh2);
for (i = 0; i < n; i++) memcpy(buf+2*sizeof(cmph_uint32)+buflenh1+buflenh2+i,(fchf->g + i), (size_t)1);
free(bufh1);
free(bufh2);
return buf;
}
static char * brz_copy_partial_bmz8_mphf(brz_config_data_t *brz, bmz8_data_t * bmzf, cmph_uint32 index, cmph_uint32 *buflen)
{
cmph_uint32 buflenh1 = 0;
cmph_uint32 buflenh2 = 0;
char * bufh1 = NULL;
char * bufh2 = NULL;
char * buf = NULL;
cmph_uint32 n = (cmph_uint32)ceil(brz->c * brz->size[index]);
hash_state_dump(bmzf->hashes[0], &bufh1, &buflenh1);
hash_state_dump(bmzf->hashes[1], &bufh2, &buflenh2);
*buflen = buflenh1 + buflenh2 + n + 2U * (cmph_uint32)sizeof(cmph_uint32);
buf = (char *)malloc((size_t)(*buflen));
memcpy(buf, &buflenh1, sizeof(cmph_uint32));
memcpy(buf+sizeof(cmph_uint32), bufh1, (size_t)buflenh1);
memcpy(buf+sizeof(cmph_uint32)+buflenh1, &buflenh2, sizeof(cmph_uint32));
memcpy(buf+2*sizeof(cmph_uint32)+buflenh1, bufh2, (size_t)buflenh2);
memcpy(buf+2*sizeof(cmph_uint32)+buflenh1+buflenh2,bmzf->g, (size_t)n);
free(bufh1);
free(bufh2);
return buf;
}
int brz_dump(cmph_t *mphf, FILE *fd)
{
brz_data_t *data = (brz_data_t *)mphf->data;
char *buf = NULL;
cmph_uint32 buflen;
register size_t nbytes;
DEBUGP("Dumping brzf\n");
// The initial part of the MPHF have already been dumped to disk during construction
// Dumping h0
hash_state_dump(data->h0, &buf, &buflen);
DEBUGP("Dumping hash state with %u bytes to disk\n", buflen);
nbytes = fwrite(&buflen, sizeof(cmph_uint32), (size_t)1, fd);
nbytes = fwrite(buf, (size_t)buflen, (size_t)1, fd);
free(buf);
// Dumping m and the vector offset.
nbytes = fwrite(&(data->m), sizeof(cmph_uint32), (size_t)1, fd);
nbytes = fwrite(data->offset, sizeof(cmph_uint32)*(data->k), (size_t)1, fd);
if (nbytes == 0 && ferror(fd)) {
fprintf(stderr, "ERROR: %s\n", strerror(errno));
return 0;
}
return 1;
}
void brz_load(FILE *f, cmph_t *mphf)
{
char *buf = NULL;
cmph_uint32 buflen;
register size_t nbytes;
cmph_uint32 i, n;
brz_data_t *brz = (brz_data_t *)malloc(sizeof(brz_data_t));
DEBUGP("Loading brz mphf\n");
mphf->data = brz;
nbytes = fread(&(brz->c), sizeof(double), (size_t)1, f);
nbytes = fread(&(brz->algo), sizeof(brz->algo), (size_t)1, f); // Reading algo.
nbytes = fread(&(brz->k), sizeof(cmph_uint32), (size_t)1, f);
brz->size = (cmph_uint8 *) malloc(sizeof(cmph_uint8)*brz->k);
nbytes = fread(brz->size, sizeof(cmph_uint8)*(brz->k), (size_t)1, f);
brz->h1 = (hash_state_t **)malloc(sizeof(hash_state_t *)*brz->k);
brz->h2 = (hash_state_t **)malloc(sizeof(hash_state_t *)*brz->k);
brz->g = (cmph_uint8 **) calloc((size_t)brz->k, sizeof(cmph_uint8 *));
DEBUGP("Reading c = %f k = %u algo = %u \n", brz->c, brz->k, brz->algo);
//loading h_i1, h_i2 and g_i.
