glib/glib/gvariant.c
Peter Eisenmann ac4d1e2686 docs: unify "dynamic memory needed" explanations
All `_take` method constructors require dynamic memory, this unifies
theses explanation texts.
2023-05-16 11:27:45 +01:00

6233 lines
182 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright © 2007, 2008 Ryan Lortie
* Copyright © 2010 Codethink Limited
*
* SPDX-License-Identifier: LGPL-2.1-or-later
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*
* Author: Ryan Lortie <desrt@desrt.ca>
*/
/* Prologue {{{1 */
#include "config.h"
#include <glib/gvariant-serialiser.h>
#include "gvariant-internal.h"
#include <glib/gvariant-core.h>
#include <glib/gtestutils.h>
#include <glib/gstrfuncs.h>
#include <glib/gslice.h>
#include <glib/ghash.h>
#include <glib/gmem.h>
#include <string.h>
/**
* SECTION:gvariant
* @title: GVariant
* @short_description: strongly typed value datatype
* @see_also: GVariantType
*
* #GVariant is a variant datatype; it can contain one or more values
* along with information about the type of the values.
*
* A #GVariant may contain simple types, like an integer, or a boolean value;
* or complex types, like an array of two strings, or a dictionary of key
* value pairs. A #GVariant is also immutable: once it's been created neither
* its type nor its content can be modified further.
*
* GVariant is useful whenever data needs to be serialized, for example when
* sending method parameters in D-Bus, or when saving settings using GSettings.
*
* When creating a new #GVariant, you pass the data you want to store in it
* along with a string representing the type of data you wish to pass to it.
*
* For instance, if you want to create a #GVariant holding an integer value you
* can use:
*
* |[<!-- language="C" -->
* GVariant *v = g_variant_new ("u", 40);
* ]|
*
* The string "u" in the first argument tells #GVariant that the data passed to
* the constructor (40) is going to be an unsigned integer.
*
* More advanced examples of #GVariant in use can be found in documentation for
* [GVariant format strings][gvariant-format-strings-pointers].
*
* The range of possible values is determined by the type.
*
* The type system used by #GVariant is #GVariantType.
*
* #GVariant instances always have a type and a value (which are given
* at construction time). The type and value of a #GVariant instance
* can never change other than by the #GVariant itself being
* destroyed. A #GVariant cannot contain a pointer.
*
* #GVariant is reference counted using g_variant_ref() and
* g_variant_unref(). #GVariant also has floating reference counts --
* see g_variant_ref_sink().
*
* #GVariant is completely threadsafe. A #GVariant instance can be
* concurrently accessed in any way from any number of threads without
* problems.
*
* #GVariant is heavily optimised for dealing with data in serialized
* form. It works particularly well with data located in memory-mapped
* files. It can perform nearly all deserialization operations in a
* small constant time, usually touching only a single memory page.
* Serialized #GVariant data can also be sent over the network.
*
* #GVariant is largely compatible with D-Bus. Almost all types of
* #GVariant instances can be sent over D-Bus. See #GVariantType for
* exceptions. (However, #GVariant's serialization format is not the same
* as the serialization format of a D-Bus message body: use #GDBusMessage,
* in the gio library, for those.)
*
* For space-efficiency, the #GVariant serialization format does not
* automatically include the variant's length, type or endianness,
* which must either be implied from context (such as knowledge that a
* particular file format always contains a little-endian
* %G_VARIANT_TYPE_VARIANT which occupies the whole length of the file)
* or supplied out-of-band (for instance, a length, type and/or endianness
* indicator could be placed at the beginning of a file, network message
* or network stream).
*
* A #GVariant's size is limited mainly by any lower level operating
* system constraints, such as the number of bits in #gsize. For
* example, it is reasonable to have a 2GB file mapped into memory
* with #GMappedFile, and call g_variant_new_from_data() on it.
*
* For convenience to C programmers, #GVariant features powerful
* varargs-based value construction and destruction. This feature is
* designed to be embedded in other libraries.
*
* There is a Python-inspired text language for describing #GVariant
* values. #GVariant includes a printer for this language and a parser
* with type inferencing.
*
* ## Memory Use
*
* #GVariant tries to be quite efficient with respect to memory use.
* This section gives a rough idea of how much memory is used by the
* current implementation. The information here is subject to change
* in the future.
*
* The memory allocated by #GVariant can be grouped into 4 broad
* purposes: memory for serialized data, memory for the type
* information cache, buffer management memory and memory for the
* #GVariant structure itself.
*
* ## Serialized Data Memory
*
* This is the memory that is used for storing GVariant data in
* serialized form. This is what would be sent over the network or
* what would end up on disk, not counting any indicator of the
* endianness, or of the length or type of the top-level variant.
*
* The amount of memory required to store a boolean is 1 byte. 16,
* 32 and 64 bit integers and double precision floating point numbers
* use their "natural" size. Strings (including object path and
* signature strings) are stored with a nul terminator, and as such
* use the length of the string plus 1 byte.
*
* Maybe types use no space at all to represent the null value and
* use the same amount of space (sometimes plus one byte) as the
* equivalent non-maybe-typed value to represent the non-null case.
*
* Arrays use the amount of space required to store each of their
* members, concatenated. Additionally, if the items stored in an
* array are not of a fixed-size (ie: strings, other arrays, etc)
* then an additional framing offset is stored for each item. The
* size of this offset is either 1, 2 or 4 bytes depending on the
* overall size of the container. Additionally, extra padding bytes
* are added as required for alignment of child values.
*
* Tuples (including dictionary entries) use the amount of space
* required to store each of their members, concatenated, plus one
* framing offset (as per arrays) for each non-fixed-sized item in
* the tuple, except for the last one. Additionally, extra padding
* bytes are added as required for alignment of child values.
*
* Variants use the same amount of space as the item inside of the
* variant, plus 1 byte, plus the length of the type string for the
* item inside the variant.
*
* As an example, consider a dictionary mapping strings to variants.
* In the case that the dictionary is empty, 0 bytes are required for
* the serialization.
*
* If we add an item "width" that maps to the int32 value of 500 then
* we will use 4 byte to store the int32 (so 6 for the variant
* containing it) and 6 bytes for the string. The variant must be
* aligned to 8 after the 6 bytes of the string, so that's 2 extra
* bytes. 6 (string) + 2 (padding) + 6 (variant) is 14 bytes used
* for the dictionary entry. An additional 1 byte is added to the
* array as a framing offset making a total of 15 bytes.
*
* If we add another entry, "title" that maps to a nullable string
* that happens to have a value of null, then we use 0 bytes for the
* null value (and 3 bytes for the variant to contain it along with
* its type string) plus 6 bytes for the string. Again, we need 2
* padding bytes. That makes a total of 6 + 2 + 3 = 11 bytes.
*
* We now require extra padding between the two items in the array.
* After the 14 bytes of the first item, that's 2 bytes required.
* We now require 2 framing offsets for an extra two
* bytes. 14 + 2 + 11 + 2 = 29 bytes to encode the entire two-item
* dictionary.
*
* ## Type Information Cache
*
* For each GVariant type that currently exists in the program a type
* information structure is kept in the type information cache. The
* type information structure is required for rapid deserialization.
*
* Continuing with the above example, if a #GVariant exists with the
* type "a{sv}" then a type information struct will exist for
* "a{sv}", "{sv}", "s", and "v". Multiple uses of the same type
* will share the same type information. Additionally, all
* single-digit types are stored in read-only static memory and do
* not contribute to the writable memory footprint of a program using
* #GVariant.
*
* Aside from the type information structures stored in read-only
* memory, there are two forms of type information. One is used for
* container types where there is a single element type: arrays and
* maybe types. The other is used for container types where there
* are multiple element types: tuples and dictionary entries.
*
* Array type info structures are 6 * sizeof (void *), plus the
* memory required to store the type string itself. This means that
* on 32-bit systems, the cache entry for "a{sv}" would require 30
* bytes of memory (plus malloc overhead).
*
* Tuple type info structures are 6 * sizeof (void *), plus 4 *
* sizeof (void *) for each item in the tuple, plus the memory
* required to store the type string itself. A 2-item tuple, for
* example, would have a type information structure that consumed
* writable memory in the size of 14 * sizeof (void *) (plus type
* string) This means that on 32-bit systems, the cache entry for
* "{sv}" would require 61 bytes of memory (plus malloc overhead).
*
* This means that in total, for our "a{sv}" example, 91 bytes of
* type information would be allocated.
*
* The type information cache, additionally, uses a #GHashTable to
* store and look up the cached items and stores a pointer to this
* hash table in static storage. The hash table is freed when there
* are zero items in the type cache.
*
* Although these sizes may seem large it is important to remember
* that a program will probably only have a very small number of
* different types of values in it and that only one type information
* structure is required for many different values of the same type.
*
* ## Buffer Management Memory
*
* #GVariant uses an internal buffer management structure to deal
* with the various different possible sources of serialized data
* that it uses. The buffer is responsible for ensuring that the
* correct call is made when the data is no longer in use by
* #GVariant. This may involve a g_free() or a g_slice_free() or
* even g_mapped_file_unref().
*
* One buffer management structure is used for each chunk of
* serialized data. The size of the buffer management structure
* is 4 * (void *). On 32-bit systems, that's 16 bytes.
*
* ## GVariant structure
*
* The size of a #GVariant structure is 6 * (void *). On 32-bit
* systems, that's 24 bytes.
*
* #GVariant structures only exist if they are explicitly created
* with API calls. For example, if a #GVariant is constructed out of
* serialized data for the example given above (with the dictionary)
* then although there are 9 individual values that comprise the
* entire dictionary (two keys, two values, two variants containing
* the values, two dictionary entries, plus the dictionary itself),
* only 1 #GVariant instance exists -- the one referring to the
* dictionary.
*
* If calls are made to start accessing the other values then
* #GVariant instances will exist for those values only for as long
* as they are in use (ie: until you call g_variant_unref()). The
* type information is shared. The serialized data and the buffer
* management structure for that serialized data is shared by the
* child.
*
* ## Summary
*
* To put the entire example together, for our dictionary mapping
* strings to variants (with two entries, as given above), we are
* using 91 bytes of memory for type information, 29 bytes of memory
* for the serialized data, 16 bytes for buffer management and 24
* bytes for the #GVariant instance, or a total of 160 bytes, plus
* malloc overhead. If we were to use g_variant_get_child_value() to
* access the two dictionary entries, we would use an additional 48
* bytes. If we were to have other dictionaries of the same type, we
* would use more memory for the serialized data and buffer
* management for those dictionaries, but the type information would
* be shared.
*/
/* definition of GVariant structure is in gvariant-core.c */
/* this is a g_return_val_if_fail() for making
* sure a (GVariant *) has the required type.
*/
#define TYPE_CHECK(value, TYPE, val) \
if G_UNLIKELY (!g_variant_is_of_type (value, TYPE)) { \
g_return_if_fail_warning (G_LOG_DOMAIN, G_STRFUNC, \
"g_variant_is_of_type (" #value \
", " #TYPE ")"); \
return val; \
}
/* Numeric Type Constructor/Getters {{{1 */
/* < private >
* g_variant_new_from_trusted:
* @type: the #GVariantType
* @data: the data to use
* @size: the size of @data
*
* Constructs a new trusted #GVariant instance from the provided data.
* This is used to implement g_variant_new_* for all the basic types.
*
* Note: @data must be backed by memory that is aligned appropriately for the
* @type being loaded. Otherwise this function will internally create a copy of
* the memory (since GLib 2.60) or (in older versions) fail and exit the
* process.
*
* Returns: a new floating #GVariant
*/
static GVariant *
g_variant_new_from_trusted (const GVariantType *type,
gconstpointer data,
gsize size)
{
GVariant *value;
GBytes *bytes;
bytes = g_bytes_new (data, size);
value = g_variant_new_from_bytes (type, bytes, TRUE);
g_bytes_unref (bytes);
return value;
}
/**
* g_variant_new_boolean:
* @value: a #gboolean value
*
* Creates a new boolean #GVariant instance -- either %TRUE or %FALSE.
*
* Returns: (transfer none): a floating reference to a new boolean #GVariant instance
*
* Since: 2.24
**/
GVariant *
g_variant_new_boolean (gboolean value)
{
guchar v = value;
return g_variant_new_from_trusted (G_VARIANT_TYPE_BOOLEAN, &v, 1);
}
/**
* g_variant_get_boolean:
* @value: a boolean #GVariant instance
*
* Returns the boolean value of @value.
*
* It is an error to call this function with a @value of any type
* other than %G_VARIANT_TYPE_BOOLEAN.
*
* Returns: %TRUE or %FALSE
*
* Since: 2.24
**/
gboolean
g_variant_get_boolean (GVariant *value)
{
const guchar *data;
TYPE_CHECK (value, G_VARIANT_TYPE_BOOLEAN, FALSE);
data = g_variant_get_data (value);
return data != NULL ? *data != 0 : FALSE;
}
/* the constructors and accessors for byte, int{16,32,64}, handles and
* doubles all look pretty much exactly the same, so we reduce
* copy/pasting here.
*/
#define NUMERIC_TYPE(TYPE, type, ctype) \
GVariant *g_variant_new_##type (ctype value) { \
return g_variant_new_from_trusted (G_VARIANT_TYPE_##TYPE, \
&value, sizeof value); \
} \
ctype g_variant_get_##type (GVariant *value) { \
const ctype *data; \
TYPE_CHECK (value, G_VARIANT_TYPE_ ## TYPE, 0); \
data = g_variant_get_data (value); \
return data != NULL ? *data : 0; \
}
/**
* g_variant_new_byte:
* @value: a #guint8 value
*
* Creates a new byte #GVariant instance.
*
* Returns: (transfer none): a floating reference to a new byte #GVariant instance
*
* Since: 2.24
**/
/**
* g_variant_get_byte:
* @value: a byte #GVariant instance
*
* Returns the byte value of @value.
*
* It is an error to call this function with a @value of any type
* other than %G_VARIANT_TYPE_BYTE.
*
* Returns: a #guint8
*
* Since: 2.24
**/
NUMERIC_TYPE (BYTE, byte, guint8)
/**
* g_variant_new_int16:
* @value: a #gint16 value
*
* Creates a new int16 #GVariant instance.
*
* Returns: (transfer none): a floating reference to a new int16 #GVariant instance
*
* Since: 2.24
**/
/**
* g_variant_get_int16:
* @value: an int16 #GVariant instance
*
* Returns the 16-bit signed integer value of @value.
*
* It is an error to call this function with a @value of any type
* other than %G_VARIANT_TYPE_INT16.
*
* Returns: a #gint16
*
* Since: 2.24
**/
NUMERIC_TYPE (INT16, int16, gint16)
/**
* g_variant_new_uint16:
* @value: a #guint16 value
*
* Creates a new uint16 #GVariant instance.
*
* Returns: (transfer none): a floating reference to a new uint16 #GVariant instance
*
* Since: 2.24
**/
/**
* g_variant_get_uint16:
* @value: a uint16 #GVariant instance
*
* Returns the 16-bit unsigned integer value of @value.
*
* It is an error to call this function with a @value of any type
* other than %G_VARIANT_TYPE_UINT16.
*
* Returns: a #guint16
*
* Since: 2.24
**/
NUMERIC_TYPE (UINT16, uint16, guint16)
/**
* g_variant_new_int32:
* @value: a #gint32 value
*
* Creates a new int32 #GVariant instance.
*
* Returns: (transfer none): a floating reference to a new int32 #GVariant instance
*
* Since: 2.24
**/
/**
* g_variant_get_int32:
* @value: an int32 #GVariant instance
*
* Returns the 32-bit signed integer value of @value.
*
* It is an error to call this function with a @value of any type
* other than %G_VARIANT_TYPE_INT32.
*
* Returns: a #gint32
*
* Since: 2.24
**/
NUMERIC_TYPE (INT32, int32, gint32)
/**
* g_variant_new_uint32:
* @value: a #guint32 value
*
* Creates a new uint32 #GVariant instance.
*
* Returns: (transfer none): a floating reference to a new uint32 #GVariant instance
*
* Since: 2.24
**/
/**
* g_variant_get_uint32:
* @value: a uint32 #GVariant instance
*
* Returns the 32-bit unsigned integer value of @value.
*
* It is an error to call this function with a @value of any type
* other than %G_VARIANT_TYPE_UINT32.
*
* Returns: a #guint32
*
* Since: 2.24
**/
NUMERIC_TYPE (UINT32, uint32, guint32)
/**
* g_variant_new_int64:
* @value: a #gint64 value
*
* Creates a new int64 #GVariant instance.
*
* Returns: (transfer none): a floating reference to a new int64 #GVariant instance
*
* Since: 2.24
**/
/**
* g_variant_get_int64:
* @value: an int64 #GVariant instance
*
* Returns the 64-bit signed integer value of @value.
*
* It is an error to call this function with a @value of any type
* other than %G_VARIANT_TYPE_INT64.
*
* Returns: a #gint64
*
* Since: 2.24
**/
NUMERIC_TYPE (INT64, int64, gint64)
/**
* g_variant_new_uint64:
* @value: a #guint64 value
*
* Creates a new uint64 #GVariant instance.
*
* Returns: (transfer none): a floating reference to a new uint64 #GVariant instance
*
* Since: 2.24
**/
/**
* g_variant_get_uint64:
* @value: a uint64 #GVariant instance
*
* Returns the 64-bit unsigned integer value of @value.
*
* It is an error to call this function with a @value of any type
* other than %G_VARIANT_TYPE_UINT64.
*
* Returns: a #guint64
*
* Since: 2.24
**/
NUMERIC_TYPE (UINT64, uint64, guint64)
/**
* g_variant_new_handle:
* @value: a #gint32 value
*
* Creates a new handle #GVariant instance.
*
* By convention, handles are indexes into an array of file descriptors
* that are sent alongside a D-Bus message. If you're not interacting
* with D-Bus, you probably don't need them.
*
* Returns: (transfer none): a floating reference to a new handle #GVariant instance
*
* Since: 2.24
**/
/**
* g_variant_get_handle:
* @value: a handle #GVariant instance
*
* Returns the 32-bit signed integer value of @value.
*
* It is an error to call this function with a @value of any type other
* than %G_VARIANT_TYPE_HANDLE.
*
* By convention, handles are indexes into an array of file descriptors
* that are sent alongside a D-Bus message. If you're not interacting
* with D-Bus, you probably don't need them.
*
* Returns: a #gint32
*
* Since: 2.24
**/
NUMERIC_TYPE (HANDLE, handle, gint32)
/**
* g_variant_new_double:
* @value: a #gdouble floating point value
*
* Creates a new double #GVariant instance.
*
* Returns: (transfer none): a floating reference to a new double #GVariant instance
*
* Since: 2.24
**/
/**
* g_variant_get_double:
* @value: a double #GVariant instance
*
* Returns the double precision floating point value of @value.
*
* It is an error to call this function with a @value of any type
* other than %G_VARIANT_TYPE_DOUBLE.
*
* Returns: a #gdouble
*
* Since: 2.24
**/
NUMERIC_TYPE (DOUBLE, double, gdouble)
/* Container type Constructor / Deconstructors {{{1 */
/**
* g_variant_new_maybe:
* @child_type: (nullable): the #GVariantType of the child, or %NULL
* @child: (nullable): the child value, or %NULL
*
* Depending on if @child is %NULL, either wraps @child inside of a
* maybe container or creates a Nothing instance for the given @type.
*
* At least one of @child_type and @child must be non-%NULL.
* If @child_type is non-%NULL then it must be a definite type.
* If they are both non-%NULL then @child_type must be the type
* of @child.
*
* If @child is a floating reference (see g_variant_ref_sink()), the new
* instance takes ownership of @child.
*
* Returns: (transfer none): a floating reference to a new #GVariant maybe instance
*
* Since: 2.24
**/
GVariant *
g_variant_new_maybe (const GVariantType *child_type,
GVariant *child)
{
GVariantType *maybe_type;
GVariant *value;
g_return_val_if_fail (child_type == NULL || g_variant_type_is_definite
(child_type), 0);
g_return_val_if_fail (child_type != NULL || child != NULL, NULL);
g_return_val_if_fail (child_type == NULL || child == NULL ||
g_variant_is_of_type (child, child_type),
NULL);
if (child_type == NULL)
child_type = g_variant_get_type (child);
maybe_type = g_variant_type_new_maybe (child_type);
if (child != NULL)
{
GVariant **children;
gboolean trusted;
children = g_new (GVariant *, 1);
children[0] = g_variant_ref_sink (child);
trusted = g_variant_is_trusted (children[0]);
value = g_variant_new_from_children (maybe_type, children, 1, trusted);
}
else
value = g_variant_new_from_children (maybe_type, NULL, 0, TRUE);
g_variant_type_free (maybe_type);
return value;
}
/**
* g_variant_get_maybe:
* @value: a maybe-typed value
*
* Given a maybe-typed #GVariant instance, extract its value. If the
* value is Nothing, then this function returns %NULL.
*
* Returns: (nullable) (transfer full): the contents of @value, or %NULL
*
* Since: 2.24
**/
GVariant *
g_variant_get_maybe (GVariant *value)
{
TYPE_CHECK (value, G_VARIANT_TYPE_MAYBE, NULL);
if (g_variant_n_children (value))
return g_variant_get_child_value (value, 0);
return NULL;
}
/**
* g_variant_new_variant: (constructor)
* @value: a #GVariant instance
*
* Boxes @value. The result is a #GVariant instance representing a
* variant containing the original value.
