mirror of
https://gitlab.gnome.org/GNOME/glib.git
synced 2024-12-28 16:36:14 +01:00
01c02ac08b
The timer tests expect that a small value for sleep does not result in no sleep at all. Round up to the next millisecond to bring it more in line with other platforms. This fixes the glib/timer tests. This makes the 'threadtests' time out since that uses small usleeps a lot and until now didn't wait at all, but now always waits a msec. Reduce the amount of tests done on Windows to get the runtime down to something reasonable again. https://bugzilla.gnome.org/show_bug.cgi?id=795569
563 lines
14 KiB
C
563 lines
14 KiB
C
/* GLIB - Library of useful routines for C programming
|
|
* Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/*
|
|
* Modified by the GLib Team and others 1997-2000. See the AUTHORS
|
|
* file for a list of people on the GLib Team. See the ChangeLog
|
|
* files for a list of changes. These files are distributed with
|
|
* GLib at ftp://ftp.gtk.org/pub/gtk/.
|
|
*/
|
|
|
|
/*
|
|
* MT safe
|
|
*/
|
|
|
|
#include "config.h"
|
|
#include "glibconfig.h"
|
|
|
|
#include <stdlib.h>
|
|
|
|
#ifdef G_OS_UNIX
|
|
#include <unistd.h>
|
|
#endif /* G_OS_UNIX */
|
|
|
|
#ifdef HAVE_SYS_TIME_H
|
|
#include <sys/time.h>
|
|
#endif
|
|
#include <time.h>
|
|
#ifndef G_OS_WIN32
|
|
#include <errno.h>
|
|
#endif /* G_OS_WIN32 */
|
|
|
|
#ifdef G_OS_WIN32
|
|
#include <windows.h>
|
|
#endif /* G_OS_WIN32 */
|
|
|
|
#include "gtimer.h"
|
|
|
|
#include "gmem.h"
|
|
#include "gstrfuncs.h"
|
|
#include "gtestutils.h"
|
|
#include "gmain.h"
|
|
|
|
/**
|
|
* SECTION:timers
|
|
* @title: Timers
|
|
* @short_description: keep track of elapsed time
|
|
*
|
|
* #GTimer records a start time, and counts microseconds elapsed since
|
|
* that time. This is done somewhat differently on different platforms,
|
|
* and can be tricky to get exactly right, so #GTimer provides a
|
|
* portable/convenient interface.
|
|
**/
|
|
|
|
/**
|
|
* GTimer:
|
|
*
|
|
* Opaque datatype that records a start time.
|
|
**/
|
|
struct _GTimer
|
|
{
|
|
guint64 start;
|
|
guint64 end;
|
|
|
|
guint active : 1;
|
|
};
|
|
|
|
/**
|
|
* g_timer_new:
|
|
*
|
|
* Creates a new timer, and starts timing (i.e. g_timer_start() is
|
|
* implicitly called for you).
|
|
*
|
|
* Returns: a new #GTimer.
|
|
**/
|
|
GTimer*
|
|
g_timer_new (void)
|
|
{
|
|
GTimer *timer;
|
|
|
|
timer = g_new (GTimer, 1);
|
|
timer->active = TRUE;
|
|
|
|
timer->start = g_get_monotonic_time ();
|
|
|
|
return timer;
|
|
}
|
|
|
|
/**
|
|
* g_timer_destroy:
|
|
* @timer: a #GTimer to destroy.
|
|
*
|
|
* Destroys a timer, freeing associated resources.
|
|
**/
|
|
void
|
|
g_timer_destroy (GTimer *timer)
|
|
{
|
|
g_return_if_fail (timer != NULL);
|
|
|
|
g_free (timer);
|
|
}
|
|
|
|
/**
|
|
* g_timer_start:
|
|
* @timer: a #GTimer.
|
|
*
|
|
* Marks a start time, so that future calls to g_timer_elapsed() will
|
|
* report the time since g_timer_start() was called. g_timer_new()
|
|
* automatically marks the start time, so no need to call
|
|
* g_timer_start() immediately after creating the timer.
