mirror of
https://gitlab.gnome.org/GNOME/glib.git
synced 2025-01-26 05:56:14 +01:00
2f48b4b7fb
Remove a test that only made sense when GThreadedResolver was the base class for the two non-threaded resolver classes that no longer exist.
618 lines
20 KiB
C
618 lines
20 KiB
C
/* -*- mode: C; c-file-style: "gnu"; indent-tabs-mode: nil; -*- */
|
|
|
|
/* GIO - GLib Input, Output and Streaming Library
|
|
*
|
|
* Copyright (C) 2008 Red Hat, Inc.
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General
|
|
* Public License along with this library; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place, Suite 330,
|
|
* Boston, MA 02111-1307, USA.
|
|
*/
|
|
|
|
#include "config.h"
|
|
#include <glib.h>
|
|
#include "glibintl.h"
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
#include "gthreadedresolver.h"
|
|
#include "gnetworkingprivate.h"
|
|
|
|
#include "gcancellable.h"
|
|
#include "gsimpleasyncresult.h"
|
|
#include "gsocketaddress.h"
|
|
|
|
|
|
G_DEFINE_TYPE (GThreadedResolver, g_threaded_resolver, G_TYPE_RESOLVER)
|
|
|
|
static void threaded_resolver_thread (gpointer thread_data, gpointer pool_data);
|
|
|
|
static void
|
|
g_threaded_resolver_init (GThreadedResolver *gtr)
|
|
{
|
|
gtr->thread_pool = g_thread_pool_new (threaded_resolver_thread, gtr,
|
|
-1, FALSE, NULL);
|
|
}
|
|
|
|
static void
|
|
finalize (GObject *object)
|
|
{
|
|
GThreadedResolver *gtr = G_THREADED_RESOLVER (object);
|
|
|
|
g_thread_pool_free (gtr->thread_pool, FALSE, FALSE);
|
|
|
|
G_OBJECT_CLASS (g_threaded_resolver_parent_class)->finalize (object);
|
|
}
|
|
|
|
/* A GThreadedResolverRequest represents a request in progress
|
|
* (usually, but see case 1). It is refcounted, to make sure that it
|
|
* doesn't get freed too soon. In particular, it can't be freed until
|
|
* (a) the resolver thread has finished resolving, (b) the calling
|
|
* thread has received an answer, and (c) no other thread could be in
|
|
* the process of trying to cancel it.
|
|
*
|
|
* The possibilities:
|
|
*
|
|
* 1. Synchronous non-cancellable request: in this case, the request
|
|
* is simply done in the calling thread, without using
|
|
* GThreadedResolverRequest at all.
|
|
*
|
|
* 2. Synchronous cancellable request: A req is created with a GCond,
|
|
* and 3 refs (for the resolution thread, the calling thread, and
|
|
* the cancellation signal handler).
|
|
*
|
|
* a. If the resolution completes successfully, the thread pool
|
|
* function (threaded_resolver_thread()) will call
|
|
* g_threaded_resolver_request_complete(), which will detach
|
|
* the "cancelled" signal handler (dropping one ref on req)
|
|
* and signal the GCond, and then unref the req. The calling
|
|
* thread receives the signal from the GCond, processes the
|
|
* response, and unrefs the req, causing it to be freed.
|
|
*
|
|
* b. If the resolution is cancelled before completing,
|
|
* request_cancelled() will call
|
|
* g_threaded_resolver_request_complete(), which will detach
|
|
* the signal handler (as above, unreffing the req), set
|
|
* req->error to indicate that it was cancelled, and signal
|
|
* the GCond. The calling thread receives the signal from the
|
|
* GCond, processes the response, and unrefs the req.
|
|
* Eventually, the resolver thread finishes resolving (or
|
|
* times out in the resolver) and calls
|
|
* g_threaded_resolver_request_complete() again, but
|
|
* _request_complete() does nothing this time since the
|
|
* request is already complete. The thread pool func then
|
|
* unrefs the req, causing it to be freed.