*
* If @child is a floating reference (see g_variant_ref_sink()), the new
* instance takes ownership of @child.
*
* Returns: (transfer none): a floating reference to a new variant #GVariant instance
*
* Since: 2.24
**/
GVariant *
g_variant_new_variant (GVariant *value)
{
g_return_val_if_fail (value != NULL, NULL);
g_variant_ref_sink (value);
return g_variant_new_from_children (G_VARIANT_TYPE_VARIANT,
g_memdup2 (&value, sizeof value),
1, g_variant_is_trusted (value));
}
/**
* g_variant_get_variant:
* @value: a variant #GVariant instance
*
* Unboxes @value. The result is the #GVariant instance that was
* contained in @value.
*
* Returns: (transfer full): the item contained in the variant
*
* Since: 2.24
**/
GVariant *
g_variant_get_variant (GVariant *value)
{
TYPE_CHECK (value, G_VARIANT_TYPE_VARIANT, NULL);
return g_variant_get_child_value (value, 0);
}
/**
* g_variant_new_array:
* @child_type: (nullable): the element type of the new array
* @children: (nullable) (array length=n_children): an array of
* #GVariant pointers, the children
* @n_children: the length of @children
*
* Creates a new #GVariant array from @children.
*
* @child_type must be non-%NULL if @n_children is zero. Otherwise, the
* child type is determined by inspecting the first element of the
* @children array. If @child_type is non-%NULL then it must be a
* definite type.
*
* The items of the array are taken from the @children array. No entry
* in the @children array may be %NULL.
*
* All items in the array must have the same type, which must be the
* same as @child_type, if given.
*
* If the @children are floating references (see g_variant_ref_sink()), the
* new instance takes ownership of them as if via g_variant_ref_sink().
*
* Returns: (transfer none): a floating reference to a new #GVariant array
*
* Since: 2.24
**/
GVariant *
g_variant_new_array (const GVariantType *child_type,
GVariant * const *children,
gsize n_children)
{
GVariantType *array_type;
GVariant **my_children;
gboolean trusted;
GVariant *value;
gsize i;
g_return_val_if_fail (n_children > 0 || child_type != NULL, NULL);
g_return_val_if_fail (n_children == 0 || children != NULL, NULL);
g_return_val_if_fail (child_type == NULL ||
g_variant_type_is_definite (child_type), NULL);
my_children = g_new (GVariant *, n_children);
trusted = TRUE;
if (child_type == NULL)
child_type = g_variant_get_type (children[0]);
array_type = g_variant_type_new_array (child_type);
for (i = 0; i < n_children; i++)
{
gboolean is_of_child_type = g_variant_is_of_type (children[i], child_type);
if G_UNLIKELY (!is_of_child_type)
{
while (i != 0)
g_variant_unref (my_children[--i]);
g_free (my_children);
g_return_val_if_fail (is_of_child_type, NULL);
}
my_children[i] = g_variant_ref_sink (children[i]);
trusted &= g_variant_is_trusted (children[i]);
}
value = g_variant_new_from_children (array_type, my_children,
n_children, trusted);
g_variant_type_free (array_type);
return value;
}
/*< private >
* g_variant_make_tuple_type:
* @children: (array length=n_children): an array of GVariant *
* @n_children: the length of @children
*
* Return the type of a tuple containing @children as its items.
**/
static GVariantType *
g_variant_make_tuple_type (GVariant * const *children,
gsize n_children)
{
const GVariantType **types;
GVariantType *type;
gsize i;
types = g_new (const GVariantType *, n_children);
for (i = 0; i < n_children; i++)
types[i] = g_variant_get_type (children[i]);
type = g_variant_type_new_tuple (types, n_children);
g_free (types);
return type;
}
/**
* g_variant_new_tuple:
* @children: (array length=n_children): the items to make the tuple out of
* @n_children: the length of @children
*
* Creates a new tuple #GVariant out of the items in @children. The
* type is determined from the types of @children. No entry in the
* @children array may be %NULL.
*
* If @n_children is 0 then the unit tuple is constructed.
*
* If the @children are floating references (see g_variant_ref_sink()), the
* new instance takes ownership of them as if via g_variant_ref_sink().
*
* Returns: (transfer none): a floating reference to a new #GVariant tuple
*
* Since: 2.24
**/
GVariant *
g_variant_new_tuple (GVariant * const *children,
gsize n_children)
{
GVariantType *tuple_type;
GVariant **my_children;
gboolean trusted;
GVariant *value;
gsize i;
g_return_val_if_fail (n_children == 0 || children != NULL, NULL);
my_children = g_new (GVariant *, n_children);
trusted = TRUE;
for (i = 0; i < n_children; i++)
{
my_children[i] = g_variant_ref_sink (children[i]);
trusted &= g_variant_is_trusted (children[i]);
}
tuple_type = g_variant_make_tuple_type (children, n_children);
value = g_variant_new_from_children (tuple_type, my_children,
n_children, trusted);
g_variant_type_free (tuple_type);
return value;
}
/*< private >
* g_variant_make_dict_entry_type:
* @key: a #GVariant, the key
* @val: a #GVariant, the value
*
* Return the type of a dictionary entry containing @key and @val as its
* children.
**/
static GVariantType *
g_variant_make_dict_entry_type (GVariant *key,
GVariant *val)
{
return g_variant_type_new_dict_entry (g_variant_get_type (key),
g_variant_get_type (val));
}
/**
* g_variant_new_dict_entry: (constructor)
* @key: a basic #GVariant, the key
* @value: a #GVariant, the value
*
* Creates a new dictionary entry #GVariant. @key and @value must be
* non-%NULL. @key must be a value of a basic type (ie: not a container).
*
* If the @key or @value are floating references (see g_variant_ref_sink()),
* the new instance takes ownership of them as if via g_variant_ref_sink().
*
* Returns: (transfer none): a floating reference to a new dictionary entry #GVariant
*
* Since: 2.24
**/
GVariant *
g_variant_new_dict_entry (GVariant *key,
GVariant *value)
{
GVariantType *dict_type;
GVariant **children;
gboolean trusted;
g_return_val_if_fail (key != NULL && value != NULL, NULL);
g_return_val_if_fail (!g_variant_is_container (key), NULL);
children = g_new (GVariant *, 2);
children[0] = g_variant_ref_sink (key);
children[1] = g_variant_ref_sink (value);
trusted = g_variant_is_trusted (key) && g_variant_is_trusted (value);
dict_type = g_variant_make_dict_entry_type (key, value);
value = g_variant_new_from_children (dict_type, children, 2, trusted);
g_variant_type_free (dict_type);
return value;
}
/**
* g_variant_lookup: (skip)
* @dictionary: a dictionary #GVariant
* @key: the key to look up in the dictionary
* @format_string: a GVariant format string
* @...: the arguments to unpack the value into
*
* Looks up a value in a dictionary #GVariant.
*
* This function is a wrapper around g_variant_lookup_value() and
* g_variant_get(). In the case that %NULL would have been returned,
* this function returns %FALSE. Otherwise, it unpacks the returned
* value and returns %TRUE.
*
* @format_string determines the C types that are used for unpacking
* the values and also determines if the values are copied or borrowed,
* see the section on
* [GVariant format strings][gvariant-format-strings-pointers].
*
* This function is currently implemented with a linear scan. If you
* plan to do many lookups then #GVariantDict may be more efficient.
*
* Returns: %TRUE if a value was unpacked
*
* Since: 2.28
*/
gboolean
g_variant_lookup (GVariant *dictionary,
const gchar *key,
const gchar *format_string,
...)
{
GVariantType *type;
GVariant *value;
/* flatten */
g_variant_get_data (dictionary);
type = g_variant_format_string_scan_type (format_string, NULL, NULL);
value = g_variant_lookup_value (dictionary, key, type);
g_variant_type_free (type);
if (value)
{
va_list ap;
va_start (ap, format_string);
g_variant_get_va (value, format_string, NULL, &ap);
g_variant_unref (value);
va_end (ap);
return TRUE;
}
else
return FALSE;
}
/**
* g_variant_lookup_value:
* @dictionary: a dictionary #GVariant
* @key: the key to look up in the dictionary
* @expected_type: (nullable): a #GVariantType, or %NULL
*
* Looks up a value in a dictionary #GVariant.
*
* This function works with dictionaries of the type a{s*} (and equally
* well with type a{o*}, but we only further discuss the string case
* for sake of clarity).
*
* In the event that @dictionary has the type a{sv}, the @expected_type
* string specifies what type of value is expected to be inside of the
* variant. If the value inside the variant has a different type then
* %NULL is returned. In the event that @dictionary has a value type other
* than v then @expected_type must directly match the value type and it is
* used to unpack the value directly or an error occurs.
*
* In either case, if @key is not found in @dictionary, %NULL is returned.
*
* If the key is found and the value has the correct type, it is
* returned. If @expected_type was specified then any non-%NULL return
* value will have this type.
*
* This function is currently implemented with a linear scan. If you
* plan to do many lookups then #GVariantDict may be more efficient.
*
* Returns: (transfer full): the value of the dictionary key, or %NULL
*
* Since: 2.28
*/
GVariant *
g_variant_lookup_value (GVariant *dictionary,
const gchar *key,
const GVariantType *expected_type)
{
GVariantIter iter;
GVariant *entry;
GVariant *value;
g_return_val_if_fail (g_variant_is_of_type (dictionary,
G_VARIANT_TYPE ("a{s*}")) ||
g_variant_is_of_type (dictionary,
G_VARIANT_TYPE ("a{o*}")),
NULL);
g_variant_iter_init (&iter, dictionary);
while ((entry = g_variant_iter_next_value (&iter)))
{
GVariant *entry_key;
gboolean matches;
entry_key = g_variant_get_child_value (entry, 0);
matches = strcmp (g_variant_get_string (entry_key, NULL), key) == 0;
g_variant_unref (entry_key);
if (matches)
break;
g_variant_unref (entry);
}
if (entry == NULL)
return NULL;
value = g_variant_get_child_value (entry, 1);
g_variant_unref (entry);
if (g_variant_is_of_type (value, G_VARIANT_TYPE_VARIANT))
{
GVariant *tmp;
tmp = g_variant_get_variant (value);
g_variant_unref (value);
if (expected_type && !g_variant_is_of_type (tmp, expected_type))
{
g_variant_unref (tmp);
tmp = NULL;
}
value = tmp;
}
g_return_val_if_fail (expected_type == NULL || value == NULL ||
g_variant_is_of_type (value, expected_type), NULL);
return value;
}
/**
* g_variant_get_fixed_array:
* @value: a #GVariant array with fixed-sized elements
* @n_elements: (out): a pointer to the location to store the number of items
* @element_size: the size of each element
*
* Provides access to the serialized data for an array of fixed-sized
* items.
*
* @value must be an array with fixed-sized elements. Numeric types are
* fixed-size, as are tuples containing only other fixed-sized types.
*
* @element_size must be the size of a single element in the array,
* as given by the section on
* [serialized data memory][gvariant-serialized-data-memory].
*
* In particular, arrays of these fixed-sized types can be interpreted
* as an array of the given C type, with @element_size set to the size
* the appropriate type:
* - %G_VARIANT_TYPE_INT16 (etc.): #gint16 (etc.)
* - %G_VARIANT_TYPE_BOOLEAN: #guchar (not #gboolean!)
* - %G_VARIANT_TYPE_BYTE: #guint8
* - %G_VARIANT_TYPE_HANDLE: #guint32
* - %G_VARIANT_TYPE_DOUBLE: #gdouble
*
* For example, if calling this function for an array of 32-bit integers,
* you might say `sizeof(gint32)`. This value isn't used except for the purpose
* of a double-check that the form of the serialized data matches the caller's
* expectation.
*
* @n_elements, which must be non-%NULL, is set equal to the number of
* items in the array.
*
* Returns: (array length=n_elements) (transfer none): a pointer to
* the fixed array
*
* Since: 2.24
**/
gconstpointer
g_variant_get_fixed_array (GVariant *value,
gsize *n_elements,
gsize element_size)
{
GVariantTypeInfo *array_info;
gsize array_element_size;
gconstpointer data;
gsize size;
TYPE_CHECK (value, G_VARIANT_TYPE_ARRAY, NULL);
g_return_val_if_fail (n_elements != NULL, NULL);
g_return_val_if_fail (element_size > 0, NULL);
array_info = g_variant_get_type_info (value);
g_variant_type_info_query_element (array_info, NULL, &array_element_size);
g_return_val_if_fail (array_element_size, NULL);
if G_UNLIKELY (array_element_size != element_size)
{
if (array_element_size)
g_critical ("g_variant_get_fixed_array: assertion "
"'g_variant_array_has_fixed_size (value, element_size)' "
"failed: array size %"G_GSIZE_FORMAT" does not match "
"given element_size %"G_GSIZE_FORMAT".",
array_element_size, element_size);
else
g_critical ("g_variant_get_fixed_array: assertion "
"'g_variant_array_has_fixed_size (value, element_size)' "
"failed: array does not have fixed size.");
}
data = g_variant_get_data (value);
size = g_variant_get_size (value);
if (size % element_size)
*n_elements = 0;
else
*n_elements = size / element_size;
if (*n_elements)
return data;
return NULL;
}
/**
* g_variant_new_fixed_array:
* @element_type: the #GVariantType of each element
* @elements: a pointer to the fixed array of contiguous elements
* @n_elements: the number of elements
* @element_size: the size of each element
*
* Constructs a new array #GVariant instance, where the elements are
* of @element_type type.
*
* @elements must be an array with fixed-sized elements. Numeric types are
* fixed-size as are tuples containing only other fixed-sized types.
*
* @element_size must be the size of a single element in the array.
* For example, if calling this function for an array of 32-bit integers,
* you might say sizeof(gint32). This value isn't used except for the purpose
* of a double-check that the form of the serialized data matches the caller's
* expectation.
*
* @n_elements must be the length of the @elements array.
*
* Returns: (transfer none): a floating reference to a new array #GVariant instance
*
* Since: 2.32
**/
GVariant *
g_variant_new_fixed_array (const GVariantType *element_type,
gconstpointer elements,
gsize n_elements,
gsize element_size)
{
GVariantType *array_type;
gsize array_element_size;
GVariantTypeInfo *array_info;
GVariant *value;
gpointer data;
g_return_val_if_fail (g_variant_type_is_definite (element_type), NULL);
g_return_val_if_fail (element_size > 0, NULL);
array_type = g_variant_type_new_array (element_type);
array_info = g_variant_type_info_get (array_type);
g_variant_type_info_query_element (array_info, NULL, &array_element_size);
if G_UNLIKELY (array_element_size != element_size)
{
if (array_element_size)
g_critical ("g_variant_new_fixed_array: array size %" G_GSIZE_FORMAT
" does not match given element_size %" G_GSIZE_FORMAT ".",
array_element_size, element_size);
else
g_critical ("g_variant_get_fixed_array: array does not have fixed size.");
return NULL;
}
data = g_memdup2 (elements, n_elements * element_size);
value = g_variant_new_from_data (array_type, data,
n_elements * element_size,
FALSE, g_free, data);
g_variant_type_free (array_type);
g_variant_type_info_unref (array_info);
return value;
}
/* String type constructor/getters/validation {{{1 */
/**
* g_variant_new_string:
* @string: a normal UTF-8 nul-terminated string
*
* Creates a string #GVariant with the contents of @string.
*
* @string must be valid UTF-8, and must not be %NULL. To encode
* potentially-%NULL strings, use g_variant_new() with `ms` as the
* [format string][gvariant-format-strings-maybe-types].
*
* Returns: (transfer none): a floating reference to a new string #GVariant instance
*
* Since: 2.24
**/
GVariant *
g_variant_new_string (const gchar *string)
{
g_return_val_if_fail (string != NULL, NULL);
g_return_val_if_fail (g_utf8_validate (string, -1, NULL), NULL);
return g_variant_new_from_trusted (G_VARIANT_TYPE_STRING,
string, strlen (string) + 1);
}
/**
* g_variant_new_take_string: (skip)
* @string: a normal UTF-8 nul-terminated string
*
* Creates a string #GVariant with the contents of @string.
*
* @string must be valid UTF-8, and must not be %NULL. To encode
* potentially-%NULL strings, use this with g_variant_new_maybe().
*
* After this call, @string belongs to the #GVariant and may no longer be
* modified by the caller. The memory of @data has to be dynamically
* allocated and will eventually be freed with g_free().
*
* You must not modify or access @string in any other way after passing
* it to this function. It is even possible that @string is immediately
* freed.
*
* Returns: (transfer none): a floating reference to a new string
* #GVariant instance
*
* Since: 2.38
**/
GVariant *
g_variant_new_take_string (gchar *string)
{
GVariant *value;
GBytes *bytes;
g_return_val_if_fail (string != NULL, NULL);
g_return_val_if_fail (g_utf8_validate (string, -1, NULL), NULL);
bytes = g_bytes_new_take (string, strlen (string) + 1);
value = g_variant_new_from_bytes (G_VARIANT_TYPE_STRING, bytes, TRUE);
g_bytes_unref (bytes);
return value;
}
/**
* g_variant_new_printf: (skip)
* @format_string: a printf-style format string
* @...: arguments for @format_string
*
* Creates a string-type GVariant using printf formatting.
*
* This is similar to calling g_strdup_printf() and then
* g_variant_new_string() but it saves a temporary variable and an
* unnecessary copy.
*
* Returns: (transfer none): a floating reference to a new string
* #GVariant instance
*
* Since: 2.38
**/
GVariant *
g_variant_new_printf (const gchar *format_string,
...)
{
GVariant *value;
GBytes *bytes;
gchar *string;
va_list ap;
g_return_val_if_fail (format_string != NULL, NULL);
va_start (ap, format_string);
string = g_strdup_vprintf (format_string, ap);
va_end (ap);
bytes = g_bytes_new_take (string, strlen (string) + 1);
value = g_variant_new_from_bytes (G_VARIANT_TYPE_STRING, bytes, TRUE);
g_bytes_unref (bytes);
return value;
}
/**
* g_variant_new_object_path:
* @object_path: a normal C nul-terminated string
*
* Creates a D-Bus object path #GVariant with the contents of @object_path.
* @object_path must be a valid D-Bus object path. Use
* g_variant_is_object_path() if you're not sure.
*
* Returns: (transfer none): a floating reference to a new object path #GVariant instance
*
* Since: 2.24
**/
GVariant *
g_variant_new_object_path (const gchar *object_path)
{
g_return_val_if_fail (g_variant_is_object_path (object_path), NULL);
return g_variant_new_from_trusted (G_VARIANT_TYPE_OBJECT_PATH,
object_path, strlen (object_path) + 1);
}
/**
* g_variant_is_object_path:
* @string: a normal C nul-terminated string
*
* Determines if a given string is a valid D-Bus object path. You
* should ensure that a string is a valid D-Bus object path before
* passing it to g_variant_new_object_path().
*
* A valid object path starts with `/` followed by zero or more
* sequences of characters separated by `/` characters. Each sequence
* must contain only the characters `[A-Z][a-z][0-9]_`. No sequence
* (including the one following the final `/` character) may be empty.
*
* Returns: %TRUE if @string is a D-Bus object path
*
* Since: 2.24
**/
gboolean
g_variant_is_object_path (const gchar *string)
{
g_return_val_if_fail (string != NULL, FALSE);
return g_variant_serialiser_is_object_path (string, strlen (string) + 1);
}
/**
* g_variant_new_signature:
* @signature: a normal C nul-terminated string
*
* Creates a D-Bus type signature #GVariant with the contents of
* @string. @string must be a valid D-Bus type signature. Use
* g_variant_is_signature() if you're not sure.
*
* Returns: (transfer none): a floating reference to a new signature #GVariant instance
*
* Since: 2.24
**/
GVariant *
g_variant_new_signature (const gchar *signature)
{
g_return_val_if_fail (g_variant_is_signature (signature), NULL);
return g_variant_new_from_trusted (G_VARIANT_TYPE_SIGNATURE,
signature, strlen (signature) + 1);
}
/**
* g_variant_is_signature:
* @string: a normal C nul-terminated string
*
* Determines if a given string is a valid D-Bus type signature. You
* should ensure that a string is a valid D-Bus type signature before
* passing it to g_variant_new_signature().
*
* D-Bus type signatures consist of zero or more definite #GVariantType
* strings in sequence.
*
* Returns: %TRUE if @string is a D-Bus type signature
*
* Since: 2.24
**/
gboolean
g_variant_is_signature (const gchar *string)
{
g_return_val_if_fail (string != NULL, FALSE);
return g_variant_serialiser_is_signature (string, strlen (string) + 1);
}
/**
* g_variant_get_string:
* @value: a string #GVariant instance
* @length: (optional) (default 0) (out): a pointer to a #gsize,
* to store the length
*
* Returns the string value of a #GVariant instance with a string
* type. This includes the types %G_VARIANT_TYPE_STRING,
* %G_VARIANT_TYPE_OBJECT_PATH and %G_VARIANT_TYPE_SIGNATURE.
*
* The string will always be UTF-8 encoded, will never be %NULL, and will never
* contain nul bytes.