|
|
**/
|
|
void
|
|
g_timer_start (GTimer *timer)
|
|
{
|
|
g_return_if_fail (timer != NULL);
|
|
|
|
timer->active = TRUE;
|
|
|
|
timer->start = g_get_monotonic_time ();
|
|
}
|
|
|
|
/**
|
|
* g_timer_stop:
|
|
* @timer: a #GTimer.
|
|
*
|
|
* Marks an end time, so calls to g_timer_elapsed() will return the
|
|
* difference between this end time and the start time.
|
|
**/
|
|
void
|
|
g_timer_stop (GTimer *timer)
|
|
{
|
|
g_return_if_fail (timer != NULL);
|
|
|
|
timer->active = FALSE;
|
|
|
|
timer->end = g_get_monotonic_time ();
|
|
}
|
|
|
|
/**
|
|
* g_timer_reset:
|
|
* @timer: a #GTimer.
|
|
*
|
|
* This function is useless; it's fine to call g_timer_start() on an
|
|
* already-started timer to reset the start time, so g_timer_reset()
|
|
* serves no purpose.
|
|
**/
|
|
void
|
|
g_timer_reset (GTimer *timer)
|
|
{
|
|
g_return_if_fail (timer != NULL);
|
|
|
|
timer->start = g_get_monotonic_time ();
|
|
}
|
|
|
|
/**
|
|
* g_timer_continue:
|
|
* @timer: a #GTimer.
|
|
*
|
|
* Resumes a timer that has previously been stopped with
|
|
* g_timer_stop(). g_timer_stop() must be called before using this
|
|
* function.
|
|
*
|
|
* Since: 2.4
|
|
**/
|
|
void
|
|
g_timer_continue (GTimer *timer)
|
|
{
|
|
guint64 elapsed;
|
|
|
|
g_return_if_fail (timer != NULL);
|
|
g_return_if_fail (timer->active == FALSE);
|
|
|
|
/* Get elapsed time and reset timer start time
|
|
* to the current time minus the previously
|
|
* elapsed interval.
|
|
*/
|
|
|
|
elapsed = timer->end - timer->start;
|
|
|
|
timer->start = g_get_monotonic_time ();
|
|
|
|
timer->start -= elapsed;
|
|
|
|
timer->active = TRUE;
|
|
}
|
|
|
|
/**
|
|
* g_timer_elapsed:
|
|
* @timer: a #GTimer.
|
|
* @microseconds: return location for the fractional part of seconds
|
|
* elapsed, in microseconds (that is, the total number
|
|
* of microseconds elapsed, modulo 1000000), or %NULL
|
|
*
|
|
* If @timer has been started but not stopped, obtains the time since
|
|
* the timer was started. If @timer has been stopped, obtains the
|
|
* elapsed time between the time it was started and the time it was
|
|
* stopped. The return value is the number of seconds elapsed,
|
|
* including any fractional part. The @microseconds out parameter is
|
|
* essentially useless.
|
|
*
|
|
* Returns: seconds elapsed as a floating point value, including any
|
|
* fractional part.
|
|
**/
|
|
gdouble
|
|
g_timer_elapsed (GTimer *timer,
|
|
gulong *microseconds)
|
|
{
|
|
gdouble total;
|
|
gint64 elapsed;
|
|
|
|
g_return_val_if_fail (timer != NULL, 0);
|
|
|
|
if (timer->active)
|
|
timer->end = g_get_monotonic_time ();
|
|
|
|
elapsed = timer->end - timer->start;
|
|
|
|
total = elapsed / 1e6;
|
|
|
|
if (microseconds)
|
|
*microseconds = elapsed % 1000000;
|
|
|
|
return total;
|
|
}
|
|
|
|
/**
|
|
* g_usleep:
|
|
* @microseconds: number of microseconds to pause
|
|
*
|
|
* Pauses the current thread for the given number of microseconds.
|
|
*
|
|
* There are 1 million microseconds per second (represented by the
|
|
* #G_USEC_PER_SEC macro). g_usleep() may have limited precision,
|
|
* depending on hardware and operating system; don't rely on the exact
|
|
* length of the sleep.