|
|
*
|
|
* 3. Asynchronous request: A req is created with a GSimpleAsyncResult
|
|
* (and no GCond). The calling thread's ref on req is set up to be
|
|
* automatically dropped when the async_result is freed. Two
|
|
* sub-possibilities:
|
|
*
|
|
* a. If the resolution completes, the thread pool function
|
|
* (threaded_resolver_thread()) will call
|
|
* g_threaded_resolver_request_complete(), which will detach
|
|
* the "cancelled" signal handler (if it was present)
|
|
* (unreffing the req), queue the async_result to complete in
|
|
* an idle handler, unref the async_result (which is still
|
|
* reffed by the idle handler though), and then unref the req.
|
|
* The main thread then invokes the async_result's callback
|
|
* and processes the response. When it finishes, the
|
|
* async_result drops the ref that was taken by
|
|
* g_simple_async_result_complete_in_idle(), which causes the
|
|
* async_result to be freed, which causes req to be unreffed
|
|
* and freed.
|
|
*
|
|
* b. If the resolution is cancelled, request_cancelled() will
|
|
* call g_threaded_resolver_request_complete(), which will
|
|
* detach the signal handler (as above, unreffing the req) set
|
|
* req->error to indicate that it was cancelled, and queue and
|
|
* unref the async_result. The main thread completes the
|
|
* async_request and unrefs it and the req, as above.
|
|
* Eventually, the resolver thread finishes resolving (or
|
|
* times out in the resolver) and calls
|
|
* g_threaded_resolver_request_complete() again, but
|
|
* _request_complete() does nothing this time since the
|
|
* request is already complete. The thread pool func then
|
|
* unrefs the req, causing it to be freed.
|
|
*
|
|
* g_threaded_resolver_request_complete() ensures that if the request
|
|
* completes and cancels "at the same time" that only one of the two
|
|
* conditions gets processed.
|
|
*/
|
|
|
|
typedef struct _GThreadedResolverRequest GThreadedResolverRequest;
|
|
typedef void (*GThreadedResolverResolveFunc) (GThreadedResolverRequest *, GError **);
|
|
typedef void (*GThreadedResolverFreeFunc) (GThreadedResolverRequest *);
|
|
|
|
struct _GThreadedResolverRequest {
|
|
GThreadedResolverResolveFunc resolve_func;
|
|
GThreadedResolverFreeFunc free_func;
|
|
|
|
union {
|
|
struct {
|
|
gchar *hostname;
|
|
GList *addresses;
|
|
} name;
|
|
struct {
|
|
GInetAddress *address;
|
|
gchar *name;
|
|
} address;
|
|
struct {
|
|
gchar *rrname;
|
|
GList *targets;
|
|
} service;
|
|
} u;
|
|
|
|
GCancellable *cancellable;
|
|
GError *error;
|
|
|
|
GMutex mutex;
|
|
guint ref_count;
|
|
|
|
GCond cond;
|
|
GSimpleAsyncResult *async_result;
|
|
gboolean complete;
|
|
|
|
};
|
|
|
|
static void g_threaded_resolver_request_unref (GThreadedResolverRequest *req);
|
|
static void request_cancelled (GCancellable *cancellable, gpointer req);
|
|
static void request_cancelled_disconnect_notify (gpointer req, GClosure *closure);
|
|
|
|
static GThreadedResolverRequest *
|
|
g_threaded_resolver_request_new (GThreadedResolverResolveFunc resolve_func,
|
|
GThreadedResolverFreeFunc free_func,
|
|
GCancellable *cancellable)
|
|
{
|
|
GThreadedResolverRequest *req;
|
|
|
|
req = g_slice_new0 (GThreadedResolverRequest);
|
|
req->resolve_func = resolve_func;
|
|
req->free_func = free_func;
|
|
|
|
/* Initial refcount is 2; one for the caller and one for resolve_func */
|
|
req->ref_count = 2;
|
|
|
|
g_mutex_init (&req->mutex);
|
|
g_cond_init (&req->cond);
|
|
/* Initially locked; caller must unlock */
|
|
g_mutex_lock (&req->mutex);
|
|
|
|
if (cancellable)
|
|
{
|
|
req->ref_count++;
|
|
req->cancellable = g_object_ref (cancellable);
|
|
g_signal_connect_data (cancellable, "cancelled",
|
|
G_CALLBACK (request_cancelled), req,
|
|
request_cancelled_disconnect_notify, 0);
|
|
}
|
|
|
|
return req;
|
|
}
|
|
|
|
static void
|
|
g_threaded_resolver_request_unref (GThreadedResolverRequest *req)
|
|
{
|
|
guint ref_count;
|
|
|
|
g_mutex_lock (&req->mutex);
|
|
ref_count = --req->ref_count;
|
|
g_mutex_unlock (&req->mutex);
|
|
if (ref_count > 0)
|
|
return;
|
|
|
|
g_mutex_clear (&req->mutex);
|
|
g_cond_clear (&req->cond);
|
|
|
|
if (req->error)
|
|
g_error_free (req->error);
|
|
|
|
if (req->free_func)
|
|
req->free_func (req);
|
|
|
|
/* We don't have to free req->cancellable or req->async_result,
|
|
* since (if set), they must already have been freed by
|
|
* request_complete() in order to get here.