*
* If @length is non-%NULL then the length of the string (in bytes) is
* returned there. For trusted values, this information is already
* known. Untrusted values will be validated and, if valid, a strlen() will be
* performed. If invalid, a default value will be returned — for
* %G_VARIANT_TYPE_OBJECT_PATH, this is `"/"`, and for other types it is the
* empty string.
*
* It is an error to call this function with a @value of any type
* other than those three.
*
* The return value remains valid as long as @value exists.
*
* Returns: (transfer none): the constant string, UTF-8 encoded
*
* Since: 2.24
**/
const gchar *
g_variant_get_string (GVariant *value,
gsize *length)
{
gconstpointer data;
gsize size;
g_return_val_if_fail (value != NULL, NULL);
g_return_val_if_fail (
g_variant_is_of_type (value, G_VARIANT_TYPE_STRING) ||
g_variant_is_of_type (value, G_VARIANT_TYPE_OBJECT_PATH) ||
g_variant_is_of_type (value, G_VARIANT_TYPE_SIGNATURE), NULL);
data = g_variant_get_data (value);
size = g_variant_get_size (value);
if (!g_variant_is_trusted (value))
{
switch (g_variant_classify (value))
{
case G_VARIANT_CLASS_STRING:
if (g_variant_serialiser_is_string (data, size))
break;
data = "";
size = 1;
break;
case G_VARIANT_CLASS_OBJECT_PATH:
if (g_variant_serialiser_is_object_path (data, size))
break;
data = "/";
size = 2;
break;
case G_VARIANT_CLASS_SIGNATURE:
if (g_variant_serialiser_is_signature (data, size))
break;
data = "";
size = 1;
break;
default:
g_assert_not_reached ();
}
}
if (length)
*length = size - 1;
return data;
}
/**
* g_variant_dup_string:
* @value: a string #GVariant instance
* @length: (out): a pointer to a #gsize, to store the length
*
* Similar to g_variant_get_string() except that instead of returning
* a constant string, the string is duplicated.
*
* The string will always be UTF-8 encoded.
*
* The return value must be freed using g_free().
*
* Returns: (transfer full): a newly allocated string, UTF-8 encoded
*
* Since: 2.24
**/
gchar *
g_variant_dup_string (GVariant *value,
gsize *length)
{
return g_strdup (g_variant_get_string (value, length));
}
/**
* g_variant_new_strv:
* @strv: (array length=length) (element-type utf8): an array of strings
* @length: the length of @strv, or -1
*
* Constructs an array of strings #GVariant from the given array of
* strings.
*
* If @length is -1 then @strv is %NULL-terminated.
*
* Returns: (transfer none): a new floating #GVariant instance
*
* Since: 2.24
**/
GVariant *
g_variant_new_strv (const gchar * const *strv,
gssize length)
{
GVariant **strings;
gsize i, length_unsigned;
g_return_val_if_fail (length == 0 || strv != NULL, NULL);
if (length < 0)
length = g_strv_length ((gchar **) strv);
length_unsigned = length;
strings = g_new (GVariant *, length_unsigned);
for (i = 0; i < length_unsigned; i++)
strings[i] = g_variant_ref_sink (g_variant_new_string (strv[i]));
return g_variant_new_from_children (G_VARIANT_TYPE_STRING_ARRAY,
strings, length_unsigned, TRUE);
}
/**
* g_variant_get_strv:
* @value: an array of strings #GVariant
* @length: (out) (optional): the length of the result, or %NULL
*
* Gets the contents of an array of strings #GVariant. This call
* makes a shallow copy; the return result should be released with
* g_free(), but the individual strings must not be modified.
*
* If @length is non-%NULL then the number of elements in the result
* is stored there. In any case, the resulting array will be
* %NULL-terminated.
*
* For an empty array, @length will be set to 0 and a pointer to a
* %NULL pointer will be returned.
*
* Returns: (array length=length zero-terminated=1) (transfer container): an array of constant strings
*
* Since: 2.24
**/
const gchar **
g_variant_get_strv (GVariant *value,
gsize *length)
{
const gchar **strv;
gsize n;
gsize i;
TYPE_CHECK (value, G_VARIANT_TYPE_STRING_ARRAY, NULL);
g_variant_get_data (value);
n = g_variant_n_children (value);
strv = g_new (const gchar *, n + 1);
for (i = 0; i < n; i++)
{
GVariant *string;
string = g_variant_get_child_value (value, i);
strv[i] = g_variant_get_string (string, NULL);
g_variant_unref (string);
}
strv[i] = NULL;
if (length)
*length = n;
return strv;
}
/**
* g_variant_dup_strv:
* @value: an array of strings #GVariant
* @length: (out) (optional): the length of the result, or %NULL
*
* Gets the contents of an array of strings #GVariant. This call
* makes a deep copy; the return result should be released with
* g_strfreev().
*
* If @length is non-%NULL then the number of elements in the result
* is stored there. In any case, the resulting array will be
* %NULL-terminated.
*
* For an empty array, @length will be set to 0 and a pointer to a
* %NULL pointer will be returned.
*
* Returns: (array length=length zero-terminated=1) (transfer full): an array of strings
*
* Since: 2.24
**/
gchar **
g_variant_dup_strv (GVariant *value,
gsize *length)
{
gchar **strv;
gsize n;
gsize i;
TYPE_CHECK (value, G_VARIANT_TYPE_STRING_ARRAY, NULL);
n = g_variant_n_children (value);
strv = g_new (gchar *, n + 1);
for (i = 0; i < n; i++)
{
GVariant *string;
string = g_variant_get_child_value (value, i);
strv[i] = g_variant_dup_string (string, NULL);
g_variant_unref (string);
}
strv[i] = NULL;
if (length)
*length = n;
return strv;
}
/**
* g_variant_new_objv:
* @strv: (array length=length) (element-type utf8): an array of strings
* @length: the length of @strv, or -1
*
* Constructs an array of object paths #GVariant from the given array of
* strings.
*
* Each string must be a valid #GVariant object path; see
* g_variant_is_object_path().
*
* If @length is -1 then @strv is %NULL-terminated.
*
* Returns: (transfer none): a new floating #GVariant instance
*
* Since: 2.30
**/
GVariant *
g_variant_new_objv (const gchar * const *strv,
gssize length)
{
GVariant **strings;
gsize i, length_unsigned;
g_return_val_if_fail (length == 0 || strv != NULL, NULL);
if (length < 0)
length = g_strv_length ((gchar **) strv);
length_unsigned = length;
strings = g_new (GVariant *, length_unsigned);
for (i = 0; i < length_unsigned; i++)
strings[i] = g_variant_ref_sink (g_variant_new_object_path (strv[i]));
return g_variant_new_from_children (G_VARIANT_TYPE_OBJECT_PATH_ARRAY,
strings, length_unsigned, TRUE);
}
/**
* g_variant_get_objv:
* @value: an array of object paths #GVariant
* @length: (out) (optional): the length of the result, or %NULL
*
* Gets the contents of an array of object paths #GVariant. This call
* makes a shallow copy; the return result should be released with
* g_free(), but the individual strings must not be modified.
*
* If @length is non-%NULL then the number of elements in the result
* is stored there. In any case, the resulting array will be
* %NULL-terminated.
*
* For an empty array, @length will be set to 0 and a pointer to a
* %NULL pointer will be returned.
*
* Returns: (array length=length zero-terminated=1) (transfer container): an array of constant strings
*
* Since: 2.30
**/
const gchar **
g_variant_get_objv (GVariant *value,
gsize *length)
{
const gchar **strv;
gsize n;
gsize i;
TYPE_CHECK (value, G_VARIANT_TYPE_OBJECT_PATH_ARRAY, NULL);
g_variant_get_data (value);
n = g_variant_n_children (value);
strv = g_new (const gchar *, n + 1);
for (i = 0; i < n; i++)
{
GVariant *string;
string = g_variant_get_child_value (value, i);
strv[i] = g_variant_get_string (string, NULL);
g_variant_unref (string);
}
strv[i] = NULL;
if (length)
*length = n;
return strv;
}
/**
* g_variant_dup_objv:
* @value: an array of object paths #GVariant
* @length: (out) (optional): the length of the result, or %NULL
*
* Gets the contents of an array of object paths #GVariant. This call
* makes a deep copy; the return result should be released with
* g_strfreev().
*
* If @length is non-%NULL then the number of elements in the result
* is stored there. In any case, the resulting array will be
* %NULL-terminated.
*
* For an empty array, @length will be set to 0 and a pointer to a
* %NULL pointer will be returned.
*
* Returns: (array length=length zero-terminated=1) (transfer full): an array of strings
*
* Since: 2.30
**/
gchar **
g_variant_dup_objv (GVariant *value,
gsize *length)
{
gchar **strv;
gsize n;
gsize i;
TYPE_CHECK (value, G_VARIANT_TYPE_OBJECT_PATH_ARRAY, NULL);
n = g_variant_n_children (value);
strv = g_new (gchar *, n + 1);
for (i = 0; i < n; i++)
{
GVariant *string;
string = g_variant_get_child_value (value, i);
strv[i] = g_variant_dup_string (string, NULL);
g_variant_unref (string);
}
strv[i] = NULL;
if (length)
*length = n;
return strv;
}
/**
* g_variant_new_bytestring:
* @string: (array zero-terminated=1) (element-type guint8): a normal
* nul-terminated string in no particular encoding
*
* Creates an array-of-bytes #GVariant with the contents of @string.
* This function is just like g_variant_new_string() except that the
* string need not be valid UTF-8.
*
* The nul terminator character at the end of the string is stored in
* the array.
*
* Returns: (transfer none): a floating reference to a new bytestring #GVariant instance
*
* Since: 2.26
**/
GVariant *
g_variant_new_bytestring (const gchar *string)
{
g_return_val_if_fail (string != NULL, NULL);
return g_variant_new_from_trusted (G_VARIANT_TYPE_BYTESTRING,
string, strlen (string) + 1);
}
/**
* g_variant_get_bytestring:
* @value: an array-of-bytes #GVariant instance
*
* Returns the string value of a #GVariant instance with an
* array-of-bytes type. The string has no particular encoding.
*
* If the array does not end with a nul terminator character, the empty
* string is returned. For this reason, you can always trust that a
* non-%NULL nul-terminated string will be returned by this function.
*
* If the array contains a nul terminator character somewhere other than
* the last byte then the returned string is the string, up to the first
* such nul character.
*
* g_variant_get_fixed_array() should be used instead if the array contains
* arbitrary data that could not be nul-terminated or could contain nul bytes.
*
* It is an error to call this function with a @value that is not an
* array of bytes.
*
* The return value remains valid as long as @value exists.
*
* Returns: (transfer none) (array zero-terminated=1) (element-type guint8):
* the constant string
*
* Since: 2.26
**/
const gchar *
g_variant_get_bytestring (GVariant *value)
{
const gchar *string;
gsize size;
TYPE_CHECK (value, G_VARIANT_TYPE_BYTESTRING, NULL);
/* Won't be NULL since this is an array type */
string = g_variant_get_data (value);
size = g_variant_get_size (value);
if (size && string[size - 1] == '\0')
return string;
else
return "";
}
/**
* g_variant_dup_bytestring:
* @value: an array-of-bytes #GVariant instance
* @length: (out) (optional) (default NULL): a pointer to a #gsize, to store
* the length (not including the nul terminator)
*
* Similar to g_variant_get_bytestring() except that instead of
* returning a constant string, the string is duplicated.
*
* The return value must be freed using g_free().
*
* Returns: (transfer full) (array zero-terminated=1 length=length) (element-type guint8):
* a newly allocated string
*
* Since: 2.26
**/
gchar *
g_variant_dup_bytestring (GVariant *value,
gsize *length)
{
const gchar *original = g_variant_get_bytestring (value);
gsize size;
/* don't crash in case get_bytestring() had an assert failure */
if (original == NULL)
return NULL;
size = strlen (original);
if (length)
*length = size;
return g_memdup2 (original, size + 1);
}
/**
* g_variant_new_bytestring_array:
* @strv: (array length=length): an array of strings
* @length: the length of @strv, or -1
*
* Constructs an array of bytestring #GVariant from the given array of
* strings.
*
* If @length is -1 then @strv is %NULL-terminated.
*
* Returns: (transfer none): a new floating #GVariant instance
*
* Since: 2.26
**/
GVariant *
g_variant_new_bytestring_array (const gchar * const *strv,
gssize length)
{
GVariant **strings;
gsize i, length_unsigned;
g_return_val_if_fail (length == 0 || strv != NULL, NULL);
if (length < 0)
length = g_strv_length ((gchar **) strv);
length_unsigned = length;
strings = g_new (GVariant *, length_unsigned);
for (i = 0; i < length_unsigned; i++)
strings[i] = g_variant_ref_sink (g_variant_new_bytestring (strv[i]));
return g_variant_new_from_children (G_VARIANT_TYPE_BYTESTRING_ARRAY,
strings, length_unsigned, TRUE);
}
/**
* g_variant_get_bytestring_array:
* @value: an array of array of bytes #GVariant ('aay')
* @length: (out) (optional): the length of the result, or %NULL
*
* Gets the contents of an array of array of bytes #GVariant. This call
* makes a shallow copy; the return result should be released with
* g_free(), but the individual strings must not be modified.
*
* If @length is non-%NULL then the number of elements in the result is
* stored there. In any case, the resulting array will be
* %NULL-terminated.
*
* For an empty array, @length will be set to 0 and a pointer to a
* %NULL pointer will be returned.
*
* Returns: (array length=length) (transfer container): an array of constant strings
*
* Since: 2.26
**/
const gchar **
g_variant_get_bytestring_array (GVariant *value,
gsize *length)
{
const gchar **strv;
gsize n;
gsize i;
TYPE_CHECK (value, G_VARIANT_TYPE_BYTESTRING_ARRAY, NULL);
g_variant_get_data (value);
n = g_variant_n_children (value);
strv = g_new (const gchar *, n + 1);
for (i = 0; i < n; i++)
{
GVariant *string;
string = g_variant_get_child_value (value, i);
strv[i] = g_variant_get_bytestring (string);
g_variant_unref (string);
}
strv[i] = NULL;
if (length)
*length = n;
return strv;
}
/**
* g_variant_dup_bytestring_array:
* @value: an array of array of bytes #GVariant ('aay')
* @length: (out) (optional): the length of the result, or %NULL
*
* Gets the contents of an array of array of bytes #GVariant. This call
* makes a deep copy; the return result should be released with
* g_strfreev().
*
* If @length is non-%NULL then the number of elements in the result is
* stored there. In any case, the resulting array will be
* %NULL-terminated.
*
* For an empty array, @length will be set to 0 and a pointer to a
* %NULL pointer will be returned.
*
* Returns: (array length=length) (transfer full): an array of strings
*
* Since: 2.26
**/
gchar **
g_variant_dup_bytestring_array (GVariant *value,
gsize *length)
{
gchar **strv;
gsize n;
gsize i;
TYPE_CHECK (value, G_VARIANT_TYPE_BYTESTRING_ARRAY, NULL);
g_variant_get_data (value);
n = g_variant_n_children (value);
strv = g_new (gchar *, n + 1);
for (i = 0; i < n; i++)
{
GVariant *string;
string = g_variant_get_child_value (value, i);
strv[i] = g_variant_dup_bytestring (string, NULL);
g_variant_unref (string);
}
strv[i] = NULL;
if (length)
*length = n;
return strv;
}
/* Type checking and querying {{{1 */
/**
* g_variant_get_type:
* @value: a #GVariant
*
* Determines the type of @value.
*
* The return value is valid for the lifetime of @value and must not
* be freed.
*
* Returns: a #GVariantType
*
* Since: 2.24
**/
const GVariantType *
g_variant_get_type (GVariant *value)
{
GVariantTypeInfo *type_info;
g_return_val_if_fail (value != NULL, NULL);
type_info = g_variant_get_type_info (value);
return (GVariantType *) g_variant_type_info_get_type_string (type_info);
}
/**
* g_variant_get_type_string:
* @value: a #GVariant
*
* Returns the type string of @value. Unlike the result of calling
* g_variant_type_peek_string(), this string is nul-terminated. This
* string belongs to #GVariant and must not be freed.
*
* Returns: the type string for the type of @value
*
* Since: 2.24
**/
const gchar *
g_variant_get_type_string (GVariant *value)
{
GVariantTypeInfo *type_info;
g_return_val_if_fail (value != NULL, NULL);
type_info = g_variant_get_type_info (value);
return g_variant_type_info_get_type_string (type_info);
}
/**
* g_variant_is_of_type:
* @value: a #GVariant instance
* @type: a #GVariantType
*
* Checks if a value has a type matching the provided type.
*
* Returns: %TRUE if the type of @value matches @type
*
* Since: 2.24
**/
gboolean
g_variant_is_of_type (GVariant *value,
const GVariantType *type)
{
return g_variant_type_is_subtype_of (g_variant_get_type (value), type);
}
/**
* g_variant_is_container:
* @value: a #GVariant instance
*
* Checks if @value is a container.
*
* Returns: %TRUE if @value is a container
*
* Since: 2.24
*/
gboolean
g_variant_is_container (GVariant *value)
{
return g_variant_type_is_container (g_variant_get_type (value));
}
/**
* g_variant_classify:
* @value: a #GVariant
*
* Classifies @value according to its top-level type.
*
* Returns: the #GVariantClass of @value
*
* Since: 2.24
**/
/**
* GVariantClass:
* @G_VARIANT_CLASS_BOOLEAN: The #GVariant is a boolean.
* @G_VARIANT_CLASS_BYTE: The #GVariant is a byte.
* @G_VARIANT_CLASS_INT16: The #GVariant is a signed 16 bit integer.
* @G_VARIANT_CLASS_UINT16: The #GVariant is an unsigned 16 bit integer.
* @G_VARIANT_CLASS_INT32: The #GVariant is a signed 32 bit integer.
* @G_VARIANT_CLASS_UINT32: The #GVariant is an unsigned 32 bit integer.
* @G_VARIANT_CLASS_INT64: The #GVariant is a signed 64 bit integer.
* @G_VARIANT_CLASS_UINT64: The #GVariant is an unsigned 64 bit integer.
* @G_VARIANT_CLASS_HANDLE: The #GVariant is a file handle index.
* @G_VARIANT_CLASS_DOUBLE: The #GVariant is a double precision floating
* point value.
* @G_VARIANT_CLASS_STRING: The #GVariant is a normal string.
* @G_VARIANT_CLASS_OBJECT_PATH: The #GVariant is a D-Bus object path
* string.
* @G_VARIANT_CLASS_SIGNATURE: The #GVariant is a D-Bus signature string.
* @G_VARIANT_CLASS_VARIANT: The #GVariant is a variant.
* @G_VARIANT_CLASS_MAYBE: The #GVariant is a maybe-typed value.
* @G_VARIANT_CLASS_ARRAY: The #GVariant is an array.
* @G_VARIANT_CLASS_TUPLE: The #GVariant is a tuple.
* @G_VARIANT_CLASS_DICT_ENTRY: The #GVariant is a dictionary entry.
*
* The range of possible top-level types of #GVariant instances.
*
* Since: 2.24
**/
GVariantClass
g_variant_classify (GVariant *value)
{
g_return_val_if_fail (value != NULL, 0);
return *g_variant_get_type_string (value);
}
/* Pretty printer {{{1 */
/* This function is not introspectable because if @string is NULL,
@returns is (transfer full), otherwise it is (transfer none), which
is not supported by GObjectIntrospection */
/**
* g_variant_print_string: (skip)
* @value: a #GVariant
* @string: (nullable) (default NULL): a #GString, or %NULL
* @type_annotate: %TRUE if type information should be included in
* the output
*
* Behaves as g_variant_print(), but operates on a #GString.
*
* If @string is non-%NULL then it is appended to and returned. Else,
* a new empty #GString is allocated and it is returned.
*
* Returns: a #GString containing the string
*
* Since: 2.24
**/
GString *
g_variant_print_string (GVariant *value,
GString *string,
gboolean type_annotate)
{
const gchar *value_type_string = g_variant_get_type_string (value);
if G_UNLIKELY (string == NULL)
string = g_string_new (NULL);
switch (value_type_string[0])
{
case G_VARIANT_CLASS_MAYBE:
if (type_annotate)
g_string_append_printf (string, "@%s ", value_type_string);
if (g_variant_n_children (value))
{
const GVariantType *base_type;
guint i, depth;
GVariant *element = NULL;
/* Nested maybes:
*
* Consider the case of the type "mmi". In this case we could
* write "just just 4", but "4" alone is totally unambiguous,
* so we try to drop "just" where possible.
*
* We have to be careful not to always drop "just", though,
* since "nothing" needs to be distinguishable from "just
* nothing". The case where we need to ensure we keep the
* "just" is actually exactly the case where we have a nested
* Nothing.
*
* Search for the nested Nothing, to save a lot of recursion if there
* are multiple levels of maybes.