for(i = 0; i < brz->k; i++)
{
// h1
nbytes = fread(&buflen, sizeof(cmph_uint32), (size_t)1, f);
DEBUGP("Hash state 1 has %u bytes\n", buflen);
buf = (char *)malloc((size_t)buflen);
nbytes = fread(buf, (size_t)buflen, (size_t)1, f);
brz->h1[i] = hash_state_load(buf, buflen);
free(buf);
//h2
nbytes = fread(&buflen, sizeof(cmph_uint32), (size_t)1, f);
DEBUGP("Hash state 2 has %u bytes\n", buflen);
buf = (char *)malloc((size_t)buflen);
nbytes = fread(buf, (size_t)buflen, (size_t)1, f);
brz->h2[i] = hash_state_load(buf, buflen);
free(buf);
switch(brz->algo)
{
case CMPH_FCH:
n = fch_calc_b(brz->c, brz->size[i]);
break;
case CMPH_BMZ8:
n = (cmph_uint32)ceil(brz->c * brz->size[i]);
break;
default: assert(0);
}
DEBUGP("g_i has %u bytes\n", n);
brz->g[i] = (cmph_uint8 *)calloc((size_t)n, sizeof(cmph_uint8));
nbytes = fread(brz->g[i], sizeof(cmph_uint8)*n, (size_t)1, f);
}
//loading h0
nbytes = fread(&buflen, sizeof(cmph_uint32), (size_t)1, f);
DEBUGP("Hash state has %u bytes\n", buflen);
buf = (char *)malloc((size_t)buflen);
nbytes = fread(buf, (size_t)buflen, (size_t)1, f);
brz->h0 = hash_state_load(buf, buflen);
free(buf);
//loading c, m, and the vector offset.
nbytes = fread(&(brz->m), sizeof(cmph_uint32), (size_t)1, f);
brz->offset = (cmph_uint32 *)malloc(sizeof(cmph_uint32)*brz->k);
nbytes = fread(brz->offset, sizeof(cmph_uint32)*(brz->k), (size_t)1, f);
if (nbytes == 0 && ferror(f)) {
fprintf(stderr, "ERROR: %s\n", strerror(errno));
}
return;
}
static cmph_uint32 brz_bmz8_search(brz_data_t *brz, const char *key, cmph_uint32 keylen, cmph_uint32 * fingerprint)
{
register cmph_uint32 h0;
register cmph_uint32 m, n, h1, h2;
register cmph_uint8 mphf_bucket;
hash_vector(brz->h0, key, keylen, fingerprint);
h0 = fingerprint[2] % brz->k;
m = brz->size[h0];
n = (cmph_uint32)ceil(brz->c * m);
h1 = hash(brz->h1[h0], key, keylen) % n;
h2 = hash(brz->h2[h0], key, keylen) % n;
if (h1 == h2 && ++h2 >= n) h2 = 0;
mphf_bucket = (cmph_uint8)(brz->g[h0][h1] + brz->g[h0][h2]);
DEBUGP("key: %s h1: %u h2: %u h0: %u\n", key, h1, h2, h0);
DEBUGP("key: %s g[h1]: %u g[h2]: %u offset[h0]: %u edges: %u\n", key, brz->g[h0][h1], brz->g[h0][h2], brz->offset[h0], brz->m);
DEBUGP("Address: %u\n", mphf_bucket + brz->offset[h0]);
return (mphf_bucket + brz->offset[h0]);
}
static cmph_uint32 brz_fch_search(brz_data_t *brz, const char *key, cmph_uint32 keylen, cmph_uint32 * fingerprint)
{
register cmph_uint32 h0;
register cmph_uint32 m, b, h1, h2;
register double p1, p2;
register cmph_uint8 mphf_bucket;
hash_vector(brz->h0, key, keylen, fingerprint);
h0 = fingerprint[2] % brz->k;
m = brz->size[h0];
b = fch_calc_b(brz->c, m);
p1 = fch_calc_p1(m);
p2 = fch_calc_p2(b);
h1 = hash(brz->h1[h0], key, keylen) % m;
h2 = hash(brz->h2[h0], key, keylen) % m;
mphf_bucket = 0;
h1 = mixh10h11h12(b, p1, p2, h1);
mphf_bucket = (cmph_uint8)((h2 + brz->g[h0][h1]) % m);
return (mphf_bucket + brz->offset[h0]);
}
cmph_uint32 brz_search(cmph_t *mphf, const char *key, cmph_uint32 keylen)
{
brz_data_t *brz = mphf->data;
cmph_uint32 fingerprint[3];