|
|
*/
|
|
|
|
g_slice_free (GThreadedResolverRequest, req);
|
|
}
|
|
|
|
static void
|
|
g_threaded_resolver_request_complete (GThreadedResolverRequest *req,
|
|
GError *error)
|
|
{
|
|
g_mutex_lock (&req->mutex);
|
|
if (req->complete)
|
|
{
|
|
/* The req was cancelled, and now it has finished resolving as
|
|
* well. But we have nowhere to send the result, so just return.
|
|
*/
|
|
g_mutex_unlock (&req->mutex);
|
|
g_clear_error (&error);
|
|
return;
|
|
}
|
|
|
|
req->complete = TRUE;
|
|
g_mutex_unlock (&req->mutex);
|
|
|
|
if (error)
|
|
g_propagate_error (&req->error, error);
|
|
|
|
if (req->cancellable)
|
|
{
|
|
/* Drop the signal handler's ref on @req */
|
|
g_signal_handlers_disconnect_by_func (req->cancellable, request_cancelled, req);
|
|
g_object_unref (req->cancellable);
|
|
req->cancellable = NULL;
|
|
}
|
|
|
|
if (req->async_result)
|
|
{
|
|
if (req->error)
|
|
g_simple_async_result_set_from_error (req->async_result, req->error);
|
|
g_simple_async_result_complete_in_idle (req->async_result);
|
|
|
|
/* Drop our ref on the async_result, which will eventually cause
|
|
* it to drop its ref on req.
|
|
*/
|
|
g_object_unref (req->async_result);
|
|
req->async_result = NULL;
|
|
}
|
|
|
|
else
|
|
g_cond_signal (&req->cond);
|
|
}
|
|
|
|
static void
|
|
request_cancelled (GCancellable *cancellable,
|
|
gpointer user_data)
|
|
{
|
|
GThreadedResolverRequest *req = user_data;
|
|
GError *error = NULL;
|
|
|
|
g_cancellable_set_error_if_cancelled (req->cancellable, &error);
|
|
g_threaded_resolver_request_complete (req, error);
|
|
|
|
/* We can't actually cancel the resolver thread; it will eventually
|
|
* complete on its own and call request_complete() again, which will
|
|
* do nothing the second time.