*/
for (depth = 0, base_type = g_variant_get_type (value);
g_variant_type_is_maybe (base_type);
depth++, base_type = g_variant_type_element (base_type));
element = g_variant_ref (value);
for (i = 0; i < depth && element != NULL; i++)
{
GVariant *new_element = g_variant_n_children (element) ? g_variant_get_child_value (element, 0) : NULL;
g_variant_unref (element);
element = g_steal_pointer (&new_element);
}
if (element == NULL)
{
/* One of the maybes was Nothing, so print out the right number of
* justs. */
for (; i > 1; i--)
g_string_append (string, "just ");
g_string_append (string, "nothing");
}
else
{
/* There are no Nothings, so print out the child with no prefixes. */
g_variant_print_string (element, string, FALSE);
}
g_clear_pointer (&element, g_variant_unref);
}
else
g_string_append (string, "nothing");
break;
case G_VARIANT_CLASS_ARRAY:
/* it's an array so the first character of the type string is 'a'
*
* if the first two characters are 'ay' then it's a bytestring.
* under certain conditions we print those as strings.
*/
if (value_type_string[1] == 'y')
{
const gchar *str;
gsize size;
gsize i;
/* first determine if it is a byte string.
* that's when there's a single nul character: at the end.
*/
str = g_variant_get_data (value);
size = g_variant_get_size (value);
for (i = 0; i < size; i++)
if (str[i] == '\0')
break;
/* first nul byte is the last byte -> it's a byte string. */
if (i == size - 1)
{
gchar *escaped = g_strescape (str, NULL);
/* use double quotes only if a ' is in the string */
if (strchr (str, '\''))
g_string_append_printf (string, "b\"%s\"", escaped);
else
g_string_append_printf (string, "b'%s'", escaped);
g_free (escaped);
break;
}
else
{
/* fall through and handle normally... */
}
}
/*
* if the first two characters are 'a{' then it's an array of
* dictionary entries (ie: a dictionary) so we print that
* differently.
*/
if (value_type_string[1] == '{')
/* dictionary */
{
const gchar *comma = "";
gsize n, i;
if ((n = g_variant_n_children (value)) == 0)
{
if (type_annotate)
g_string_append_printf (string, "@%s ", value_type_string);
g_string_append (string, "{}");
break;
}
g_string_append_c (string, '{');
for (i = 0; i < n; i++)
{
GVariant *entry, *key, *val;
g_string_append (string, comma);
comma = ", ";
entry = g_variant_get_child_value (value, i);
key = g_variant_get_child_value (entry, 0);
val = g_variant_get_child_value (entry, 1);
g_variant_unref (entry);
g_variant_print_string (key, string, type_annotate);
g_variant_unref (key);
g_string_append (string, ": ");
g_variant_print_string (val, string, type_annotate);
g_variant_unref (val);
type_annotate = FALSE;
}
g_string_append_c (string, '}');
}
else
/* normal (non-dictionary) array */
{
const gchar *comma = "";
gsize n, i;
if ((n = g_variant_n_children (value)) == 0)
{
if (type_annotate)
g_string_append_printf (string, "@%s ", value_type_string);
g_string_append (string, "[]");
break;
}
g_string_append_c (string, '[');
for (i = 0; i < n; i++)
{
GVariant *element;
g_string_append (string, comma);
comma = ", ";
element = g_variant_get_child_value (value, i);
g_variant_print_string (element, string, type_annotate);
g_variant_unref (element);
type_annotate = FALSE;
}
g_string_append_c (string, ']');
}
break;
case G_VARIANT_CLASS_TUPLE:
{
gsize n, i;
n = g_variant_n_children (value);
g_string_append_c (string, '(');
for (i = 0; i < n; i++)
{
GVariant *element;
element = g_variant_get_child_value (value, i);
g_variant_print_string (element, string, type_annotate);
g_string_append (string, ", ");
g_variant_unref (element);
}
/* for >1 item: remove final ", "
* for 1 item: remove final " ", but leave the ","
* for 0 items: there is only "(", so remove nothing
*/
g_string_truncate (string, string->len - (n > 0) - (n > 1));
g_string_append_c (string, ')');
}
break;
case G_VARIANT_CLASS_DICT_ENTRY:
{
GVariant *element;
g_string_append_c (string, '{');
element = g_variant_get_child_value (value, 0);
g_variant_print_string (element, string, type_annotate);
g_variant_unref (element);
g_string_append (string, ", ");
element = g_variant_get_child_value (value, 1);
g_variant_print_string (element, string, type_annotate);
g_variant_unref (element);
g_string_append_c (string, '}');
}
break;
case G_VARIANT_CLASS_VARIANT:
{
GVariant *child = g_variant_get_variant (value);
/* Always annotate types in nested variants, because they are
* (by nature) of variable type.
*/
g_string_append_c (string, '<');
g_variant_print_string (child, string, TRUE);
g_string_append_c (string, '>');
g_variant_unref (child);
}
break;
case G_VARIANT_CLASS_BOOLEAN:
if (g_variant_get_boolean (value))
g_string_append (string, "true");
else
g_string_append (string, "false");
break;
case G_VARIANT_CLASS_STRING:
{
const gchar *str = g_variant_get_string (value, NULL);
gunichar quote = strchr (str, '\'') ? '"' : '\'';
g_string_append_c (string, quote);
while (*str)
{
gunichar c = g_utf8_get_char (str);
if (c == quote || c == '\\')
g_string_append_c (string, '\\');
if (g_unichar_isprint (c))
g_string_append_unichar (string, c);
else
{
g_string_append_c (string, '\\');
if (c < 0x10000)
switch (c)
{
case '\a':
g_string_append_c (string, 'a');
break;
case '\b':
g_string_append_c (string, 'b');
break;
case '\f':
g_string_append_c (string, 'f');
break;
case '\n':
g_string_append_c (string, 'n');
break;
case '\r':
g_string_append_c (string, 'r');
break;
case '\t':
g_string_append_c (string, 't');
break;
case '\v':
g_string_append_c (string, 'v');
break;
default:
g_string_append_printf (string, "u%04x", c);
break;
}
else
g_string_append_printf (string, "U%08x", c);
}
str = g_utf8_next_char (str);
}
g_string_append_c (string, quote);
}
break;
case G_VARIANT_CLASS_BYTE:
if (type_annotate)
g_string_append (string, "byte ");
g_string_append_printf (string, "0x%02x",
g_variant_get_byte (value));
break;
case G_VARIANT_CLASS_INT16:
if (type_annotate)
g_string_append (string, "int16 ");
g_string_append_printf (string, "%"G_GINT16_FORMAT,
g_variant_get_int16 (value));
break;
case G_VARIANT_CLASS_UINT16:
if (type_annotate)
g_string_append (string, "uint16 ");
g_string_append_printf (string, "%"G_GUINT16_FORMAT,
g_variant_get_uint16 (value));
break;
case G_VARIANT_CLASS_INT32:
/* Never annotate this type because it is the default for numbers
* (and this is a *pretty* printer)
*/
g_string_append_printf (string, "%"G_GINT32_FORMAT,
g_variant_get_int32 (value));
break;
case G_VARIANT_CLASS_HANDLE:
if (type_annotate)
g_string_append (string, "handle ");
g_string_append_printf (string, "%"G_GINT32_FORMAT,
g_variant_get_handle (value));
break;
case G_VARIANT_CLASS_UINT32:
if (type_annotate)
g_string_append (string, "uint32 ");
g_string_append_printf (string, "%"G_GUINT32_FORMAT,
g_variant_get_uint32 (value));
break;
case G_VARIANT_CLASS_INT64:
if (type_annotate)
g_string_append (string, "int64 ");
g_string_append_printf (string, "%"G_GINT64_FORMAT,
g_variant_get_int64 (value));
break;
case G_VARIANT_CLASS_UINT64:
if (type_annotate)
g_string_append (string, "uint64 ");
g_string_append_printf (string, "%"G_GUINT64_FORMAT,
g_variant_get_uint64 (value));
break;
case G_VARIANT_CLASS_DOUBLE:
{
gchar buffer[100];
gint i;
g_ascii_dtostr (buffer, sizeof buffer, g_variant_get_double (value));
for (i = 0; buffer[i]; i++)
if (buffer[i] == '.' || buffer[i] == 'e' ||
buffer[i] == 'n' || buffer[i] == 'N')
break;
/* if there is no '.' or 'e' in the float then add one */
if (buffer[i] == '\0')
{
buffer[i++] = '.';
buffer[i++] = '0';
buffer[i++] = '\0';
}
g_string_append (string, buffer);
}
break;
case G_VARIANT_CLASS_OBJECT_PATH:
if (type_annotate)
g_string_append (string, "objectpath ");
g_string_append_printf (string, "\'%s\'",
g_variant_get_string (value, NULL));
break;
case G_VARIANT_CLASS_SIGNATURE:
if (type_annotate)
g_string_append (string, "signature ");
g_string_append_printf (string, "\'%s\'",
g_variant_get_string (value, NULL));
break;
default:
g_assert_not_reached ();
}
return string;
}
/**
* g_variant_print:
* @value: a #GVariant
* @type_annotate: %TRUE if type information should be included in
* the output
*
* Pretty-prints @value in the format understood by g_variant_parse().
*
* The format is described [here][gvariant-text].
*
* If @type_annotate is %TRUE, then type information is included in
* the output.
*
* Returns: (transfer full): a newly-allocated string holding the result.
*
* Since: 2.24
*/
gchar *
g_variant_print (GVariant *value,
gboolean type_annotate)
{
return g_string_free (g_variant_print_string (value, NULL, type_annotate),
FALSE);
}
/* Hash, Equal, Compare {{{1 */
/**
* g_variant_hash:
* @value: (type GVariant): a basic #GVariant value as a #gconstpointer
*
* Generates a hash value for a #GVariant instance.
*
* The output of this function is guaranteed to be the same for a given
* value only per-process. It may change between different processor
* architectures or even different versions of GLib. Do not use this
* function as a basis for building protocols or file formats.
*
* The type of @value is #gconstpointer only to allow use of this
* function with #GHashTable. @value must be a #GVariant.
*
* Returns: a hash value corresponding to @value
*
* Since: 2.24
**/
guint
g_variant_hash (gconstpointer value_)
{
GVariant *value = (GVariant *) value_;
switch (g_variant_classify (value))
{
case G_VARIANT_CLASS_STRING:
case G_VARIANT_CLASS_OBJECT_PATH:
case G_VARIANT_CLASS_SIGNATURE:
return g_str_hash (g_variant_get_string (value, NULL));
case G_VARIANT_CLASS_BOOLEAN:
/* this is a very odd thing to hash... */
return g_variant_get_boolean (value);
case G_VARIANT_CLASS_BYTE:
return g_variant_get_byte (value);
case G_VARIANT_CLASS_INT16:
case G_VARIANT_CLASS_UINT16:
{
const guint16 *ptr;
ptr = g_variant_get_data (value);
if (ptr)
return *ptr;
else
return 0;
}
case G_VARIANT_CLASS_INT32:
case G_VARIANT_CLASS_UINT32:
case G_VARIANT_CLASS_HANDLE:
{
const guint *ptr;
ptr = g_variant_get_data (value);
if (ptr)
return *ptr;
else
return 0;
}
case G_VARIANT_CLASS_INT64:
case G_VARIANT_CLASS_UINT64:
case G_VARIANT_CLASS_DOUBLE:
/* need a separate case for these guys because otherwise
* performance could be quite bad on big endian systems
*/
{
const guint *ptr;
ptr = g_variant_get_data (value);
if (ptr)
return ptr[0] + ptr[1];
else
return 0;
}
default:
g_return_val_if_fail (!g_variant_is_container (value), 0);
g_assert_not_reached ();
}
}
/**
* g_variant_equal:
* @one: (type GVariant): a #GVariant instance
* @two: (type GVariant): a #GVariant instance
*
* Checks if @one and @two have the same type and value.
*
* The types of @one and @two are #gconstpointer only to allow use of
* this function with #GHashTable. They must each be a #GVariant.
*
* Returns: %TRUE if @one and @two are equal
*
* Since: 2.24
**/
gboolean
g_variant_equal (gconstpointer one,
gconstpointer two)
{
gboolean equal;
g_return_val_if_fail (one != NULL && two != NULL, FALSE);
if (g_variant_get_type_info ((GVariant *) one) !=
g_variant_get_type_info ((GVariant *) two))
return FALSE;
/* if both values are trusted to be in their canonical serialized form
* then a simple memcmp() of their serialized data will answer the
* question.
*
* if not, then this might generate a false negative (since it is
* possible for two different byte sequences to represent the same
* value). for now we solve this by pretty-printing both values and
* comparing the result.
*/
if (g_variant_is_trusted ((GVariant *) one) &&
g_variant_is_trusted ((GVariant *) two))
{
gconstpointer data_one, data_two;
gsize size_one, size_two;
size_one = g_variant_get_size ((GVariant *) one);
size_two = g_variant_get_size ((GVariant *) two);
if (size_one != size_two)
return FALSE;
data_one = g_variant_get_data ((GVariant *) one);
data_two = g_variant_get_data ((GVariant *) two);
if (size_one)
equal = memcmp (data_one, data_two, size_one) == 0;
else
equal = TRUE;
}
else
{
gchar *strone, *strtwo;
strone = g_variant_print ((GVariant *) one, FALSE);
strtwo = g_variant_print ((GVariant *) two, FALSE);
equal = strcmp (strone, strtwo) == 0;
g_free (strone);
g_free (strtwo);
}
return equal;
}
/**
* g_variant_compare:
* @one: (type GVariant): a basic-typed #GVariant instance
* @two: (type GVariant): a #GVariant instance of the same type
*
* Compares @one and @two.
*
* The types of @one and @two are #gconstpointer only to allow use of
* this function with #GTree, #GPtrArray, etc. They must each be a
* #GVariant.
*
* Comparison is only defined for basic types (ie: booleans, numbers,
* strings). For booleans, %FALSE is less than %TRUE. Numbers are
* ordered in the usual way. Strings are in ASCII lexographical order.
*
* It is a programmer error to attempt to compare container values or
* two values that have types that are not exactly equal. For example,
* you cannot compare a 32-bit signed integer with a 32-bit unsigned
* integer. Also note that this function is not particularly
* well-behaved when it comes to comparison of doubles; in particular,
* the handling of incomparable values (ie: NaN) is undefined.
*
* If you only require an equality comparison, g_variant_equal() is more
* general.
*
* Returns: negative value if a < b;
* zero if a = b;
* positive value if a > b.
*
* Since: 2.26
**/
gint
g_variant_compare (gconstpointer one,
gconstpointer two)
{
GVariant *a = (GVariant *) one;
GVariant *b = (GVariant *) two;
g_return_val_if_fail (g_variant_classify (a) == g_variant_classify (b), 0);
switch (g_variant_classify (a))
{
case G_VARIANT_CLASS_BOOLEAN:
return g_variant_get_boolean (a) -
g_variant_get_boolean (b);
case G_VARIANT_CLASS_BYTE:
return ((gint) g_variant_get_byte (a)) -
((gint) g_variant_get_byte (b));
case G_VARIANT_CLASS_INT16:
return ((gint) g_variant_get_int16 (a)) -
((gint) g_variant_get_int16 (b));
case G_VARIANT_CLASS_UINT16:
return ((gint) g_variant_get_uint16 (a)) -
((gint) g_variant_get_uint16 (b));
case G_VARIANT_CLASS_INT32:
{
gint32 a_val = g_variant_get_int32 (a);
gint32 b_val = g_variant_get_int32 (b);
return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
}
case G_VARIANT_CLASS_UINT32:
{
guint32 a_val = g_variant_get_uint32 (a);
guint32 b_val = g_variant_get_uint32 (b);
return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
}
case G_VARIANT_CLASS_INT64:
{
gint64 a_val = g_variant_get_int64 (a);
gint64 b_val = g_variant_get_int64 (b);
return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
}
case G_VARIANT_CLASS_UINT64:
{
guint64 a_val = g_variant_get_uint64 (a);
guint64 b_val = g_variant_get_uint64 (b);
return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
}
case G_VARIANT_CLASS_DOUBLE:
{
gdouble a_val = g_variant_get_double (a);
gdouble b_val = g_variant_get_double (b);
return (a_val == b_val) ? 0 : (a_val > b_val) ? 1 : -1;
}
case G_VARIANT_CLASS_STRING:
case G_VARIANT_CLASS_OBJECT_PATH:
case G_VARIANT_CLASS_SIGNATURE:
return strcmp (g_variant_get_string (a, NULL),
g_variant_get_string (b, NULL));
default:
g_return_val_if_fail (!g_variant_is_container (a), 0);
g_assert_not_reached ();
}
}
/* GVariantIter {{{1 */
/**
* GVariantIter: (skip)
*
* #GVariantIter is an opaque data structure and can only be accessed
* using the following functions.
**/
struct stack_iter
{
GVariant *value;
gssize n, i;
const gchar *loop_format;
gsize padding[3];
gsize magic;
};
G_STATIC_ASSERT (sizeof (struct stack_iter) <= sizeof (GVariantIter));
struct heap_iter
{
struct stack_iter iter;
GVariant *value_ref;
gsize magic;
};
G_STATIC_ASSERT (sizeof (struct heap_iter) <= sizeof (GVariantIter));
#define GVSI(i) ((struct stack_iter *) (i))
#define GVHI(i) ((struct heap_iter *) (i))
#define GVSI_MAGIC ((gsize) 3579507750u)
#define GVHI_MAGIC ((gsize) 1450270775u)
#define is_valid_iter(i) (i != NULL && \
GVSI(i)->magic == GVSI_MAGIC)
#define is_valid_heap_iter(i) (is_valid_iter(i) && \
GVHI(i)->magic == GVHI_MAGIC)
/**
* g_variant_iter_new:
* @value: a container #GVariant
*
* Creates a heap-allocated #GVariantIter for iterating over the items
* in @value.
*
* Use g_variant_iter_free() to free the return value when you no longer
* need it.
*
* A reference is taken to @value and will be released only when
* g_variant_iter_free() is called.
*
* Returns: (transfer full): a new heap-allocated #GVariantIter
*
* Since: 2.24
**/
GVariantIter *
g_variant_iter_new (GVariant *value)
{
GVariantIter *iter;
iter = (GVariantIter *) g_slice_new (struct heap_iter);
GVHI(iter)->value_ref = g_variant_ref (value);
GVHI(iter)->magic = GVHI_MAGIC;
g_variant_iter_init (iter, value);
return iter;
}
/**
* g_variant_iter_init: (skip)
* @iter: a pointer to a #GVariantIter
* @value: a container #GVariant
*
* Initialises (without allocating) a #GVariantIter. @iter may be
* completely uninitialised prior to this call; its old value is
* ignored.
*
* The iterator remains valid for as long as @value exists, and need not
* be freed in any way.
*
* Returns: the number of items in @value
*
* Since: 2.24
**/
gsize
g_variant_iter_init (GVariantIter *iter,
GVariant *value)
{
GVSI(iter)->magic = GVSI_MAGIC;
GVSI(iter)->value = value;
GVSI(iter)->n = g_variant_n_children (value);
GVSI(iter)->i = -1;
GVSI(iter)->loop_format = NULL;
return GVSI(iter)->n;
}
/**
* g_variant_iter_copy:
* @iter: a #GVariantIter
*
* Creates a new heap-allocated #GVariantIter to iterate over the
* container that was being iterated over by @iter. Iteration begins on
* the new iterator from the current position of the old iterator but
* the two copies are independent past that point.
*
* Use g_variant_iter_free() to free the return value when you no longer
* need it.
*
* A reference is taken to the container that @iter is iterating over
* and will be related only when g_variant_iter_free() is called.
*
* Returns: (transfer full): a new heap-allocated #GVariantIter
*
* Since: 2.24
**/
GVariantIter *
g_variant_iter_copy (GVariantIter *iter)
{
GVariantIter *copy;
g_return_val_if_fail (is_valid_iter (iter), 0);
copy = g_variant_iter_new (GVSI(iter)->value);
GVSI(copy)->i = GVSI(iter)->i;
return copy;
}
/**
* g_variant_iter_n_children:
* @iter: a #GVariantIter
*
* Queries the number of child items in the container that we are
* iterating over. This is the total number of items -- not the number
* of items remaining.
*
* This function might be useful for preallocation of arrays.
*
* Returns: the number of children in the container
*
* Since: 2.24
**/
gsize
g_variant_iter_n_children (GVariantIter *iter)
{
g_return_val_if_fail (is_valid_iter (iter), 0);
return GVSI(iter)->n;
}
/**
* g_variant_iter_free:
* @iter: (transfer full): a heap-allocated #GVariantIter
*
* Frees a heap-allocated #GVariantIter. Only call this function on
* iterators that were returned by g_variant_iter_new() or
* g_variant_iter_copy().
*
* Since: 2.24
**/
void
g_variant_iter_free (GVariantIter *iter)
{
g_return_if_fail (is_valid_heap_iter (iter));
g_variant_unref (GVHI(iter)->value_ref);
GVHI(iter)->magic = 0;
g_slice_free (struct heap_iter, GVHI(iter));
}
/**
* g_variant_iter_next_value:
* @iter: a #GVariantIter
*
* Gets the next item in the container. If no more items remain then
* %NULL is returned.
*
* Use g_variant_unref() to drop your reference on the return value when
* you no longer need it.