switch(brz->algo)
{
case CMPH_FCH:
return brz_fch_search(brz, key, keylen, fingerprint);
case CMPH_BMZ8:
return brz_bmz8_search(brz, key, keylen, fingerprint);
default: assert(0);
}
return 0;
}
void brz_destroy(cmph_t *mphf)
{
cmph_uint32 i;
brz_data_t *data = (brz_data_t *)mphf->data;
if(data->g)
{
for(i = 0; i < data->k; i++)
{
free(data->g[i]);
hash_state_destroy(data->h1[i]);
hash_state_destroy(data->h2[i]);
}
free(data->g);
free(data->h1);
free(data->h2);
}
hash_state_destroy(data->h0);
free(data->size);
free(data->offset);
free(data);
free(mphf);
}
/** \fn void brz_pack(cmph_t *mphf, void *packed_mphf);
* \brief Support the ability to pack a perfect hash function into a preallocated contiguous memory space pointed by packed_mphf.
* \param mphf pointer to the resulting mphf
* \param packed_mphf pointer to the contiguous memory area used to store the resulting mphf. The size of packed_mphf must be at least cmph_packed_size()
*/
void brz_pack(cmph_t *mphf, void *packed_mphf)
{
brz_data_t *data = (brz_data_t *)mphf->data;
cmph_uint8 * ptr = packed_mphf;
cmph_uint32 i,n;
CMPH_HASH h0_type, h1_type, h2_type;
#if defined (__ia64) || defined (__x86_64__)
cmph_uint64 * g_is_ptr;
#else
cmph_uint32 * g_is_ptr;
#endif
cmph_uint8 * g_i;
// packing internal algo type
memcpy(ptr, &(data->algo), sizeof(data->algo));
ptr += sizeof(data->algo);
// packing h0 type
h0_type = hash_get_type(data->h0);
memcpy(ptr, &h0_type, sizeof(h0_type));
ptr += sizeof(h0_type);
// packing h0
hash_state_pack(data->h0, ptr);
ptr += hash_state_packed_size(h0_type);
// packing k
memcpy(ptr, &(data->k), sizeof(data->k));
ptr += sizeof(data->k);
// packing c
*((cmph_uint64 *)ptr) = (cmph_uint64)data->c;
ptr += sizeof(data->c);
// packing h1 type
h1_type = hash_get_type(data->h1[0]);
memcpy(ptr, &h1_type, sizeof(h1_type));
ptr += sizeof(h1_type);
// packing h2 type
h2_type = hash_get_type(data->h2[0]);
memcpy(ptr, &h2_type, sizeof(h2_type));
ptr += sizeof(h2_type);
// packing size
memcpy(ptr, data->size, sizeof(cmph_uint8)*data->k);
ptr += data->k;
// packing offset
memcpy(ptr, data->offset, sizeof(cmph_uint32)*data->k);
ptr += sizeof(cmph_uint32)*data->k;
#if defined (__ia64) || defined (__x86_64__)
g_is_ptr = (cmph_uint64 *)ptr;
#else
g_is_ptr = (cmph_uint32 *)ptr;
#endif
g_i = (cmph_uint8 *) (g_is_ptr + data->k);
for(i = 0; i < data->k; i++)
{
#if defined (__ia64) || defined (__x86_64__)
*g_is_ptr++ = (cmph_uint64)g_i;
#else
*g_is_ptr++ = (cmph_uint32)g_i;
#endif
// packing h1[i]
hash_state_pack(data->h1[i], g_i);
g_i += hash_state_packed_size(h1_type);
// packing h2[i]
hash_state_pack(data->h2[i], g_i);
g_i += hash_state_packed_size(h2_type);
// packing g_i
switch(data->algo)
{
case CMPH_FCH:
n = fch_calc_b(data->c, data->size[i]);
break;
case CMPH_BMZ8:
n = (cmph_uint32)ceil(data->c * data->size[i]);
break;
default: assert(0);
}
memcpy(g_i, data->g[i], sizeof(cmph_uint8)*n);
g_i += n;
}
}
/** \fn cmph_uint32 brz_packed_size(cmph_t *mphf);
* \brief Return the amount of space needed to pack mphf.