|
|
*/
|
|
}
|
|
|
|
static void
|
|
request_cancelled_disconnect_notify (gpointer req,
|
|
GClosure *closure)
|
|
{
|
|
g_threaded_resolver_request_unref (req);
|
|
}
|
|
|
|
static void
|
|
threaded_resolver_thread (gpointer thread_data,
|
|
gpointer pool_data)
|
|
{
|
|
GThreadedResolverRequest *req = thread_data;
|
|
GError *error = NULL;
|
|
|
|
req->resolve_func (req, &error);
|
|
g_threaded_resolver_request_complete (req, error);
|
|
g_threaded_resolver_request_unref (req);
|
|
}
|
|
|
|
static void
|
|
resolve_sync (GThreadedResolver *gtr,
|
|
GThreadedResolverRequest *req,
|
|
GError **error)
|
|
{
|
|
if (!req->cancellable)
|
|
{
|
|
req->resolve_func (req, error);
|
|
g_mutex_unlock (&req->mutex);
|
|
|
|
g_threaded_resolver_request_complete (req, FALSE);
|
|
g_threaded_resolver_request_unref (req);
|
|
return;
|
|
}
|
|
|
|
g_thread_pool_push (gtr->thread_pool, req, &req->error);
|
|
if (!req->error)
|
|
g_cond_wait (&req->cond, &req->mutex);
|
|
g_mutex_unlock (&req->mutex);
|
|
|
|
if (req->error)
|
|
{
|
|
g_propagate_error (error, req->error);
|
|
req->error = NULL;
|
|
}
|
|
}
|
|
|
|
static void
|
|
resolve_async (GThreadedResolver *gtr,
|
|
GThreadedResolverRequest *req,
|
|
GAsyncReadyCallback callback,
|
|
gpointer user_data,
|
|
gpointer tag)
|
|
{
|
|
req->async_result = g_simple_async_result_new (G_OBJECT (gtr),
|
|
callback, user_data, tag);
|
|
g_simple_async_result_set_op_res_gpointer (req->async_result, req,
|
|
(GDestroyNotify)g_threaded_resolver_request_unref);
|
|
g_thread_pool_push (gtr->thread_pool, req, NULL);
|
|
g_mutex_unlock (&req->mutex);
|
|
}
|
|
|
|
static GThreadedResolverRequest *
|
|
resolve_finish (GResolver *resolver,
|
|
GAsyncResult *result,
|
|
gpointer tag,
|
|
GError **error)
|
|
{
|
|
g_return_val_if_fail (g_simple_async_result_is_valid (result, G_OBJECT (resolver), tag), NULL);
|
|
|
|
return g_simple_async_result_get_op_res_gpointer (G_SIMPLE_ASYNC_RESULT (result));
|
|
}
|
|
|
|
static void
|
|
do_lookup_by_name (GThreadedResolverRequest *req,
|
|
GError **error)
|
|
{
|
|
struct addrinfo *res = NULL;
|
|
gint retval;
|
|
|
|
retval = getaddrinfo (req->u.name.hostname, NULL,
|
|
&_g_resolver_addrinfo_hints, &res);
|
|
req->u.name.addresses =
|
|
_g_resolver_addresses_from_addrinfo (req->u.name.hostname, res, retval, error);
|
|
if (res)
|
|
freeaddrinfo (res);
|
|
}
|
|
|
|
static GList *
|
|
lookup_by_name (GResolver *resolver,
|
|
const gchar *hostname,
|
|
GCancellable *cancellable,
|
|
GError **error)
|
|
{
|
|
GThreadedResolver *gtr = G_THREADED_RESOLVER (resolver);
|
|
GThreadedResolverRequest *req;
|
|
GList *addresses;
|
|
|
|
req = g_threaded_resolver_request_new (do_lookup_by_name, NULL, cancellable);
|
|
req->u.name.hostname = (gchar *)hostname;
|
|
resolve_sync (gtr, req, error);
|
|
|
|
addresses = req->u.name.addresses;
|
|
g_threaded_resolver_request_unref (req);
|
|
return addresses;
|
|
}
|
|
|
|
static void
|
|
free_lookup_by_name (GThreadedResolverRequest *req)
|
|
{
|
|
g_free (req->u.name.hostname);
|
|
if (req->u.name.addresses)
|
|
g_resolver_free_addresses (req->u.name.addresses);
|
|
}
|
|
|
|
static void
|
|
lookup_by_name_async (GResolver *resolver,
|
|
const gchar *hostname,
|
|
GCancellable *cancellable,
|
|
GAsyncReadyCallback callback,