*
* Here is an example for iterating with g_variant_iter_next_value():
* |[<!-- language="C" -->
* // recursively iterate a container
* void
* iterate_container_recursive (GVariant *container)
* {
* GVariantIter iter;
* GVariant *child;
*
* g_variant_iter_init (&iter, container);
* while ((child = g_variant_iter_next_value (&iter)))
* {
* g_print ("type '%s'\n", g_variant_get_type_string (child));
*
* if (g_variant_is_container (child))
* iterate_container_recursive (child);
*
* g_variant_unref (child);
* }
* }
* ]|
*
* Returns: (nullable) (transfer full): a #GVariant, or %NULL
*
* Since: 2.24
**/
GVariant *
g_variant_iter_next_value (GVariantIter *iter)
{
g_return_val_if_fail (is_valid_iter (iter), FALSE);
if G_UNLIKELY (GVSI(iter)->i >= GVSI(iter)->n)
{
g_critical ("g_variant_iter_next_value: must not be called again "
"after NULL has already been returned.");
return NULL;
}
GVSI(iter)->i++;
if (GVSI(iter)->i < GVSI(iter)->n)
return g_variant_get_child_value (GVSI(iter)->value, GVSI(iter)->i);
return NULL;
}
/* GVariantBuilder {{{1 */
/**
* GVariantBuilder:
*
* A utility type for constructing container-type #GVariant instances.
*
* This is an opaque structure and may only be accessed using the
* following functions.
*
* #GVariantBuilder is not threadsafe in any way. Do not attempt to
* access it from more than one thread.
**/
struct stack_builder
{
GVariantBuilder *parent;
GVariantType *type;
/* type constraint explicitly specified by 'type'.
* for tuple types, this moves along as we add more items.
*/
const GVariantType *expected_type;
/* type constraint implied by previous array item.
*/
const GVariantType *prev_item_type;
/* constraints on the number of children. max = -1 for unlimited. */
gsize min_items;
gsize max_items;
/* dynamically-growing pointer array */
GVariant **children;
gsize allocated_children;
gsize offset;
/* set to '1' if all items in the container will have the same type
* (ie: maybe, array, variant) '0' if not (ie: tuple, dict entry)
*/
guint uniform_item_types : 1;
/* set to '1' initially and changed to '0' if an untrusted value is
* added
*/
guint trusted : 1;
gsize magic;
};
G_STATIC_ASSERT (sizeof (struct stack_builder) <= sizeof (GVariantBuilder));
struct heap_builder
{
GVariantBuilder builder;
gsize magic;
gint ref_count;
};
#define GVSB(b) ((struct stack_builder *) (b))
#define GVHB(b) ((struct heap_builder *) (b))
#define GVSB_MAGIC ((gsize) 1033660112u)
#define GVSB_MAGIC_PARTIAL ((gsize) 2942751021u)
#define GVHB_MAGIC ((gsize) 3087242682u)
#define is_valid_builder(b) (GVSB(b)->magic == GVSB_MAGIC)
#define is_valid_heap_builder(b) (GVHB(b)->magic == GVHB_MAGIC)
/* Just to make sure that by adding a union to GVariantBuilder, we
* didn't accidentally change ABI. */
G_STATIC_ASSERT (sizeof (GVariantBuilder) == sizeof (guintptr[16]));
static gboolean
ensure_valid_builder (GVariantBuilder *builder)
{
if (builder == NULL)
return FALSE;
else if (is_valid_builder (builder))
return TRUE;
if (builder->u.s.partial_magic == GVSB_MAGIC_PARTIAL)
{
static GVariantBuilder cleared_builder;
/* Make sure that only first two fields were set and the rest is
* zeroed to avoid messing up the builder that had parent
* address equal to GVSB_MAGIC_PARTIAL. */
if (memcmp (cleared_builder.u.s.y, builder->u.s.y, sizeof cleared_builder.u.s.y))
return FALSE;
g_variant_builder_init (builder, builder->u.s.type);
}
return is_valid_builder (builder);
}
/* return_if_invalid_builder (b) is like
* g_return_if_fail (ensure_valid_builder (b)), except that
* the side effects of ensure_valid_builder are evaluated
* regardless of whether G_DISABLE_CHECKS is defined or not. */
#define return_if_invalid_builder(b) G_STMT_START { \
gboolean valid_builder G_GNUC_UNUSED = ensure_valid_builder (b); \
g_return_if_fail (valid_builder); \
} G_STMT_END
/* return_val_if_invalid_builder (b, val) is like
* g_return_val_if_fail (ensure_valid_builder (b), val), except that
* the side effects of ensure_valid_builder are evaluated
* regardless of whether G_DISABLE_CHECKS is defined or not. */
#define return_val_if_invalid_builder(b, val) G_STMT_START { \
gboolean valid_builder G_GNUC_UNUSED = ensure_valid_builder (b); \
g_return_val_if_fail (valid_builder, val); \
} G_STMT_END
/**
* g_variant_builder_new:
* @type: a container type
*
* Allocates and initialises a new #GVariantBuilder.
*
* You should call g_variant_builder_unref() on the return value when it
* is no longer needed. The memory will not be automatically freed by
* any other call.
*
* In most cases it is easier to place a #GVariantBuilder directly on
* the stack of the calling function and initialise it with
* g_variant_builder_init().
*
* Returns: (transfer full): a #GVariantBuilder
*
* Since: 2.24
**/
GVariantBuilder *
g_variant_builder_new (const GVariantType *type)
{
GVariantBuilder *builder;
builder = (GVariantBuilder *) g_slice_new (struct heap_builder);
g_variant_builder_init (builder, type);
GVHB(builder)->magic = GVHB_MAGIC;
GVHB(builder)->ref_count = 1;
return builder;
}
/**
* g_variant_builder_unref:
* @builder: (transfer full): a #GVariantBuilder allocated by g_variant_builder_new()
*
* Decreases the reference count on @builder.
*
* In the event that there are no more references, releases all memory
* associated with the #GVariantBuilder.
*
* Don't call this on stack-allocated #GVariantBuilder instances or bad
* things will happen.
*
* Since: 2.24
**/
void
g_variant_builder_unref (GVariantBuilder *builder)
{
g_return_if_fail (is_valid_heap_builder (builder));
if (--GVHB(builder)->ref_count)
return;
g_variant_builder_clear (builder);
GVHB(builder)->magic = 0;
g_slice_free (struct heap_builder, GVHB(builder));
}
/**
* g_variant_builder_ref:
* @builder: a #GVariantBuilder allocated by g_variant_builder_new()
*
* Increases the reference count on @builder.
*
* Don't call this on stack-allocated #GVariantBuilder instances or bad
* things will happen.
*
* Returns: (transfer full): a new reference to @builder
*
* Since: 2.24
**/
GVariantBuilder *
g_variant_builder_ref (GVariantBuilder *builder)
{
g_return_val_if_fail (is_valid_heap_builder (builder), NULL);
GVHB(builder)->ref_count++;
return builder;
}
/**
* g_variant_builder_clear: (skip)
* @builder: a #GVariantBuilder
*
* Releases all memory associated with a #GVariantBuilder without
* freeing the #GVariantBuilder structure itself.
*
* It typically only makes sense to do this on a stack-allocated
* #GVariantBuilder if you want to abort building the value part-way
* through. This function need not be called if you call
* g_variant_builder_end() and it also doesn't need to be called on
* builders allocated with g_variant_builder_new() (see
* g_variant_builder_unref() for that).
*
* This function leaves the #GVariantBuilder structure set to all-zeros.
* It is valid to call this function on either an initialised
* #GVariantBuilder or one that is set to all-zeros but it is not valid
* to call this function on uninitialised memory.
*
* Since: 2.24
**/
void
g_variant_builder_clear (GVariantBuilder *builder)
{
gsize i;
if (GVSB(builder)->magic == 0)
/* all-zeros or partial case */
return;
return_if_invalid_builder (builder);
g_variant_type_free (GVSB(builder)->type);
for (i = 0; i < GVSB(builder)->offset; i++)
g_variant_unref (GVSB(builder)->children[i]);
g_free (GVSB(builder)->children);
if (GVSB(builder)->parent)
{
g_variant_builder_clear (GVSB(builder)->parent);
g_slice_free (GVariantBuilder, GVSB(builder)->parent);
}
memset (builder, 0, sizeof (GVariantBuilder));
}
/**
* g_variant_builder_init: (skip)
* @builder: a #GVariantBuilder
* @type: a container type
*
* Initialises a #GVariantBuilder structure.
*
* @type must be non-%NULL. It specifies the type of container to
* construct. It can be an indefinite type such as
* %G_VARIANT_TYPE_ARRAY or a definite type such as "as" or "(ii)".
* Maybe, array, tuple, dictionary entry and variant-typed values may be
* constructed.
*
* After the builder is initialised, values are added using
* g_variant_builder_add_value() or g_variant_builder_add().
*
* After all the child values are added, g_variant_builder_end() frees
* the memory associated with the builder and returns the #GVariant that
* was created.
*
* This function completely ignores the previous contents of @builder.
* On one hand this means that it is valid to pass in completely
* uninitialised memory. On the other hand, this means that if you are
* initialising over top of an existing #GVariantBuilder you need to
* first call g_variant_builder_clear() in order to avoid leaking
* memory.
*
* You must not call g_variant_builder_ref() or
* g_variant_builder_unref() on a #GVariantBuilder that was initialised
* with this function. If you ever pass a reference to a
* #GVariantBuilder outside of the control of your own code then you
* should assume that the person receiving that reference may try to use
* reference counting; you should use g_variant_builder_new() instead of
* this function.
*
* Since: 2.24
**/
void
g_variant_builder_init (GVariantBuilder *builder,
const GVariantType *type)
{
g_return_if_fail (type != NULL);
g_return_if_fail (g_variant_type_is_container (type));
memset (builder, 0, sizeof (GVariantBuilder));
GVSB(builder)->type = g_variant_type_copy (type);
GVSB(builder)->magic = GVSB_MAGIC;
GVSB(builder)->trusted = TRUE;
switch (*(const gchar *) type)
{
case G_VARIANT_CLASS_VARIANT:
GVSB(builder)->uniform_item_types = TRUE;
GVSB(builder)->allocated_children = 1;
GVSB(builder)->expected_type = NULL;
GVSB(builder)->min_items = 1;
GVSB(builder)->max_items = 1;
break;
case G_VARIANT_CLASS_ARRAY:
GVSB(builder)->uniform_item_types = TRUE;
GVSB(builder)->allocated_children = 8;
GVSB(builder)->expected_type =
g_variant_type_element (GVSB(builder)->type);
GVSB(builder)->min_items = 0;
GVSB(builder)->max_items = -1;
break;
case G_VARIANT_CLASS_MAYBE:
GVSB(builder)->uniform_item_types = TRUE;
GVSB(builder)->allocated_children = 1;
GVSB(builder)->expected_type =
g_variant_type_element (GVSB(builder)->type);
GVSB(builder)->min_items = 0;
GVSB(builder)->max_items = 1;
break;
case G_VARIANT_CLASS_DICT_ENTRY:
GVSB(builder)->uniform_item_types = FALSE;
GVSB(builder)->allocated_children = 2;
GVSB(builder)->expected_type =
g_variant_type_key (GVSB(builder)->type);
GVSB(builder)->min_items = 2;
GVSB(builder)->max_items = 2;
break;
case 'r': /* G_VARIANT_TYPE_TUPLE was given */
GVSB(builder)->uniform_item_types = FALSE;
GVSB(builder)->allocated_children = 8;
GVSB(builder)->expected_type = NULL;
GVSB(builder)->min_items = 0;
GVSB(builder)->max_items = -1;
break;
case G_VARIANT_CLASS_TUPLE: /* a definite tuple type was given */
GVSB(builder)->allocated_children = g_variant_type_n_items (type);
GVSB(builder)->expected_type =
g_variant_type_first (GVSB(builder)->type);
GVSB(builder)->min_items = GVSB(builder)->allocated_children;
GVSB(builder)->max_items = GVSB(builder)->allocated_children;
GVSB(builder)->uniform_item_types = FALSE;
break;
default:
g_assert_not_reached ();
}
#ifdef G_ANALYZER_ANALYZING
/* Static analysers cant couple the code in g_variant_builder_init() to the
* code in g_variant_builder_end() by GVariantType, so end up assuming that
* @offset and @children mismatch and that uninitialised memory is accessed
* from @children. At runtime, this is caught by the preconditions at the top
* of g_variant_builder_end(). Help the analyser by zero-initialising the
* memory to avoid a false positive. */
GVSB(builder)->children = g_new0 (GVariant *,
GVSB(builder)->allocated_children);
#else
GVSB(builder)->children = g_new (GVariant *,
GVSB(builder)->allocated_children);
#endif
}
static void
g_variant_builder_make_room (struct stack_builder *builder)
{
if (builder->offset == builder->allocated_children)
{
builder->allocated_children *= 2;
builder->children = g_renew (GVariant *, builder->children,
builder->allocated_children);
}
}
/**
* g_variant_builder_add_value:
* @builder: a #GVariantBuilder
* @value: a #GVariant
*
* Adds @value to @builder.
*
* It is an error to call this function in any way that would create an
* inconsistent value to be constructed. Some examples of this are
* putting different types of items into an array, putting the wrong
* types or number of items in a tuple, putting more than one value into
* a variant, etc.
*
* If @value is a floating reference (see g_variant_ref_sink()),
* the @builder instance takes ownership of @value.
*
* Since: 2.24
**/
void
g_variant_builder_add_value (GVariantBuilder *builder,
GVariant *value)
{
return_if_invalid_builder (builder);
g_return_if_fail (GVSB(builder)->offset < GVSB(builder)->max_items);
g_return_if_fail (!GVSB(builder)->expected_type ||
g_variant_is_of_type (value,
GVSB(builder)->expected_type));
g_return_if_fail (!GVSB(builder)->prev_item_type ||
g_variant_is_of_type (value,
GVSB(builder)->prev_item_type));
GVSB(builder)->trusted &= g_variant_is_trusted (value);
if (!GVSB(builder)->uniform_item_types)
{
/* advance our expected type pointers */
if (GVSB(builder)->expected_type)
GVSB(builder)->expected_type =
g_variant_type_next (GVSB(builder)->expected_type);
if (GVSB(builder)->prev_item_type)
GVSB(builder)->prev_item_type =
g_variant_type_next (GVSB(builder)->prev_item_type);
}
else
GVSB(builder)->prev_item_type = g_variant_get_type (value);
g_variant_builder_make_room (GVSB(builder));
GVSB(builder)->children[GVSB(builder)->offset++] =
g_variant_ref_sink (value);
}
/**
* g_variant_builder_open:
* @builder: a #GVariantBuilder
* @type: the #GVariantType of the container
*
* Opens a subcontainer inside the given @builder. When done adding
* items to the subcontainer, g_variant_builder_close() must be called. @type
* is the type of the container: so to build a tuple of several values, @type
* must include the tuple itself.
*
* It is an error to call this function in any way that would cause an
* inconsistent value to be constructed (ie: adding too many values or
* a value of an incorrect type).
*
* Example of building a nested variant:
* |[<!-- language="C" -->
* GVariantBuilder builder;
* guint32 some_number = get_number ();
* g_autoptr (GHashTable) some_dict = get_dict ();
* GHashTableIter iter;
* const gchar *key;
* const GVariant *value;
* g_autoptr (GVariant) output = NULL;
*
* g_variant_builder_init (&builder, G_VARIANT_TYPE ("(ua{sv})"));
* g_variant_builder_add (&builder, "u", some_number);
* g_variant_builder_open (&builder, G_VARIANT_TYPE ("a{sv}"));
*
* g_hash_table_iter_init (&iter, some_dict);
* while (g_hash_table_iter_next (&iter, (gpointer *) &key, (gpointer *) &value))
* {
* g_variant_builder_open (&builder, G_VARIANT_TYPE ("{sv}"));
* g_variant_builder_add (&builder, "s", key);
* g_variant_builder_add (&builder, "v", value);
* g_variant_builder_close (&builder);
* }
*
* g_variant_builder_close (&builder);
*
* output = g_variant_builder_end (&builder);
* ]|
*
* Since: 2.24
**/
void
g_variant_builder_open (GVariantBuilder *builder,
const GVariantType *type)
{
GVariantBuilder *parent;
return_if_invalid_builder (builder);
g_return_if_fail (GVSB(builder)->offset < GVSB(builder)->max_items);
g_return_if_fail (!GVSB(builder)->expected_type ||
g_variant_type_is_subtype_of (type,
GVSB(builder)->expected_type));
g_return_if_fail (!GVSB(builder)->prev_item_type ||
g_variant_type_is_subtype_of (GVSB(builder)->prev_item_type,
type));
parent = g_slice_dup (GVariantBuilder, builder);
g_variant_builder_init (builder, type);
GVSB(builder)->parent = parent;
/* push the prev_item_type down into the subcontainer */
if (GVSB(parent)->prev_item_type)
{
if (!GVSB(builder)->uniform_item_types)
/* tuples and dict entries */
GVSB(builder)->prev_item_type =
g_variant_type_first (GVSB(parent)->prev_item_type);
else if (!g_variant_type_is_variant (GVSB(builder)->type))
/* maybes and arrays */
GVSB(builder)->prev_item_type =
g_variant_type_element (GVSB(parent)->prev_item_type);
}
}
/**
* g_variant_builder_close:
* @builder: a #GVariantBuilder
*
* Closes the subcontainer inside the given @builder that was opened by
* the most recent call to g_variant_builder_open().
*
* It is an error to call this function in any way that would create an
* inconsistent value to be constructed (ie: too few values added to the
* subcontainer).
*
* Since: 2.24
**/
void
g_variant_builder_close (GVariantBuilder *builder)
{
GVariantBuilder *parent;
return_if_invalid_builder (builder);
g_return_if_fail (GVSB(builder)->parent != NULL);
parent = GVSB(builder)->parent;
GVSB(builder)->parent = NULL;
g_variant_builder_add_value (parent, g_variant_builder_end (builder));
*builder = *parent;
g_slice_free (GVariantBuilder, parent);
}
/*< private >
* g_variant_make_maybe_type:
* @element: a #GVariant
*
* Return the type of a maybe containing @element.
*/
static GVariantType *
g_variant_make_maybe_type (GVariant *element)
{
return g_variant_type_new_maybe (g_variant_get_type (element));
}
/*< private >
* g_variant_make_array_type:
* @element: a #GVariant
*
* Return the type of an array containing @element.
*/
static GVariantType *
g_variant_make_array_type (GVariant *element)
{
return g_variant_type_new_array (g_variant_get_type (element));
}
/**
* g_variant_builder_end:
* @builder: a #GVariantBuilder
*
* Ends the builder process and returns the constructed value.
*
* It is not permissible to use @builder in any way after this call
* except for reference counting operations (in the case of a
* heap-allocated #GVariantBuilder) or by reinitialising it with
* g_variant_builder_init() (in the case of stack-allocated). This
* means that for the stack-allocated builders there is no need to
* call g_variant_builder_clear() after the call to
* g_variant_builder_end().
*
* It is an error to call this function in any way that would create an
* inconsistent value to be constructed (ie: insufficient number of
* items added to a container with a specific number of children
* required). It is also an error to call this function if the builder
* was created with an indefinite array or maybe type and no children
* have been added; in this case it is impossible to infer the type of
* the empty array.
*
* Returns: (transfer none): a new, floating, #GVariant
*
* Since: 2.24
**/
GVariant *
g_variant_builder_end (GVariantBuilder *builder)
{
GVariantType *my_type;
GVariant *value;
return_val_if_invalid_builder (builder, NULL);
g_return_val_if_fail (GVSB(builder)->offset >= GVSB(builder)->min_items,
NULL);
g_return_val_if_fail (!GVSB(builder)->uniform_item_types ||
GVSB(builder)->prev_item_type != NULL ||
g_variant_type_is_definite (GVSB(builder)->type),
NULL);
if (g_variant_type_is_definite (GVSB(builder)->type))
my_type = g_variant_type_copy (GVSB(builder)->type);
else if (g_variant_type_is_maybe (GVSB(builder)->type))
my_type = g_variant_make_maybe_type (GVSB(builder)->children[0]);
else if (g_variant_type_is_array (GVSB(builder)->type))
my_type = g_variant_make_array_type (GVSB(builder)->children[0]);
else if (g_variant_type_is_tuple (GVSB(builder)->type))
my_type = g_variant_make_tuple_type (GVSB(builder)->children,
GVSB(builder)->offset);
else if (g_variant_type_is_dict_entry (GVSB(builder)->type))
my_type = g_variant_make_dict_entry_type (GVSB(builder)->children[0],
GVSB(builder)->children[1]);
else
g_assert_not_reached ();
value = g_variant_new_from_children (my_type,
g_renew (GVariant *,
GVSB(builder)->children,
GVSB(builder)->offset),
GVSB(builder)->offset,
GVSB(builder)->trusted);
GVSB(builder)->children = NULL;
GVSB(builder)->offset = 0;
g_variant_builder_clear (builder);
g_variant_type_free (my_type);
return value;
}
/* GVariantDict {{{1 */
/**
* GVariantDict:
*
* #GVariantDict is a mutable interface to #GVariant dictionaries.
*
* It can be used for doing a sequence of dictionary lookups in an
* efficient way on an existing #GVariant dictionary or it can be used
* to construct new dictionaries with a hashtable-like interface. It
* can also be used for taking existing dictionaries and modifying them
* in order to create new ones.
*
* #GVariantDict can only be used with %G_VARIANT_TYPE_VARDICT
* dictionaries.