* \param mphf pointer to a mphf
* \return the size of the packed function or zero for failures
*/
cmph_uint32 brz_packed_size(cmph_t *mphf)
{
cmph_uint32 i;
cmph_uint32 size = 0;
brz_data_t *data = (brz_data_t *)mphf->data;
CMPH_HASH h0_type = hash_get_type(data->h0);
CMPH_HASH h1_type = hash_get_type(data->h1[0]);
CMPH_HASH h2_type = hash_get_type(data->h2[0]);
cmph_uint32 n;
size = (cmph_uint32)(2*sizeof(CMPH_ALGO) + 3*sizeof(CMPH_HASH) + hash_state_packed_size(h0_type) + sizeof(cmph_uint32) +
sizeof(double) + sizeof(cmph_uint8)*data->k + sizeof(cmph_uint32)*data->k);
// pointers to g_is
#if defined (__ia64) || defined (__x86_64__)
size += (cmph_uint32) sizeof(cmph_uint64)*data->k;
#else
size += (cmph_uint32) sizeof(cmph_uint32)*data->k;
#endif
size += hash_state_packed_size(h1_type) * data->k;
size += hash_state_packed_size(h2_type) * data->k;
n = 0;
for(i = 0; i < data->k; i++)
{
switch(data->algo)
{
case CMPH_FCH:
n = fch_calc_b(data->c, data->size[i]);
break;
case CMPH_BMZ8:
n = (cmph_uint32)ceil(data->c * data->size[i]);
break;
default: assert(0);
}
size += n;
}
return size;
}
static cmph_uint32 brz_bmz8_search_packed(cmph_uint32 *packed_mphf, const char *key, cmph_uint32 keylen, cmph_uint32 * fingerprint)
{
register CMPH_HASH h0_type = *packed_mphf++;
register cmph_uint32 *h0_ptr = packed_mphf;
register cmph_uint32 k, h0, m, n, h1, h2;
register cmph_uint32 *offset;
register double c;
register CMPH_HASH h1_type, h2_type;
register cmph_uint8 * size;
#if defined (__ia64) || defined (__x86_64__)
register cmph_uint64 * g_is_ptr;
#else
register cmph_uint32 * g_is_ptr;
#endif
register cmph_uint8 *h1_ptr, *h2_ptr, *g;
register cmph_uint8 mphf_bucket;
packed_mphf = (cmph_uint32 *)(((cmph_uint8 *)packed_mphf) + hash_state_packed_size(h0_type));
k = *packed_mphf++;
c = (double)(*((cmph_uint64*)packed_mphf));
packed_mphf += 2;
h1_type = *packed_mphf++;
h2_type = *packed_mphf++;
size = (cmph_uint8 *) packed_mphf;
packed_mphf = (cmph_uint32 *)(size + k);
offset = packed_mphf;
packed_mphf += k;
hash_vector_packed(h0_ptr, h0_type, key, keylen, fingerprint);
h0 = fingerprint[2] % k;
m = size[h0];
n = (cmph_uint32)ceil(c * m);
#if defined (__ia64) || defined (__x86_64__)
g_is_ptr = (cmph_uint64 *)packed_mphf;
#else
g_is_ptr = packed_mphf;
#endif
h1_ptr = (cmph_uint8 *) g_is_ptr[h0];
h2_ptr = h1_ptr + hash_state_packed_size(h1_type);
g = h2_ptr + hash_state_packed_size(h2_type);
h1 = hash_packed(h1_ptr, h1_type, key, keylen) % n;