|
|
*/
|
|
void
|
|
g_usleep (gulong microseconds)
|
|
{
|
|
#ifdef G_OS_WIN32
|
|
/* Round up to the next millisecond */
|
|
Sleep (microseconds ? (1 + (microseconds - 1) / 1000) : 0);
|
|
#else
|
|
struct timespec request, remaining;
|
|
request.tv_sec = microseconds / G_USEC_PER_SEC;
|
|
request.tv_nsec = 1000 * (microseconds % G_USEC_PER_SEC);
|
|
while (nanosleep (&request, &remaining) == -1 && errno == EINTR)
|
|
request = remaining;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* g_time_val_add:
|
|
* @time_: a #GTimeVal
|
|
* @microseconds: number of microseconds to add to @time
|
|
*
|
|
* Adds the given number of microseconds to @time_. @microseconds can
|
|
* also be negative to decrease the value of @time_.
|
|
**/
|
|
void
|
|
g_time_val_add (GTimeVal *time_, glong microseconds)
|
|
{
|
|
g_return_if_fail (time_->tv_usec >= 0 && time_->tv_usec < G_USEC_PER_SEC);
|
|
|
|
if (microseconds >= 0)
|
|
{
|
|
time_->tv_usec += microseconds % G_USEC_PER_SEC;
|
|
time_->tv_sec += microseconds / G_USEC_PER_SEC;
|
|
if (time_->tv_usec >= G_USEC_PER_SEC)
|
|
{
|
|
time_->tv_usec -= G_USEC_PER_SEC;
|
|
time_->tv_sec++;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
microseconds *= -1;
|
|
time_->tv_usec -= microseconds % G_USEC_PER_SEC;
|
|
time_->tv_sec -= microseconds / G_USEC_PER_SEC;
|
|
if (time_->tv_usec < 0)
|
|
{
|
|
time_->tv_usec += G_USEC_PER_SEC;
|
|
time_->tv_sec--;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* converts a broken down date representation, relative to UTC,
|
|
* to a timestamp; it uses timegm() if it's available.
|
|
*/
|
|
static time_t
|
|
mktime_utc (struct tm *tm)
|
|
{
|
|
time_t retval;
|
|
|
|
#ifndef HAVE_TIMEGM
|
|
static const gint days_before[] =
|
|
{
|
|
0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
|
|
};
|
|
#endif
|
|
|
|
#ifndef HAVE_TIMEGM
|
|
if (tm->tm_mon < 0 || tm->tm_mon > 11)
|
|
return (time_t) -1;
|
|
|
|
retval = (tm->tm_year - 70) * 365;
|
|
retval += (tm->tm_year - 68) / 4;
|
|
retval += days_before[tm->tm_mon] + tm->tm_mday - 1;
|
|
|
|
if (tm->tm_year % 4 == 0 && tm->tm_mon < 2)
|
|
retval -= 1;
|
|
|
|
retval = ((((retval * 24) + tm->tm_hour) * 60) + tm->tm_min) * 60 + tm->tm_sec;
|
|
#else
|
|
retval = timegm (tm);
|
|
#endif /* !HAVE_TIMEGM */
|
|
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* g_time_val_from_iso8601:
|
|
* @iso_date: an ISO 8601 encoded date string
|
|
* @time_: (out): a #GTimeVal
|
|
*
|
|
* Converts a string containing an ISO 8601 encoded date and time
|
|
* to a #GTimeVal and puts it into @time_.
|
|
*
|
|
* @iso_date must include year, month, day, hours, minutes, and
|
|
* seconds. It can optionally include fractions of a second and a time
|
|
* zone indicator. (In the absence of any time zone indication, the
|
|
* timestamp is assumed to be in local time.)
|
|
*
|
|
* Returns: %TRUE if the conversion was successful.