*
* It is possible to use #GVariantDict allocated on the stack or on the
* heap. When using a stack-allocated #GVariantDict, you begin with a
* call to g_variant_dict_init() and free the resources with a call to
* g_variant_dict_clear().
*
* Heap-allocated #GVariantDict follows normal refcounting rules: you
* allocate it with g_variant_dict_new() and use g_variant_dict_ref()
* and g_variant_dict_unref().
*
* g_variant_dict_end() is used to convert the #GVariantDict back into a
* dictionary-type #GVariant. When used with stack-allocated instances,
* this also implicitly frees all associated memory, but for
* heap-allocated instances, you must still call g_variant_dict_unref()
* afterwards.
*
* You will typically want to use a heap-allocated #GVariantDict when
* you expose it as part of an API. For most other uses, the
* stack-allocated form will be more convenient.
*
* Consider the following two examples that do the same thing in each
* style: take an existing dictionary and look up the "count" uint32
* key, adding 1 to it if it is found, or returning an error if the
* key is not found. Each returns the new dictionary as a floating
* #GVariant.
*
* ## Using a stack-allocated GVariantDict
*
* |[<!-- language="C" -->
* GVariant *
* add_to_count (GVariant *orig,
* GError **error)
* {
* GVariantDict dict;
* guint32 count;
*
* g_variant_dict_init (&dict, orig);
* if (!g_variant_dict_lookup (&dict, "count", "u", &count))
* {
* g_set_error (...);
* g_variant_dict_clear (&dict);
* return NULL;
* }
*
* g_variant_dict_insert (&dict, "count", "u", count + 1);
*
* return g_variant_dict_end (&dict);
* }
* ]|
*
* ## Using heap-allocated GVariantDict
*
* |[<!-- language="C" -->
* GVariant *
* add_to_count (GVariant *orig,
* GError **error)
* {
* GVariantDict *dict;
* GVariant *result;
* guint32 count;
*
* dict = g_variant_dict_new (orig);
*
* if (g_variant_dict_lookup (dict, "count", "u", &count))
* {
* g_variant_dict_insert (dict, "count", "u", count + 1);
* result = g_variant_dict_end (dict);
* }
* else
* {
* g_set_error (...);
* result = NULL;
* }
*
* g_variant_dict_unref (dict);
*
* return result;
* }
* ]|
*
* Since: 2.40
**/
struct stack_dict
{
GHashTable *values;
gsize magic;
};
G_STATIC_ASSERT (sizeof (struct stack_dict) <= sizeof (GVariantDict));
struct heap_dict
{
struct stack_dict dict;
gint ref_count;
gsize magic;
};
#define GVSD(d) ((struct stack_dict *) (d))
#define GVHD(d) ((struct heap_dict *) (d))
#define GVSD_MAGIC ((gsize) 2579507750u)
#define GVSD_MAGIC_PARTIAL ((gsize) 3488698669u)
#define GVHD_MAGIC ((gsize) 2450270775u)
#define is_valid_dict(d) (GVSD(d)->magic == GVSD_MAGIC)
#define is_valid_heap_dict(d) (GVHD(d)->magic == GVHD_MAGIC)
/* Just to make sure that by adding a union to GVariantDict, we didn't
* accidentally change ABI. */
G_STATIC_ASSERT (sizeof (GVariantDict) == sizeof (guintptr[16]));
static gboolean
ensure_valid_dict (GVariantDict *dict)
{
if (dict == NULL)
return FALSE;
else if (is_valid_dict (dict))
return TRUE;
if (dict->u.s.partial_magic == GVSD_MAGIC_PARTIAL)
{
static GVariantDict cleared_dict;
/* Make sure that only first two fields were set and the rest is
* zeroed to avoid messing up the builder that had parent
* address equal to GVSB_MAGIC_PARTIAL. */
if (memcmp (cleared_dict.u.s.y, dict->u.s.y, sizeof cleared_dict.u.s.y))
return FALSE;
g_variant_dict_init (dict, dict->u.s.asv);
}
return is_valid_dict (dict);
}
/* return_if_invalid_dict (d) is like
* g_return_if_fail (ensure_valid_dict (d)), except that
* the side effects of ensure_valid_dict are evaluated
* regardless of whether G_DISABLE_CHECKS is defined or not. */
#define return_if_invalid_dict(d) G_STMT_START { \
gboolean valid_dict G_GNUC_UNUSED = ensure_valid_dict (d); \
g_return_if_fail (valid_dict); \
} G_STMT_END
/* return_val_if_invalid_dict (d, val) is like
* g_return_val_if_fail (ensure_valid_dict (d), val), except that
* the side effects of ensure_valid_dict are evaluated
* regardless of whether G_DISABLE_CHECKS is defined or not. */
#define return_val_if_invalid_dict(d, val) G_STMT_START { \
gboolean valid_dict G_GNUC_UNUSED = ensure_valid_dict (d); \
g_return_val_if_fail (valid_dict, val); \
} G_STMT_END
/**
* g_variant_dict_new:
* @from_asv: (nullable): the #GVariant with which to initialise the
* dictionary
*
* Allocates and initialises a new #GVariantDict.
*
* You should call g_variant_dict_unref() on the return value when it
* is no longer needed. The memory will not be automatically freed by
* any other call.
*
* In some cases it may be easier to place a #GVariantDict directly on
* the stack of the calling function and initialise it with
* g_variant_dict_init(). This is particularly useful when you are
* using #GVariantDict to construct a #GVariant.
*
* Returns: (transfer full): a #GVariantDict
*
* Since: 2.40
**/
GVariantDict *
g_variant_dict_new (GVariant *from_asv)
{
GVariantDict *dict;
dict = g_slice_alloc (sizeof (struct heap_dict));
g_variant_dict_init (dict, from_asv);
GVHD(dict)->magic = GVHD_MAGIC;
GVHD(dict)->ref_count = 1;
return dict;
}
/**
* g_variant_dict_init: (skip)
* @dict: a #GVariantDict
* @from_asv: (nullable): the initial value for @dict
*
* Initialises a #GVariantDict structure.
*
* If @from_asv is given, it is used to initialise the dictionary.
*
* This function completely ignores the previous contents of @dict. On
* one hand this means that it is valid to pass in completely
* uninitialised memory. On the other hand, this means that if you are
* initialising over top of an existing #GVariantDict you need to first
* call g_variant_dict_clear() in order to avoid leaking memory.
*
* You must not call g_variant_dict_ref() or g_variant_dict_unref() on a
* #GVariantDict that was initialised with this function. If you ever
* pass a reference to a #GVariantDict outside of the control of your
* own code then you should assume that the person receiving that
* reference may try to use reference counting; you should use
* g_variant_dict_new() instead of this function.
*
* Since: 2.40
**/
void
g_variant_dict_init (GVariantDict *dict,
GVariant *from_asv)
{
GVariantIter iter;
gchar *key;
GVariant *value;
GVSD(dict)->values = g_hash_table_new_full (g_str_hash, g_str_equal, g_free, (GDestroyNotify) g_variant_unref);
GVSD(dict)->magic = GVSD_MAGIC;
if (from_asv)
{
g_variant_iter_init (&iter, from_asv);
while (g_variant_iter_next (&iter, "{sv}", &key, &value))
g_hash_table_insert (GVSD(dict)->values, key, value);
}
}
/**
* g_variant_dict_lookup:
* @dict: a #GVariantDict
* @key: the key to look up in the dictionary
* @format_string: a GVariant format string
* @...: the arguments to unpack the value into
*
* Looks up a value in a #GVariantDict.
*
* This function is a wrapper around g_variant_dict_lookup_value() and
* g_variant_get(). In the case that %NULL would have been returned,
* this function returns %FALSE and does not modify the values of the arguments
* passed in to @.... Otherwise, it unpacks the returned
* value and returns %TRUE.
*
* @format_string determines the C types that are used for unpacking the
* values and also determines if the values are copied or borrowed, see the
* section on [GVariant format strings][gvariant-format-strings-pointers].
*
* Returns: %TRUE if a value was unpacked
*
* Since: 2.40
**/
gboolean
g_variant_dict_lookup (GVariantDict *dict,
const gchar *key,
const gchar *format_string,
...)
{
GVariant *value;
va_list ap;
return_val_if_invalid_dict (dict, FALSE);
g_return_val_if_fail (key != NULL, FALSE);
g_return_val_if_fail (format_string != NULL, FALSE);
value = g_hash_table_lookup (GVSD(dict)->values, key);
if (value == NULL || !g_variant_check_format_string (value, format_string, FALSE))
return FALSE;
va_start (ap, format_string);
g_variant_get_va (value, format_string, NULL, &ap);
va_end (ap);
return TRUE;
}
/**
* g_variant_dict_lookup_value:
* @dict: a #GVariantDict
* @key: the key to look up in the dictionary
* @expected_type: (nullable): a #GVariantType, or %NULL
*
* Looks up a value in a #GVariantDict.
*
* If @key is not found in @dictionary, %NULL is returned.
*
* The @expected_type string specifies what type of value is expected.
* If the value associated with @key has a different type then %NULL is
* returned.
*
* If the key is found and the value has the correct type, it is
* returned. If @expected_type was specified then any non-%NULL return
* value will have this type.
*
* Returns: (transfer full) (nullable): the value of the dictionary key, or %NULL
*
* Since: 2.40
**/
GVariant *
g_variant_dict_lookup_value (GVariantDict *dict,
const gchar *key,
const GVariantType *expected_type)
{
GVariant *result;
return_val_if_invalid_dict (dict, NULL);
g_return_val_if_fail (key != NULL, NULL);
result = g_hash_table_lookup (GVSD(dict)->values, key);
if (result && (!expected_type || g_variant_is_of_type (result, expected_type)))
return g_variant_ref (result);
return NULL;
}
/**
* g_variant_dict_contains:
* @dict: a #GVariantDict
* @key: the key to look up in the dictionary
*
* Checks if @key exists in @dict.
*
* Returns: %TRUE if @key is in @dict
*
* Since: 2.40
**/
gboolean
g_variant_dict_contains (GVariantDict *dict,
const gchar *key)
{
return_val_if_invalid_dict (dict, FALSE);
g_return_val_if_fail (key != NULL, FALSE);
return g_hash_table_contains (GVSD(dict)->values, key);
}
/**
* g_variant_dict_insert:
* @dict: a #GVariantDict
* @key: the key to insert a value for
* @format_string: a #GVariant varargs format string
* @...: arguments, as per @format_string
*
* Inserts a value into a #GVariantDict.
*
* This call is a convenience wrapper that is exactly equivalent to
* calling g_variant_new() followed by g_variant_dict_insert_value().
*
* Since: 2.40
**/
void
g_variant_dict_insert (GVariantDict *dict,
const gchar *key,
const gchar *format_string,
...)
{
va_list ap;
return_if_invalid_dict (dict);
g_return_if_fail (key != NULL);
g_return_if_fail (format_string != NULL);
va_start (ap, format_string);
g_variant_dict_insert_value (dict, key, g_variant_new_va (format_string, NULL, &ap));
va_end (ap);
}
/**
* g_variant_dict_insert_value:
* @dict: a #GVariantDict
* @key: the key to insert a value for
* @value: the value to insert
*
* Inserts (or replaces) a key in a #GVariantDict.
*
* @value is consumed if it is floating.
*
* Since: 2.40
**/
void
g_variant_dict_insert_value (GVariantDict *dict,
const gchar *key,
GVariant *value)
{
return_if_invalid_dict (dict);
g_return_if_fail (key != NULL);
g_return_if_fail (value != NULL);
g_hash_table_insert (GVSD(dict)->values, g_strdup (key), g_variant_ref_sink (value));
}
/**
* g_variant_dict_remove:
* @dict: a #GVariantDict
* @key: the key to remove
*
* Removes a key and its associated value from a #GVariantDict.
*
* Returns: %TRUE if the key was found and removed
*
* Since: 2.40
**/
gboolean
g_variant_dict_remove (GVariantDict *dict,
const gchar *key)
{
return_val_if_invalid_dict (dict, FALSE);
g_return_val_if_fail (key != NULL, FALSE);
return g_hash_table_remove (GVSD(dict)->values, key);
}
/**
* g_variant_dict_clear:
* @dict: a #GVariantDict
*
* Releases all memory associated with a #GVariantDict without freeing
* the #GVariantDict structure itself.
*
* It typically only makes sense to do this on a stack-allocated
* #GVariantDict if you want to abort building the value part-way
* through. This function need not be called if you call
* g_variant_dict_end() and it also doesn't need to be called on dicts
* allocated with g_variant_dict_new (see g_variant_dict_unref() for
* that).
*
* It is valid to call this function on either an initialised
* #GVariantDict or one that was previously cleared by an earlier call
* to g_variant_dict_clear() but it is not valid to call this function
* on uninitialised memory.
*
* Since: 2.40
**/
void
g_variant_dict_clear (GVariantDict *dict)
{
if (GVSD(dict)->magic == 0)
/* all-zeros case */
return;
return_if_invalid_dict (dict);
g_hash_table_unref (GVSD(dict)->values);
GVSD(dict)->values = NULL;
GVSD(dict)->magic = 0;
}
/**
* g_variant_dict_end:
* @dict: a #GVariantDict
*
* Returns the current value of @dict as a #GVariant of type
* %G_VARIANT_TYPE_VARDICT, clearing it in the process.
*
* It is not permissible to use @dict in any way after this call except
* for reference counting operations (in the case of a heap-allocated
* #GVariantDict) or by reinitialising it with g_variant_dict_init() (in
* the case of stack-allocated).
*
* Returns: (transfer none): a new, floating, #GVariant
*
* Since: 2.40
**/
GVariant *
g_variant_dict_end (GVariantDict *dict)
{
GVariantBuilder builder;
GHashTableIter iter;
gpointer key, value;
return_val_if_invalid_dict (dict, NULL);
g_variant_builder_init (&builder, G_VARIANT_TYPE_VARDICT);
g_hash_table_iter_init (&iter, GVSD(dict)->values);
while (g_hash_table_iter_next (&iter, &key, &value))
g_variant_builder_add (&builder, "{sv}", (const gchar *) key, (GVariant *) value);
g_variant_dict_clear (dict);
return g_variant_builder_end (&builder);
}
/**
* g_variant_dict_ref:
* @dict: a heap-allocated #GVariantDict
*
* Increases the reference count on @dict.
*
* Don't call this on stack-allocated #GVariantDict instances or bad
* things will happen.
*
* Returns: (transfer full): a new reference to @dict
*
* Since: 2.40
**/
GVariantDict *
g_variant_dict_ref (GVariantDict *dict)
{
g_return_val_if_fail (is_valid_heap_dict (dict), NULL);
GVHD(dict)->ref_count++;
return dict;
}
/**
* g_variant_dict_unref:
* @dict: (transfer full): a heap-allocated #GVariantDict
*
* Decreases the reference count on @dict.
*
* In the event that there are no more references, releases all memory
* associated with the #GVariantDict.
*
* Don't call this on stack-allocated #GVariantDict instances or bad
* things will happen.
*
* Since: 2.40
**/
void
g_variant_dict_unref (GVariantDict *dict)
{
g_return_if_fail (is_valid_heap_dict (dict));
if (--GVHD(dict)->ref_count == 0)
{
g_variant_dict_clear (dict);
g_slice_free (struct heap_dict, (struct heap_dict *) dict);
}
}
/* Format strings {{{1 */
/*< private >
* g_variant_format_string_scan:
* @string: a string that may be prefixed with a format string
* @limit: (nullable) (default NULL): a pointer to the end of @string,
* or %NULL
* @endptr: (nullable) (default NULL): location to store the end pointer,
* or %NULL
*
* Checks the string pointed to by @string for starting with a properly
* formed #GVariant varargs format string. If no valid format string is
* found then %FALSE is returned.
*
* If @string does start with a valid format string then %TRUE is
* returned. If @endptr is non-%NULL then it is updated to point to the
* first character after the format string.
*
* If @limit is non-%NULL then @limit (and any character after it) will
* not be accessed and the effect is otherwise equivalent to if the
* character at @limit were nul.
*
* See the section on [GVariant format strings][gvariant-format-strings].
*
* Returns: %TRUE if there was a valid format string
*
* Since: 2.24
*/
gboolean
g_variant_format_string_scan (const gchar *string,
const gchar *limit,
const gchar **endptr)
{
#define next_char() (string == limit ? '\0' : *(string++))
#define peek_char() (string == limit ? '\0' : *string)
char c;
switch (next_char())
{
case 'b': case 'y': case 'n': case 'q': case 'i': case 'u':
case 'x': case 't': case 'h': case 'd': case 's': case 'o':
case 'g': case 'v': case '*': case '?': case 'r':
break;
case 'm':
return g_variant_format_string_scan (string, limit, endptr);
case 'a':
case '@':
return g_variant_type_string_scan (string, limit, endptr);
case '(':
while (peek_char() != ')')
if (!g_variant_format_string_scan (string, limit, &string))
return FALSE;
next_char(); /* consume ')' */
break;
case '{':
c = next_char();
if (c == '&')
{
c = next_char ();
if (c != 's' && c != 'o' && c != 'g')
return FALSE;
}
else
{
if (c == '@')
c = next_char ();
/* ISO/IEC 9899:1999 (C99) §7.21.5.2:
* The terminating null character is considered to be
* part of the string.
*/
if (c != '\0' && strchr ("bynqiuxthdsog?", c) == NULL)
return FALSE;
}
if (!g_variant_format_string_scan (string, limit, &string))
return FALSE;
if (next_char() != '}')
return FALSE;
break;
case '^':
if ((c = next_char()) == 'a')
{
if ((c = next_char()) == '&')
{
if ((c = next_char()) == 'a')
{
if ((c = next_char()) == 'y')
break; /* '^a&ay' */
}
else if (c == 's' || c == 'o')
break; /* '^a&s', '^a&o' */
}
else if (c == 'a')
{
if ((c = next_char()) == 'y')
break; /* '^aay' */
}
else if (c == 's' || c == 'o')
break; /* '^as', '^ao' */
else if (c == 'y')
break; /* '^ay' */
}
else if (c == '&')
{
if ((c = next_char()) == 'a')
{
if ((c = next_char()) == 'y')
break; /* '^&ay' */
}
}
return FALSE;
case '&':
c = next_char();
if (c != 's' && c != 'o' && c != 'g')
return FALSE;
break;
default:
return FALSE;
}
if (endptr != NULL)
*endptr = string;
#undef next_char
#undef peek_char
return TRUE;
}
/**
* g_variant_check_format_string:
* @value: a #GVariant
* @format_string: a valid #GVariant format string
* @copy_only: %TRUE to ensure the format string makes deep copies
*
* Checks if calling g_variant_get() with @format_string on @value would
* be valid from a type-compatibility standpoint. @format_string is
* assumed to be a valid format string (from a syntactic standpoint).
*
* If @copy_only is %TRUE then this function additionally checks that it
* would be safe to call g_variant_unref() on @value immediately after
* the call to g_variant_get() without invalidating the result. This is
* only possible if deep copies are made (ie: there are no pointers to
* the data inside of the soon-to-be-freed #GVariant instance). If this
* check fails then a g_critical() is printed and %FALSE is returned.
*
* This function is meant to be used by functions that wish to provide
* varargs accessors to #GVariant values of uncertain values (eg:
* g_variant_lookup() or g_menu_model_get_item_attribute()).
*
* Returns: %TRUE if @format_string is safe to use
*
* Since: 2.34
*/
gboolean
g_variant_check_format_string (GVariant *value,
const gchar *format_string,
gboolean copy_only)
{
const gchar *original_format = format_string;
const gchar *type_string;
/* Interesting factoid: assuming a format string is valid, it can be
* converted to a type string by removing all '@' '&' and '^'
* characters.
*
* Instead of doing that, we can just skip those characters when
* comparing it to the type string of @value.
*
* For the copy-only case we can just drop the '&' from the list of
* characters to skip over. A '&' will never appear in a type string
* so we know that it won't be possible to return %TRUE if it is in a
* format string.
*/
type_string = g_variant_get_type_string (value);
while (*type_string || *format_string)
{
gchar format = *format_string++;
switch (format)
{
case '&':
if G_UNLIKELY (copy_only)
{
/* for the love of all that is good, please don't mark this string for translation... */
g_critical ("g_variant_check_format_string() is being called by a function with a GVariant varargs "
"interface to validate the passed format string for type safety. The passed format "
"(%s) contains a '&' character which would result in a pointer being returned to the "
"data inside of a GVariant instance that may no longer exist by the time the function "
"returns. Modify your code to use a format string without '&'.", original_format);
return FALSE;
}
G_GNUC_FALLTHROUGH;
case '^':
case '@':
/* ignore these 2 (or 3) */
continue;
case '?':
/* attempt to consume one of 'bynqiuxthdsog' */
{
char s = *type_string++;
if (s == '\0' || strchr ("bynqiuxthdsog", s) == NULL)
return FALSE;
}
continue;
case 'r':
/* ensure it's a tuple */
if (*type_string != '(')
return FALSE;
G_GNUC_FALLTHROUGH;
case '*':
/* consume a full type string for the '*' or 'r' */
if (!g_variant_type_string_scan (type_string, NULL, &type_string))
return FALSE;
continue;
default:
/* attempt to consume exactly one character equal to the format */
if (format != *type_string++)
return FALSE;
}
}
return TRUE;
}
/*< private >
* g_variant_format_string_scan_type:
* @string: a string that may be prefixed with a format string
* @limit: (nullable) (default NULL): a pointer to the end of @string,
* or %NULL
* @endptr: (nullable) (default NULL): location to store the end pointer,
* or %NULL
*
* If @string starts with a valid format string then this function will
* return the type that the format string corresponds to. Otherwise
* this function returns %NULL.