h2 = hash_packed(h2_ptr, h2_type, key, keylen) % n;
if (h1 == h2 && ++h2 >= n) h2 = 0;
mphf_bucket = (cmph_uint8)(g[h1] + g[h2]);
DEBUGP("key: %s h1: %u h2: %u h0: %u\n", key, h1, h2, h0);
DEBUGP("Address: %u\n", mphf_bucket + offset[h0]);
return (mphf_bucket + offset[h0]);
}
static cmph_uint32 brz_fch_search_packed(cmph_uint32 *packed_mphf, const char *key, cmph_uint32 keylen, cmph_uint32 * fingerprint)
{
register CMPH_HASH h0_type = *packed_mphf++;
register cmph_uint32 *h0_ptr = packed_mphf;
register cmph_uint32 k, h0, m, b, h1, h2;
register double c, p1, p2;
register CMPH_HASH h1_type, h2_type;
register cmph_uint8 *size, *h1_ptr, *h2_ptr, *g;
register cmph_uint32 *offset;
#if defined (__ia64) || defined (__x86_64__)
register cmph_uint64 * g_is_ptr;
#else
register cmph_uint32 * g_is_ptr;
#endif
register cmph_uint8 mphf_bucket;
packed_mphf = (cmph_uint32 *)(((cmph_uint8 *)packed_mphf) + hash_state_packed_size(h0_type));
k = *packed_mphf++;
c = (double)(*((cmph_uint64*)packed_mphf));
packed_mphf += 2;
h1_type = *packed_mphf++;
h2_type = *packed_mphf++;
size = (cmph_uint8 *) packed_mphf;
packed_mphf = (cmph_uint32 *)(size + k);
offset = packed_mphf;
packed_mphf += k;
hash_vector_packed(h0_ptr, h0_type, key, keylen, fingerprint);
h0 = fingerprint[2] % k;
m = size[h0];
b = fch_calc_b(c, m);
p1 = fch_calc_p1(m);
p2 = fch_calc_p2(b);
#if defined (__ia64) || defined (__x86_64__)
g_is_ptr = (cmph_uint64 *)packed_mphf;
#else
g_is_ptr = packed_mphf;
#endif
h1_ptr = (cmph_uint8 *) g_is_ptr[h0];
h2_ptr = h1_ptr + hash_state_packed_size(h1_type);
g = h2_ptr + hash_state_packed_size(h2_type);
h1 = hash_packed(h1_ptr, h1_type, key, keylen) % m;
h2 = hash_packed(h2_ptr, h2_type, key, keylen) % m;
mphf_bucket = 0;
h1 = mixh10h11h12(b, p1, p2, h1);
mphf_bucket = (cmph_uint8)((h2 + g[h1]) % m);
return (mphf_bucket + offset[h0]);
}
/** cmph_uint32 brz_search(void *packed_mphf, const char *key, cmph_uint32 keylen);
* \brief Use the packed mphf to do a search.
* \param packed_mphf pointer to the packed mphf
* \param key key to be hashed
* \param keylen key legth in bytes
* \return The mphf value
*/
cmph_uint32 brz_search_packed(void *packed_mphf, const char *key, cmph_uint32 keylen)
{
register cmph_uint32 *ptr = (cmph_uint32 *)packed_mphf;
register CMPH_ALGO algo = *ptr++;
cmph_uint32 fingerprint[3];
switch(algo)
{
case CMPH_FCH:
return brz_fch_search_packed(ptr, key, keylen, fingerprint);
case CMPH_BMZ8:
return brz_bmz8_search_packed(ptr, key, keylen, fingerprint);
default: assert(0);
}
}