|
|
*
|
|
* Since: 2.12
|
|
*/
|
|
gboolean
|
|
g_time_val_from_iso8601 (const gchar *iso_date,
|
|
GTimeVal *time_)
|
|
{
|
|
struct tm tm = {0};
|
|
long val;
|
|
|
|
g_return_val_if_fail (iso_date != NULL, FALSE);
|
|
g_return_val_if_fail (time_ != NULL, FALSE);
|
|
|
|
/* Ensure that the first character is a digit, the first digit
|
|
* of the date, otherwise we don't have an ISO 8601 date
|
|
*/
|
|
while (g_ascii_isspace (*iso_date))
|
|
iso_date++;
|
|
|
|
if (*iso_date == '\0')
|
|
return FALSE;
|
|
|
|
if (!g_ascii_isdigit (*iso_date) && *iso_date != '-' && *iso_date != '+')
|
|
return FALSE;
|
|
|
|
val = strtoul (iso_date, (char **)&iso_date, 10);
|
|
if (*iso_date == '-')
|
|
{
|
|
/* YYYY-MM-DD */
|
|
tm.tm_year = val - 1900;
|
|
iso_date++;
|
|
tm.tm_mon = strtoul (iso_date, (char **)&iso_date, 10) - 1;
|
|
|
|
if (*iso_date++ != '-')
|
|
return FALSE;
|
|
|
|
tm.tm_mday = strtoul (iso_date, (char **)&iso_date, 10);
|
|
}
|
|
else
|
|
{
|
|
/* YYYYMMDD */
|
|
tm.tm_mday = val % 100;
|
|
tm.tm_mon = (val % 10000) / 100 - 1;
|
|
tm.tm_year = val / 10000 - 1900;
|
|
}
|
|
|
|
if (*iso_date != 'T')
|
|
return FALSE;
|
|
|
|
iso_date++;
|
|
|
|
/* If there is a 'T' then there has to be a time */
|
|
if (!g_ascii_isdigit (*iso_date))
|
|
return FALSE;
|
|
|
|
val = strtoul (iso_date, (char **)&iso_date, 10);
|
|
if (*iso_date == ':')
|
|
{
|
|
/* hh:mm:ss */
|
|
tm.tm_hour = val;
|
|
iso_date++;
|
|
tm.tm_min = strtoul (iso_date, (char **)&iso_date, 10);
|
|
|
|
if (*iso_date++ != ':')
|
|
return FALSE;
|
|
|
|
tm.tm_sec = strtoul (iso_date, (char **)&iso_date, 10);
|
|
}
|
|
else
|
|
{
|
|
/* hhmmss */
|
|
tm.tm_sec = val % 100;
|
|
tm.tm_min = (val % 10000) / 100;
|
|
tm.tm_hour = val / 10000;
|
|
}
|
|
|
|
time_->tv_usec = 0;
|
|
|
|
if (*iso_date == ',' || *iso_date == '.')
|
|
{
|
|
glong mul = 100000;
|
|
|
|
while (g_ascii_isdigit (*++iso_date))
|
|
{
|
|
time_->tv_usec += (*iso_date - '0') * mul;
|
|
mul /= 10;
|
|
}
|
|
}
|
|
|
|
/* Now parse the offset and convert tm to a time_t */
|
|
if (*iso_date == 'Z')
|
|
{
|
|
iso_date++;
|
|
time_->tv_sec = mktime_utc (&tm);
|
|
}
|
|
else if (*iso_date == '+' || *iso_date == '-')
|
|
{
|
|
gint sign = (*iso_date == '+') ? -1 : 1;
|
|
|
|
val = strtoul (iso_date + 1, (char **)&iso_date, 10);
|
|
|
|
if (*iso_date == ':')
|
|
val = 60 * val + strtoul (iso_date + 1, (char **)&iso_date, 10);
|
|
else
|
|
val = 60 * (val / 100) + (val % 100);
|
|
|
|
time_->tv_sec = mktime_utc (&tm) + (time_t) (60 * val * sign);
|
|
}
|
|
else
|
|
{
|
|
/* No "Z" or offset, so local time */
|
|
tm.tm_isdst = -1; /* locale selects DST */
|
|
time_->tv_sec = mktime (&tm);
|
|
}
|
|
|
|
while (g_ascii_isspace (*iso_date))
|
|
iso_date++;
|
|
|
|
return *iso_date == '\0';
|
|
}
|
|
|
|
/**
|
|
* g_time_val_to_iso8601:
|
|
* @time_: a #GTimeVal
|
|
*
|
|
* Converts @time_ into an RFC 3339 encoded string, relative to the
|
|
* Coordinated Universal Time (UTC). This is one of the many formats
|
|
* allowed by ISO 8601.