*
* Use g_variant_type_free() to free the return value when you no longer
* need it.
*
* This function is otherwise exactly like
* g_variant_format_string_scan().
*
* Returns: (nullable): a #GVariantType if there was a valid format string
*
* Since: 2.24
*/
GVariantType *
g_variant_format_string_scan_type (const gchar *string,
const gchar *limit,
const gchar **endptr)
{
const gchar *my_end;
gchar *dest;
gchar *new;
if (endptr == NULL)
endptr = &my_end;
if (!g_variant_format_string_scan (string, limit, endptr))
return NULL;
dest = new = g_malloc (*endptr - string + 1);
while (string != *endptr)
{
if (*string != '@' && *string != '&' && *string != '^')
*dest++ = *string;
string++;
}
*dest = '\0';
return (GVariantType *) G_VARIANT_TYPE (new);
}
static gboolean
valid_format_string (const gchar *format_string,
gboolean single,
GVariant *value)
{
const gchar *endptr;
GVariantType *type;
type = g_variant_format_string_scan_type (format_string, NULL, &endptr);
if G_UNLIKELY (type == NULL || (single && *endptr != '\0'))
{
if (single)
g_critical ("'%s' is not a valid GVariant format string",
format_string);
else
g_critical ("'%s' does not have a valid GVariant format "
"string as a prefix", format_string);
if (type != NULL)
g_variant_type_free (type);
return FALSE;
}
if G_UNLIKELY (value && !g_variant_is_of_type (value, type))
{
gchar *fragment;
gchar *typestr;
fragment = g_strndup (format_string, endptr - format_string);
typestr = g_variant_type_dup_string (type);
g_critical ("the GVariant format string '%s' has a type of "
"'%s' but the given value has a type of '%s'",
fragment, typestr, g_variant_get_type_string (value));
g_variant_type_free (type);
g_free (fragment);
g_free (typestr);
return FALSE;
}
g_variant_type_free (type);
return TRUE;
}
/* Variable Arguments {{{1 */
/* We consider 2 main classes of format strings:
*
* - recursive format strings
* these are ones that result in recursion and the collection of
* possibly more than one argument. Maybe types, tuples,
* dictionary entries.
*
* - leaf format string
* these result in the collection of a single argument.
*
* Leaf format strings are further subdivided into two categories:
*
* - single non-null pointer ("nnp")
* these either collect or return a single non-null pointer.
*
* - other
* these collect or return something else (bool, number, etc).
*
* Based on the above, the varargs handling code is split into 4 main parts:
*
* - nnp handling code
* - leaf handling code (which may invoke nnp code)
* - generic handling code (may be recursive, may invoke leaf code)
* - user-facing API (which invokes the generic code)
*
* Each section implements some of the following functions:
*
* - skip:
* collect the arguments for the format string as if
* g_variant_new() had been called, but do nothing with them. used
* for skipping over arguments when constructing a Nothing maybe
* type.
*
* - new:
* create a GVariant *
*
* - get:
* unpack a GVariant *
*
* - free (nnp only):
* free a previously allocated item
*/
static gboolean
g_variant_format_string_is_leaf (const gchar *str)
{
return str[0] != 'm' && str[0] != '(' && str[0] != '{';
}
static gboolean
g_variant_format_string_is_nnp (const gchar *str)
{
return str[0] == 'a' || str[0] == 's' || str[0] == 'o' || str[0] == 'g' ||
str[0] == '^' || str[0] == '@' || str[0] == '*' || str[0] == '?' ||
str[0] == 'r' || str[0] == 'v' || str[0] == '&';
}
/* Single non-null pointer ("nnp") {{{2 */
static void
g_variant_valist_free_nnp (const gchar *str,
gpointer ptr)
{
switch (*str)
{
case 'a':
g_variant_iter_free (ptr);
break;
case '^':
if (g_str_has_suffix (str, "y"))
{
if (str[2] != 'a') /* '^a&ay', '^ay' */
g_free (ptr);
else if (str[1] == 'a') /* '^aay' */
g_strfreev (ptr);
break; /* '^&ay' */
}
else if (str[2] != '&') /* '^as', '^ao' */
g_strfreev (ptr);
else /* '^a&s', '^a&o' */
g_free (ptr);
break;
case 's':
case 'o':
case 'g':
g_free (ptr);
break;
case '@':
case '*':
case '?':
case 'v':
g_variant_unref (ptr);
break;
case '&':
break;
default:
g_assert_not_reached ();
}
}
static gchar
g_variant_scan_convenience (const gchar **str,
gboolean *constant,
guint *arrays)
{
*constant = FALSE;
*arrays = 0;
for (;;)
{
char c = *(*str)++;
if (c == '&')
*constant = TRUE;
else if (c == 'a')
(*arrays)++;
else
return c;
}
}
static GVariant *
g_variant_valist_new_nnp (const gchar **str,
gpointer ptr)
{
if (**str == '&')
(*str)++;
switch (*(*str)++)
{
case 'a':
if (ptr != NULL)
{
const GVariantType *type;
GVariant *value;
value = g_variant_builder_end (ptr);
type = g_variant_get_type (value);
if G_UNLIKELY (!g_variant_type_is_array (type))
g_error ("g_variant_new: expected array GVariantBuilder but "
"the built value has type '%s'",
g_variant_get_type_string (value));
type = g_variant_type_element (type);
if G_UNLIKELY (!g_variant_type_is_subtype_of (type, (GVariantType *) *str))
{
gchar *type_string = g_variant_type_dup_string ((GVariantType *) *str);
g_error ("g_variant_new: expected GVariantBuilder array element "
"type '%s' but the built value has element type '%s'",
type_string, g_variant_get_type_string (value) + 1);
g_free (type_string);
}
g_variant_type_string_scan (*str, NULL, str);
return value;
}
else
/* special case: NULL pointer for empty array */
{
const GVariantType *type = (GVariantType *) *str;
g_variant_type_string_scan (*str, NULL, str);
if G_UNLIKELY (!g_variant_type_is_definite (type))
g_error ("g_variant_new: NULL pointer given with indefinite "
"array type; unable to determine which type of empty "
"array to construct.");
return g_variant_new_array (type, NULL, 0);
}
case 's':
{
GVariant *value;
value = g_variant_new_string (ptr);
if (value == NULL)
value = g_variant_new_string ("[Invalid UTF-8]");
return value;
}
case 'o':
return g_variant_new_object_path (ptr);
case 'g':
return g_variant_new_signature (ptr);
case '^':
{
gboolean constant;
guint arrays;
gchar type;
type = g_variant_scan_convenience (str, &constant, &arrays);
if (type == 's')
return g_variant_new_strv (ptr, -1);
if (type == 'o')
return g_variant_new_objv (ptr, -1);
if (arrays > 1)
return g_variant_new_bytestring_array (ptr, -1);
return g_variant_new_bytestring (ptr);
}
case '@':
if G_UNLIKELY (!g_variant_is_of_type (ptr, (GVariantType *) *str))
{
gchar *type_string = g_variant_type_dup_string ((GVariantType *) *str);
g_error ("g_variant_new: expected GVariant of type '%s' but "
"received value has type '%s'",
type_string, g_variant_get_type_string (ptr));
g_free (type_string);
}
g_variant_type_string_scan (*str, NULL, str);
return ptr;
case '*':
return ptr;
case '?':
if G_UNLIKELY (!g_variant_type_is_basic (g_variant_get_type (ptr)))
g_error ("g_variant_new: format string '?' expects basic-typed "
"GVariant, but received value has type '%s'",
g_variant_get_type_string (ptr));
return ptr;
case 'r':
if G_UNLIKELY (!g_variant_type_is_tuple (g_variant_get_type (ptr)))
g_error ("g_variant_new: format string 'r' expects tuple-typed "
"GVariant, but received value has type '%s'",
g_variant_get_type_string (ptr));
return ptr;
case 'v':
return g_variant_new_variant (ptr);
default:
g_assert_not_reached ();
}
}
static gpointer
g_variant_valist_get_nnp (const gchar **str,
GVariant *value)
{
switch (*(*str)++)
{
case 'a':
g_variant_type_string_scan (*str, NULL, str);
return g_variant_iter_new (value);
case '&':
(*str)++;
return (gchar *) g_variant_get_string (value, NULL);
case 's':
case 'o':
case 'g':
return g_variant_dup_string (value, NULL);
case '^':
{
gboolean constant;
guint arrays;
gchar type;
type = g_variant_scan_convenience (str, &constant, &arrays);
if (type == 's')
{
if (constant)
return g_variant_get_strv (value, NULL);
else
return g_variant_dup_strv (value, NULL);
}
else if (type == 'o')
{
if (constant)
return g_variant_get_objv (value, NULL);
else
return g_variant_dup_objv (value, NULL);
}
else if (arrays > 1)
{
if (constant)
return g_variant_get_bytestring_array (value, NULL);
else
return g_variant_dup_bytestring_array (value, NULL);
}
else
{
if (constant)
return (gchar *) g_variant_get_bytestring (value);
else
return g_variant_dup_bytestring (value, NULL);
}
}
case '@':
g_variant_type_string_scan (*str, NULL, str);
G_GNUC_FALLTHROUGH;
case '*':
case '?':
case 'r':
return g_variant_ref (value);
case 'v':
return g_variant_get_variant (value);
default:
g_assert_not_reached ();
}
}
/* Leaves {{{2 */
static void
g_variant_valist_skip_leaf (const gchar **str,
va_list *app)
{
if (g_variant_format_string_is_nnp (*str))
{
g_variant_format_string_scan (*str, NULL, str);
va_arg (*app, gpointer);
return;
}
switch (*(*str)++)
{
case 'b':
case 'y':
case 'n':
case 'q':
case 'i':
case 'u':
case 'h':
va_arg (*app, int);
return;
case 'x':
case 't':
va_arg (*app, guint64);
return;
case 'd':
va_arg (*app, gdouble);
return;
default:
g_assert_not_reached ();
}
}
static GVariant *
g_variant_valist_new_leaf (const gchar **str,
va_list *app)
{
if (g_variant_format_string_is_nnp (*str))
return g_variant_valist_new_nnp (str, va_arg (*app, gpointer));
switch (*(*str)++)
{
case 'b':
return g_variant_new_boolean (va_arg (*app, gboolean));
case 'y':
return g_variant_new_byte (va_arg (*app, guint));
case 'n':
return g_variant_new_int16 (va_arg (*app, gint));
case 'q':
return g_variant_new_uint16 (va_arg (*app, guint));
case 'i':
return g_variant_new_int32 (va_arg (*app, gint));
case 'u':
return g_variant_new_uint32 (va_arg (*app, guint));
case 'x':
return g_variant_new_int64 (va_arg (*app, gint64));
case 't':
return g_variant_new_uint64 (va_arg (*app, guint64));
case 'h':
return g_variant_new_handle (va_arg (*app, gint));
case 'd':
return g_variant_new_double (va_arg (*app, gdouble));
default:
g_assert_not_reached ();
}
}
/* The code below assumes this */
G_STATIC_ASSERT (sizeof (gboolean) == sizeof (guint32));
G_STATIC_ASSERT (sizeof (gdouble) == sizeof (guint64));
static void
g_variant_valist_get_leaf (const gchar **str,
GVariant *value,
gboolean free,
va_list *app)
{
gpointer ptr = va_arg (*app, gpointer);
if (ptr == NULL)
{
g_variant_format_string_scan (*str, NULL, str);
return;
}
if (g_variant_format_string_is_nnp (*str))
{
gpointer *nnp = (gpointer *) ptr;
if (free && *nnp != NULL)
g_variant_valist_free_nnp (*str, *nnp);
*nnp = NULL;
if (value != NULL)
*nnp = g_variant_valist_get_nnp (str, value);
else
g_variant_format_string_scan (*str, NULL, str);
return;
}
if (value != NULL)
{
switch (*(*str)++)
{
case 'b':
*(gboolean *) ptr = g_variant_get_boolean (value);
return;
case 'y':
*(guint8 *) ptr = g_variant_get_byte (value);
return;
case 'n':
*(gint16 *) ptr = g_variant_get_int16 (value);
return;
case 'q':
*(guint16 *) ptr = g_variant_get_uint16 (value);
return;
case 'i':
*(gint32 *) ptr = g_variant_get_int32 (value);
return;
case 'u':
*(guint32 *) ptr = g_variant_get_uint32 (value);
return;
case 'x':
*(gint64 *) ptr = g_variant_get_int64 (value);
return;
case 't':
*(guint64 *) ptr = g_variant_get_uint64 (value);
return;
case 'h':
*(gint32 *) ptr = g_variant_get_handle (value);
return;
case 'd':
*(gdouble *) ptr = g_variant_get_double (value);
return;
}
}
else
{
switch (*(*str)++)
{
case 'y':
*(guint8 *) ptr = 0;
return;
case 'n':
case 'q':
*(guint16 *) ptr = 0;
return;
case 'i':
case 'u':
case 'h':
case 'b':
*(guint32 *) ptr = 0;
return;
case 'x':
case 't':
case 'd':
*(guint64 *) ptr = 0;
return;
}
}
g_assert_not_reached ();
}
/* Generic (recursive) {{{2 */
static void
g_variant_valist_skip (const gchar **str,
va_list *app)
{
if (g_variant_format_string_is_leaf (*str))
g_variant_valist_skip_leaf (str, app);
else if (**str == 'm') /* maybe */
{
(*str)++;
if (!g_variant_format_string_is_nnp (*str))
va_arg (*app, gboolean);
g_variant_valist_skip (str, app);
}
else /* tuple, dictionary entry */
{
g_assert (**str == '(' || **str == '{');
(*str)++;
while (**str != ')' && **str != '}')
g_variant_valist_skip (str, app);
(*str)++;
}
}
static GVariant *
g_variant_valist_new (const gchar **str,
va_list *app)
{
if (g_variant_format_string_is_leaf (*str))
return g_variant_valist_new_leaf (str, app);
if (**str == 'm') /* maybe */
{
GVariantType *type = NULL;
GVariant *value = NULL;
(*str)++;
if (g_variant_format_string_is_nnp (*str))
{
gpointer nnp = va_arg (*app, gpointer);
if (nnp != NULL)
value = g_variant_valist_new_nnp (str, nnp);
else
type = g_variant_format_string_scan_type (*str, NULL, str);
}
else
{
gboolean just = va_arg (*app, gboolean);
if (just)
value = g_variant_valist_new (str, app);
else
{
type = g_variant_format_string_scan_type (*str, NULL, NULL);
g_variant_valist_skip (str, app);
}
}
value = g_variant_new_maybe (type, value);
if (type != NULL)
g_variant_type_free (type);
return value;
}
else /* tuple, dictionary entry */
{
GVariantBuilder b;
if (**str == '(')
g_variant_builder_init (&b, G_VARIANT_TYPE_TUPLE);
else
{
g_assert (**str == '{');
g_variant_builder_init (&b, G_VARIANT_TYPE_DICT_ENTRY);
}
(*str)++; /* '(' */
while (**str != ')' && **str != '}')
g_variant_builder_add_value (&b, g_variant_valist_new (str, app));
(*str)++; /* ')' */
return g_variant_builder_end (&b);
}
}
static void
g_variant_valist_get (const gchar **str,
GVariant *value,
gboolean free,
va_list *app)
{
if (g_variant_format_string_is_leaf (*str))
g_variant_valist_get_leaf (str, value, free, app);
else if (**str == 'm')
{
(*str)++;
if (value != NULL)
value = g_variant_get_maybe (value);
if (!g_variant_format_string_is_nnp (*str))
{
gboolean *ptr = va_arg (*app, gboolean *);
if (ptr != NULL)
*ptr = value != NULL;
}
g_variant_valist_get (str, value, free, app);
if (value != NULL)
g_variant_unref (value);
}
else /* tuple, dictionary entry */
{
gint index = 0;
g_assert (**str == '(' || **str == '{');
(*str)++;
while (**str != ')' && **str != '}')
{
if (value != NULL)
{
GVariant *child = g_variant_get_child_value (value, index++);
g_variant_valist_get (str, child, free, app);
g_variant_unref (child);
}
else
g_variant_valist_get (str, NULL, free, app);
}
(*str)++;
}
}
/* User-facing API {{{2 */
/**
* g_variant_new: (skip)
* @format_string: a #GVariant format string
* @...: arguments, as per @format_string
*
* Creates a new #GVariant instance.
*
* Think of this function as an analogue to g_strdup_printf().
*
* The type of the created instance and the arguments that are expected
* by this function are determined by @format_string. See the section on
* [GVariant format strings][gvariant-format-strings]. Please note that
* the syntax of the format string is very likely to be extended in the
* future.
*
* The first character of the format string must not be '*' '?' '@' or
* 'r'; in essence, a new #GVariant must always be constructed by this
* function (and not merely passed through it unmodified).
*
* Note that the arguments must be of the correct width for their types
* specified in @format_string. This can be achieved by casting them. See
* the [GVariant varargs documentation][gvariant-varargs].
*
* |[<!-- language="C" -->
* MyFlags some_flags = FLAG_ONE | FLAG_TWO;
* const gchar *some_strings[] = { "a", "b", "c", NULL };
* GVariant *new_variant;
*
* new_variant = g_variant_new ("(t^as)",
* // This cast is required.
* (guint64) some_flags,
* some_strings);
* ]|
*
* Returns: a new floating #GVariant instance
*
* Since: 2.24
**/
GVariant *
g_variant_new (const gchar *format_string,
...)
{
GVariant *value;
va_list ap;
g_return_val_if_fail (valid_format_string (format_string, TRUE, NULL) &&
format_string[0] != '?' && format_string[0] != '@' &&
format_string[0] != '*' && format_string[0] != 'r',
NULL);
va_start (ap, format_string);
value = g_variant_new_va (format_string, NULL, &ap);
va_end (ap);
return value;
}
/**
* g_variant_new_va: (skip)
* @format_string: a string that is prefixed with a format string
* @endptr: (nullable) (default NULL): location to store the end pointer,
* or %NULL
* @app: a pointer to a #va_list
*
* This function is intended to be used by libraries based on
* #GVariant that want to provide g_variant_new()-like functionality
* to their users.
*
* The API is more general than g_variant_new() to allow a wider range
* of possible uses.
*
* @format_string must still point to a valid format string, but it only
* needs to be nul-terminated if @endptr is %NULL. If @endptr is
* non-%NULL then it is updated to point to the first character past the
* end of the format string.
*
* @app is a pointer to a #va_list. The arguments, according to
* @format_string, are collected from this #va_list and the list is left
* pointing to the argument following the last.
*
* Note that the arguments in @app must be of the correct width for their
* types specified in @format_string when collected into the #va_list.
* See the [GVariant varargs documentation][gvariant-varargs].
*
* These two generalisations allow mixing of multiple calls to
* g_variant_new_va() and g_variant_get_va() within a single actual
* varargs call by the user.
*
* The return value will be floating if it was a newly created GVariant
* instance (for example, if the format string was "(ii)"). In the case
* that the format_string was '*', '?', 'r', or a format starting with
* '@' then the collected #GVariant pointer will be returned unmodified,
* without adding any additional references.
*
* In order to behave correctly in all cases it is necessary for the
* calling function to g_variant_ref_sink() the return result before
* returning control to the user that originally provided the pointer.
* At this point, the caller will have their own full reference to the
* result. This can also be done by adding the result to a container,
* or by passing it to another g_variant_new() call.
*
* Returns: a new, usually floating, #GVariant
*
* Since: 2.24
**/
GVariant *
g_variant_new_va (const gchar *format_string,
const gchar **endptr,
va_list *app)
{
GVariant *value;
g_return_val_if_fail (valid_format_string (format_string, !endptr, NULL),
NULL);
g_return_val_if_fail (app != NULL, NULL);
value = g_variant_valist_new (&format_string, app);
if (endptr != NULL)
*endptr = format_string;
return value;
}
/**
* g_variant_get: (skip)
* @value: a #GVariant instance
* @format_string: a #GVariant format string
* @...: arguments, as per @format_string
*
* Deconstructs a #GVariant instance.
*
* Think of this function as an analogue to scanf().
*
* The arguments that are expected by this function are entirely
* determined by @format_string. @format_string also restricts the
* permissible types of @value. It is an error to give a value with
* an incompatible type. See the section on
* [GVariant format strings][gvariant-format-strings].
* Please note that the syntax of the format string is very likely to be
* extended in the future.
*
* @format_string determines the C types that are used for unpacking
* the values and also determines if the values are copied or borrowed,
* see the section on
* [GVariant format strings][gvariant-format-strings-pointers].
*
* Since: 2.24
**/
void
g_variant_get (GVariant *value,
const gchar *format_string,
...)
{
va_list ap;
g_return_if_fail (value != NULL);
g_return_if_fail (valid_format_string (format_string, TRUE, value));
/* if any direct-pointer-access formats are in use, flatten first */
if (strchr (format_string, '&'))
g_variant_get_data (value);
va_start (ap, format_string);
g_variant_get_va (value, format_string, NULL, &ap);
va_end (ap);
}
/**
* g_variant_get_va: (skip)
* @value: a #GVariant
* @format_string: a string that is prefixed with a format string
* @endptr: (nullable) (default NULL): location to store the end pointer,
* or %NULL
* @app: a pointer to a #va_list
*
* This function is intended to be used by libraries based on #GVariant
* that want to provide g_variant_get()-like functionality to their
* users.
*
* The API is more general than g_variant_get() to allow a wider range
* of possible uses.
*
* @format_string must still point to a valid format string, but it only
* need to be nul-terminated if @endptr is %NULL. If @endptr is
* non-%NULL then it is updated to point to the first character past the
* end of the format string.
*
* @app is a pointer to a #va_list. The arguments, according to
* @format_string, are collected from this #va_list and the list is left
* pointing to the argument following the last.
*
* These two generalisations allow mixing of multiple calls to
* g_variant_new_va() and g_variant_get_va() within a single actual
* varargs call by the user.
*
* @format_string determines the C types that are used for unpacking
* the values and also determines if the values are copied or borrowed,
* see the section on
* [GVariant format strings][gvariant-format-strings-pointers].
*
* Since: 2.24
**/
void
g_variant_get_va (GVariant *value,
const gchar *format_string,
const gchar **endptr,
va_list *app)
{
g_return_if_fail (valid_format_string (format_string, !endptr, value));
g_return_if_fail (value != NULL);
g_return_if_fail (app != NULL);
/* if any direct-pointer-access formats are in use, flatten first */
if (strchr (format_string, '&'))
g_variant_get_data (value);
g_variant_valist_get (&format_string, value, FALSE, app);
if (endptr != NULL)
*endptr = format_string;
}
/* Varargs-enabled Utility Functions {{{1 */
/**
* g_variant_builder_add: (skip)
* @builder: a #GVariantBuilder
* @format_string: a #GVariant varargs format string
* @...: arguments, as per @format_string
*
* Adds to a #GVariantBuilder.
*
* This call is a convenience wrapper that is exactly equivalent to
* calling g_variant_new() followed by g_variant_builder_add_value().
*
* Note that the arguments must be of the correct width for their types
* specified in @format_string. This can be achieved by casting them. See
* the [GVariant varargs documentation][gvariant-varargs].
*
* This function might be used as follows:
*
* |[<!-- language="C" -->
* GVariant *
* make_pointless_dictionary (void)
* {
* GVariantBuilder builder;
* int i;
*
* g_variant_builder_init (&builder, G_VARIANT_TYPE_ARRAY);
* for (i = 0; i < 16; i++)
* {
* gchar buf[3];
*
* sprintf (buf, "%d", i);
* g_variant_builder_add (&builder, "{is}", i, buf);
* }
*
* return g_variant_builder_end (&builder);
* }
* ]|
*
* Since: 2.24
*/
void
g_variant_builder_add (GVariantBuilder *builder,
const gchar *format_string,
...)
{
GVariant *variant;
va_list ap;
va_start (ap, format_string);
variant = g_variant_new_va (format_string, NULL, &ap);
va_end (ap);
g_variant_builder_add_value (builder, variant);
}
/**
* g_variant_get_child: (skip)
* @value: a container #GVariant
* @index_: the index of the child to deconstruct
* @format_string: a #GVariant format string
* @...: arguments, as per @format_string
*
* Reads a child item out of a container #GVariant instance and
* deconstructs it according to @format_string. This call is
* essentially a combination of g_variant_get_child_value() and
* g_variant_get().
*
* @format_string determines the C types that are used for unpacking
* the values and also determines if the values are copied or borrowed,
* see the section on
* [GVariant format strings][gvariant-format-strings-pointers].
*
* Since: 2.24
**/
void
g_variant_get_child (GVariant *value,
gsize index_,
const gchar *format_string,
...)
{
GVariant *child;
va_list ap;
/* if any direct-pointer-access formats are in use, flatten first */
if (strchr (format_string, '&'))
g_variant_get_data (value);
child = g_variant_get_child_value (value, index_);
g_return_if_fail (valid_format_string (format_string, TRUE, child));
va_start (ap, format_string);
g_variant_get_va (child, format_string, NULL, &ap);
va_end (ap);
g_variant_unref (child);
}
/**
* g_variant_iter_next: (skip)
* @iter: a #GVariantIter
* @format_string: a GVariant format string
* @...: the arguments to unpack the value into
*
* Gets the next item in the container and unpacks it into the variable
* argument list according to @format_string, returning %TRUE.
*
* If no more items remain then %FALSE is returned.
*
* All of the pointers given on the variable arguments list of this
* function are assumed to point at uninitialised memory. It is the
* responsibility of the caller to free all of the values returned by
* the unpacking process.
*
* Here is an example for memory management with g_variant_iter_next():
* |[<!-- language="C" -->
* // Iterates a dictionary of type 'a{sv}'
* void
* iterate_dictionary (GVariant *dictionary)
* {
* GVariantIter iter;
* GVariant *value;
* gchar *key;
*
* g_variant_iter_init (&iter, dictionary);
* while (g_variant_iter_next (&iter, "{sv}", &key, &value))
* {
* g_print ("Item '%s' has type '%s'\n", key,
* g_variant_get_type_string (value));
*
* // must free data for ourselves
* g_variant_unref (value);
* g_free (key);
* }
* }
* ]|
*
* For a solution that is likely to be more convenient to C programmers
* when dealing with loops, see g_variant_iter_loop().
*
* @format_string determines the C types that are used for unpacking
* the values and also determines if the values are copied or borrowed.
*
* See the section on
* [GVariant format strings][gvariant-format-strings-pointers].
*
* Returns: %TRUE if a value was unpacked, or %FALSE if there as no value
*
* Since: 2.24
**/
gboolean
g_variant_iter_next (GVariantIter *iter,
const gchar *format_string,
...)
{
GVariant *value;
value = g_variant_iter_next_value (iter);
g_return_val_if_fail (valid_format_string (format_string, TRUE, value),
FALSE);
if (value != NULL)
{
va_list ap;
va_start (ap, format_string);
g_variant_valist_get (&format_string, value, FALSE, &ap);
va_end (ap);
g_variant_unref (value);
}
return value != NULL;
}
/**
* g_variant_iter_loop: (skip)
* @iter: a #GVariantIter
* @format_string: a GVariant format string
* @...: the arguments to unpack the value into
*
* Gets the next item in the container and unpacks it into the variable
* argument list according to @format_string, returning %TRUE.
*
* If no more items remain then %FALSE is returned.
*
* On the first call to this function, the pointers appearing on the
* variable argument list are assumed to point at uninitialised memory.
* On the second and later calls, it is assumed that the same pointers
* will be given and that they will point to the memory as set by the
* previous call to this function. This allows the previous values to
* be freed, as appropriate.
*
* This function is intended to be used with a while loop as
* demonstrated in the following example. This function can only be
* used when iterating over an array. It is only valid to call this
* function with a string constant for the format string and the same
* string constant must be used each time. Mixing calls to this
* function and g_variant_iter_next() or g_variant_iter_next_value() on
* the same iterator causes undefined behavior.
*
* If you break out of a such a while loop using g_variant_iter_loop() then
* you must free or unreference all the unpacked values as you would with
* g_variant_get(). Failure to do so will cause a memory leak.
*
* Here is an example for memory management with g_variant_iter_loop():
* |[<!-- language="C" -->
* // Iterates a dictionary of type 'a{sv}'
* void
* iterate_dictionary (GVariant *dictionary)
* {
* GVariantIter iter;
* GVariant *value;
* gchar *key;
*
* g_variant_iter_init (&iter, dictionary);
* while (g_variant_iter_loop (&iter, "{sv}", &key, &value))
* {
* g_print ("Item '%s' has type '%s'\n", key,
* g_variant_get_type_string (value));
*
* // no need to free 'key' and 'value' here
* // unless breaking out of this loop
* }
* }
* ]|
*
* For most cases you should use g_variant_iter_next().
*
* This function is really only useful when unpacking into #GVariant or
* #GVariantIter in order to allow you to skip the call to
* g_variant_unref() or g_variant_iter_free().
*
* For example, if you are only looping over simple integer and string
* types, g_variant_iter_next() is definitely preferred. For string
* types, use the '&' prefix to avoid allocating any memory at all (and
* thereby avoiding the need to free anything as well).
*
* @format_string determines the C types that are used for unpacking
* the values and also determines if the values are copied or borrowed.
*
* See the section on
* [GVariant format strings][gvariant-format-strings-pointers].
*
* Returns: %TRUE if a value was unpacked, or %FALSE if there was no
* value
*
* Since: 2.24
**/
gboolean
g_variant_iter_loop (GVariantIter *iter,
const gchar *format_string,
...)
{
gboolean first_time = GVSI(iter)->loop_format == NULL;
GVariant *value;
va_list ap;
g_return_val_if_fail (first_time ||
format_string == GVSI(iter)->loop_format,
FALSE);
if (first_time)
{
TYPE_CHECK (GVSI(iter)->value, G_VARIANT_TYPE_ARRAY, FALSE);
GVSI(iter)->loop_format = format_string;
if (strchr (format_string, '&'))
g_variant_get_data (GVSI(iter)->value);
}
value = g_variant_iter_next_value (iter);
g_return_val_if_fail (!first_time ||
valid_format_string (format_string, TRUE, value),
FALSE);
va_start (ap, format_string);
g_variant_valist_get (&format_string, value, !first_time, &ap);
va_end (ap);
if (value != NULL)
g_variant_unref (value);
return value != NULL;
}
/* Serialized data {{{1 */
static GVariant *
g_variant_deep_copy (GVariant *value,
gboolean byteswap)
{
switch (g_variant_classify (value))
{
case G_VARIANT_CLASS_MAYBE:
case G_VARIANT_CLASS_TUPLE:
case G_VARIANT_CLASS_DICT_ENTRY:
case G_VARIANT_CLASS_VARIANT:
{
GVariantBuilder builder;
gsize i, n_children;
g_variant_builder_init (&builder, g_variant_get_type (value));
for (i = 0, n_children = g_variant_n_children (value); i < n_children; i++)
{
GVariant *child = g_variant_get_child_value (value, i);
g_variant_builder_add_value (&builder, g_variant_deep_copy (child, byteswap));
g_variant_unref (child);
}
return g_variant_builder_end (&builder);
}
case G_VARIANT_CLASS_ARRAY:
{
GVariantBuilder builder;
gsize i, n_children;
GVariant *first_invalid_child_deep_copy = NULL;
/* Arrays are in theory treated the same as maybes, tuples, dict entries
* and variants, and could be another case in the above block of code.
*
* However, they have the property that when dealing with non-normal
* data (which is the only time g_variant_deep_copy() is currently
* called) in a variable-sized array, the code above can easily end up
* creating many default child values in order to return an array which
* is of the right length and type, but without containing non-normal
* data. This can happen if the offset table for the array is malformed.
*
* In this case, the code above would end up allocating the same default
* value for each one of the child indexes beyond the first malformed
* entry in the offset table. This can end up being a lot of identical
* allocations of default values, particularly if the non-normal array
* is crafted maliciously.
*
* Avoid that problem by returning a new reference to the same default
* value for every child after the first invalid one. This results in
* returning an equivalent array, in normal form and trusted — but with
* significantly fewer memory allocations.
*
* See https://gitlab.gnome.org/GNOME/glib/-/issues/2540 */
g_variant_builder_init (&builder, g_variant_get_type (value));
for (i = 0, n_children = g_variant_n_children (value); i < n_children; i++)
{
/* Try maybe_get_child_value() first; if it returns NULL, this child
* is non-normal. get_child_value() would have constructed and
* returned a default value in that case. */
GVariant *child = g_variant_maybe_get_child_value (value, i);
if (child != NULL)
{
/* Non-normal children may not always be contiguous, as they may
* be non-normal for reasons other than invalid offset table
* entries. As they are all the same type, they will all have
* the same default value though, so keep that around. */
g_variant_builder_add_value (&builder, g_variant_deep_copy (child, byteswap));
}
else if (child == NULL && first_invalid_child_deep_copy != NULL)
{
g_variant_builder_add_value (&builder, first_invalid_child_deep_copy);
}
else if (child == NULL)
{
child = g_variant_get_child_value (value, i);
first_invalid_child_deep_copy = g_variant_ref_sink (g_variant_deep_copy (child, byteswap));
g_variant_builder_add_value (&builder, first_invalid_child_deep_copy);
}
g_clear_pointer (&child, g_variant_unref);
}
g_clear_pointer (&first_invalid_child_deep_copy, g_variant_unref);
return g_variant_builder_end (&builder);
}
case G_VARIANT_CLASS_BOOLEAN:
return g_variant_new_boolean (g_variant_get_boolean (value));
case G_VARIANT_CLASS_BYTE:
return g_variant_new_byte (g_variant_get_byte (value));
case G_VARIANT_CLASS_INT16:
if (byteswap)
return g_variant_new_int16 (GUINT16_SWAP_LE_BE (g_variant_get_int16 (value)));
else
return g_variant_new_int16 (g_variant_get_int16 (value));
case G_VARIANT_CLASS_UINT16:
if (byteswap)
return g_variant_new_uint16 (GUINT16_SWAP_LE_BE (g_variant_get_uint16 (value)));
else
return g_variant_new_uint16 (g_variant_get_uint16 (value));
case G_VARIANT_CLASS_INT32:
if (byteswap)
return g_variant_new_int32 (GUINT32_SWAP_LE_BE (g_variant_get_int32 (value)));
else
return g_variant_new_int32 (g_variant_get_int32 (value));
case G_VARIANT_CLASS_UINT32:
if (byteswap)
return g_variant_new_uint32 (GUINT32_SWAP_LE_BE (g_variant_get_uint32 (value)));
else
return g_variant_new_uint32 (g_variant_get_uint32 (value));
case G_VARIANT_CLASS_INT64:
if (byteswap)
return g_variant_new_int64 (GUINT64_SWAP_LE_BE (g_variant_get_int64 (value)));
else
return g_variant_new_int64 (g_variant_get_int64 (value));
case G_VARIANT_CLASS_UINT64:
if (byteswap)
return g_variant_new_uint64 (GUINT64_SWAP_LE_BE (g_variant_get_uint64 (value)));
else
return g_variant_new_uint64 (g_variant_get_uint64 (value));
case G_VARIANT_CLASS_HANDLE:
if (byteswap)
return g_variant_new_handle (GUINT32_SWAP_LE_BE (g_variant_get_handle (value)));
else
return g_variant_new_handle (g_variant_get_handle (value));
case G_VARIANT_CLASS_DOUBLE:
if (byteswap)
{
/* We have to convert the double to a uint64 here using a union,
* because a cast will round it numerically. */
union
{
guint64 u64;
gdouble dbl;
} u1, u2;
u1.dbl = g_variant_get_double (value);
u2.u64 = GUINT64_SWAP_LE_BE (u1.u64);
return g_variant_new_double (u2.dbl);
}
else
return g_variant_new_double (g_variant_get_double (value));
case G_VARIANT_CLASS_STRING:
return g_variant_new_string (g_variant_get_string (value, NULL));
case G_VARIANT_CLASS_OBJECT_PATH:
return g_variant_new_object_path (g_variant_get_string (value, NULL));
case G_VARIANT_CLASS_SIGNATURE:
return g_variant_new_signature (g_variant_get_string (value, NULL));
}
g_assert_not_reached ();
}
/**
* g_variant_get_normal_form:
* @value: a #GVariant
*
* Gets a #GVariant instance that has the same value as @value and is
* trusted to be in normal form.
*
* If @value is already trusted to be in normal form then a new
* reference to @value is returned.
*
* If @value is not already trusted, then it is scanned to check if it
* is in normal form. If it is found to be in normal form then it is
* marked as trusted and a new reference to it is returned.
*
* If @value is found not to be in normal form then a new trusted
* #GVariant is created with the same value as @value. The non-normal parts of
* @value will be replaced with default values which are guaranteed to be in
* normal form.
*
* It makes sense to call this function if you've received #GVariant
* data from untrusted sources and you want to ensure your serialized
* output is definitely in normal form.
*
* If @value is already in normal form, a new reference will be returned
* (which will be floating if @value is floating). If it is not in normal form,
* the newly created #GVariant will be returned with a single non-floating
* reference. Typically, g_variant_take_ref() should be called on the return
* value from this function to guarantee ownership of a single non-floating
* reference to it.
*
* Returns: (transfer full): a trusted #GVariant
*
* Since: 2.24
**/
GVariant *
g_variant_get_normal_form (GVariant *value)
{
GVariant *trusted;
if (g_variant_is_normal_form (value))
return g_variant_ref (value);
trusted = g_variant_deep_copy (value, FALSE);
g_assert (g_variant_is_trusted (trusted));
return g_variant_ref_sink (trusted);
}
/**
* g_variant_byteswap:
* @value: a #GVariant
*
* Performs a byteswapping operation on the contents of @value. The
* result is that all multi-byte numeric data contained in @value is
* byteswapped. That includes 16, 32, and 64bit signed and unsigned
* integers as well as file handles and double precision floating point
* values.
*
* This function is an identity mapping on any value that does not
* contain multi-byte numeric data. That include strings, booleans,
* bytes and containers containing only these things (recursively).
*
* While this function can safely handle untrusted, non-normal data, it is
* recommended to check whether the input is in normal form beforehand, using
* g_variant_is_normal_form(), and to reject non-normal inputs if your
* application can be strict about what inputs it rejects.
*
* The returned value is always in normal form and is marked as trusted.
* A full, not floating, reference is returned.
*
* Returns: (transfer full): the byteswapped form of @value
*
* Since: 2.24
**/
GVariant *
g_variant_byteswap (GVariant *value)
{
GVariantTypeInfo *type_info;
guint alignment;
GVariant *new;
type_info = g_variant_get_type_info (value);
g_variant_type_info_query (type_info, &alignment, NULL);
if (alignment && g_variant_is_normal_form (value))
{
/* (potentially) contains multi-byte numeric data, but is also already in
* normal form so we can use a faster byteswapping codepath on the
* serialised data */
GVariantSerialised serialised = { 0, };
GBytes *bytes;
serialised.type_info = g_variant_get_type_info (value);
serialised.size = g_variant_get_size (value);
serialised.data = g_malloc (serialised.size);
serialised.depth = g_variant_get_depth (value);
serialised.ordered_offsets_up_to = G_MAXSIZE; /* operating on the normal form */
serialised.checked_offsets_up_to = G_MAXSIZE;
g_variant_store (value, serialised.data);
g_variant_serialised_byteswap (serialised);
bytes = g_bytes_new_take (serialised.data, serialised.size);
new = g_variant_ref_sink (g_variant_new_from_bytes (g_variant_get_type (value), bytes, TRUE));
g_bytes_unref (bytes);
}
else if (alignment)
/* (potentially) contains multi-byte numeric data */
new = g_variant_ref_sink (g_variant_deep_copy (value, TRUE));
else
/* contains no multi-byte data */
new = g_variant_get_normal_form (value);
g_assert (g_variant_is_trusted (new));
return g_steal_pointer (&new);
}
/**
* g_variant_new_from_data:
* @type: a definite #GVariantType
* @data: (array length=size) (element-type guint8): the serialized data
* @size: the size of @data
* @trusted: %TRUE if @data is definitely in normal form
* @notify: (scope async): function to call when @data is no longer needed
* @user_data: data for @notify
*
* Creates a new #GVariant instance from serialized data.
*
* @type is the type of #GVariant instance that will be constructed.
* The interpretation of @data depends on knowing the type.
*
* @data is not modified by this function and must remain valid with an
* unchanging value until such a time as @notify is called with
* @user_data. If the contents of @data change before that time then
* the result is undefined.
*
* If @data is trusted to be serialized data in normal form then
* @trusted should be %TRUE. This applies to serialized data created
* within this process or read from a trusted location on the disk (such
* as a file installed in /usr/lib alongside your application). You
* should set trusted to %FALSE if @data is read from the network, a
* file in the user's home directory, etc.
*
* If @data was not stored in this machine's native endianness, any multi-byte
* numeric values in the returned variant will also be in non-native
* endianness. g_variant_byteswap() can be used to recover the original values.
*
* @notify will be called with @user_data when @data is no longer
* needed. The exact time of this call is unspecified and might even be
* before this function returns.
*
* Note: @data must be backed by memory that is aligned appropriately for the
* @type being loaded. Otherwise this function will internally create a copy of
* the memory (since GLib 2.60) or (in older versions) fail and exit the
* process.
*
* Returns: (transfer none): a new floating #GVariant of type @type
*
* Since: 2.24
**/
GVariant *
g_variant_new_from_data (const GVariantType *type,
gconstpointer data,
gsize size,
gboolean trusted,
GDestroyNotify notify,
gpointer user_data)
{
GVariant *value;
GBytes *bytes;
g_return_val_if_fail (g_variant_type_is_definite (type), NULL);
g_return_val_if_fail (data != NULL || size == 0, NULL);
if (notify)
bytes = g_bytes_new_with_free_func (data, size, notify, user_data);
else
bytes = g_bytes_new_static (data, size);
value = g_variant_new_from_bytes (type, bytes, trusted);
g_bytes_unref (bytes);
return value;
}
/* Epilogue {{{1 */
/* vim:set foldmethod=marker: */