|
|
*
|
|
* ISO 8601 allows a large number of date/time formats, with or without
|
|
* punctuation and optional elements. The format returned by this function
|
|
* is a complete date and time, with optional punctuation included, the
|
|
* UTC time zone represented as "Z", and the @tv_usec part included if
|
|
* and only if it is nonzero, i.e. either
|
|
* "YYYY-MM-DDTHH:MM:SSZ" or "YYYY-MM-DDTHH:MM:SS.fffffZ".
|
|
*
|
|
* This corresponds to the Internet date/time format defined by
|
|
* [RFC 3339](https://www.ietf.org/rfc/rfc3339.txt),
|
|
* and to either of the two most-precise formats defined by
|
|
* the W3C Note
|
|
* [Date and Time Formats](http://www.w3.org/TR/NOTE-datetime-19980827).
|
|
* Both of these documents are profiles of ISO 8601.
|
|
*
|
|
* Use g_date_time_format() or g_strdup_printf() if a different
|
|
* variation of ISO 8601 format is required.
|
|
*
|
|
* If @time_ represents a date which is too large to fit into a `struct tm`,
|
|
* %NULL will be returned. This is platform dependent, but it is safe to assume
|
|
* years up to 3000 are supported. The return value of g_time_val_to_iso8601()
|
|
* has been nullable since GLib 2.54; before then, GLib would crash under the
|
|
* same conditions.
|
|
*
|
|
* Returns: (nullable): a newly allocated string containing an ISO 8601 date,
|
|
* or %NULL if @time_ was too large
|
|
*
|
|
* Since: 2.12
|
|
*/
|
|
gchar *
|
|
g_time_val_to_iso8601 (GTimeVal *time_)
|
|
{
|
|
gchar *retval;
|
|
struct tm *tm;
|
|
#ifdef HAVE_GMTIME_R
|
|
struct tm tm_;
|
|
#endif
|
|
time_t secs;
|
|
|
|
g_return_val_if_fail (time_->tv_usec >= 0 && time_->tv_usec < G_USEC_PER_SEC, NULL);
|
|
|
|
secs = time_->tv_sec;
|
|
#ifdef _WIN32
|
|
tm = gmtime (&secs);
|
|
#else
|
|
#ifdef HAVE_GMTIME_R
|
|
tm = gmtime_r (&secs, &tm_);
|
|
#else
|
|
tm = gmtime (&secs);
|
|
#endif
|
|
#endif
|
|
|
|
/* If the gmtime() call has failed, time_->tv_sec is too big. */
|
|
if (tm == NULL)
|
|
return NULL;
|
|
|
|
if (time_->tv_usec != 0)
|
|
{
|
|
/* ISO 8601 date and time format, with fractionary seconds:
|
|
* YYYY-MM-DDTHH:MM:SS.MMMMMMZ
|
|
*/
|
|
retval = g_strdup_printf ("%4d-%02d-%02dT%02d:%02d:%02d.%06ldZ",
|
|
tm->tm_year + 1900,
|
|
tm->tm_mon + 1,
|
|
tm->tm_mday,
|
|
tm->tm_hour,
|
|
tm->tm_min,
|
|
tm->tm_sec,
|
|
time_->tv_usec);
|
|
}
|
|
else
|
|
{
|
|
/* ISO 8601 date and time format:
|
|
* YYYY-MM-DDTHH:MM:SSZ
|
|
*/
|
|
retval = g_strdup_printf ("%4d-%02d-%02dT%02d:%02d:%02dZ",
|
|
tm->tm_year + 1900,
|
|
tm->tm_mon + 1,
|
|
tm->tm_mday,
|
|
tm->tm_hour,
|
|
tm->tm_min,
|
|
tm->tm_sec);
|
|
}
|
|
|
|
return retval;
|
|
}
|