|
|
gpointer user_data)
|
|
{
|
|
GThreadedResolver *gtr = G_THREADED_RESOLVER (resolver);
|
|
GThreadedResolverRequest *req;
|
|
|
|
req = g_threaded_resolver_request_new (do_lookup_by_name, free_lookup_by_name,
|
|
cancellable);
|
|
req->u.name.hostname = g_strdup (hostname);
|
|
resolve_async (gtr, req, callback, user_data, lookup_by_name_async);
|
|
}
|
|
|
|
static GList *
|
|
lookup_by_name_finish (GResolver *resolver,
|
|
GAsyncResult *result,
|
|
GError **error)
|
|
{
|
|
GThreadedResolverRequest *req;
|
|
GList *addresses;
|
|
|
|
req = resolve_finish (resolver, result, lookup_by_name_async, error);
|
|
addresses = req->u.name.addresses;
|
|
req->u.name.addresses = NULL;
|
|
return addresses;
|
|
}
|
|
|
|
|
|
static void
|
|
do_lookup_by_address (GThreadedResolverRequest *req,
|
|
GError **error)
|
|
{
|
|
struct sockaddr_storage sockaddr;
|
|
gsize sockaddr_size;
|
|
gchar name[NI_MAXHOST];
|
|
gint retval;
|
|
|
|
_g_resolver_address_to_sockaddr (req->u.address.address,
|
|
&sockaddr, &sockaddr_size);
|
|
|
|
retval = getnameinfo ((struct sockaddr *)&sockaddr, sockaddr_size,
|
|
name, sizeof (name), NULL, 0, NI_NAMEREQD);
|
|
req->u.address.name = _g_resolver_name_from_nameinfo (req->u.address.address,
|
|
name, retval, error);
|
|
}
|
|
|
|
static gchar *
|
|
lookup_by_address (GResolver *resolver,
|
|
GInetAddress *address,
|
|
GCancellable *cancellable,
|
|
GError **error)
|
|
{
|
|
GThreadedResolver *gtr = G_THREADED_RESOLVER (resolver);
|
|
GThreadedResolverRequest *req;
|
|
gchar *name;
|
|
|
|
req = g_threaded_resolver_request_new (do_lookup_by_address, NULL, cancellable);
|
|
req->u.address.address = address;
|
|
resolve_sync (gtr, req, error);
|
|
|
|
name = req->u.address.name;
|
|
g_threaded_resolver_request_unref (req);
|
|
return name;
|
|
}
|
|
|
|
static void
|
|
free_lookup_by_address (GThreadedResolverRequest *req)
|
|
{
|
|
g_object_unref (req->u.address.address);
|
|
if (req->u.address.name)
|
|
g_free (req->u.address.name);
|
|
}
|
|
|
|
static void
|
|
lookup_by_address_async (GResolver *resolver,
|
|
GInetAddress *address,
|
|
GCancellable *cancellable,
|
|
GAsyncReadyCallback callback,
|
|
gpointer user_data)
|
|
{
|
|
GThreadedResolver *gtr = G_THREADED_RESOLVER (resolver);
|
|
GThreadedResolverRequest *req;
|
|
|
|
req = g_threaded_resolver_request_new (do_lookup_by_address,
|
|
free_lookup_by_address,
|
|
cancellable);
|
|
req->u.address.address = g_object_ref (address);
|
|
resolve_async (gtr, req, callback, user_data, lookup_by_address_async);
|
|
}
|
|
|
|
static gchar *
|
|
lookup_by_address_finish (GResolver *resolver,
|
|
GAsyncResult *result,
|
|
GError **error)
|
|
{
|
|
GThreadedResolverRequest *req;
|
|
gchar *name;
|
|
|
|
req = resolve_finish (resolver, result, lookup_by_address_async, error);
|
|
name = req->u.address.name;
|
|
req->u.address.name = NULL;
|
|
return name;
|
|
}
|
|
|
|
|
|
static void
|
|
do_lookup_service (GThreadedResolverRequest *req,
|
|
GError **error)
|
|
{
|
|
#if defined(G_OS_UNIX)
|
|
gint len, herr;
|
|
guchar answer[1024];
|
|
#elif defined(G_OS_WIN32)
|
|
DNS_STATUS status;
|
|
DNS_RECORD *results;
|
|
#endif
|
|
|
|
#if defined(G_OS_UNIX)
|
|
len = res_query (req->u.service.rrname, C_IN, T_SRV, answer, sizeof (answer));
|
|
herr = h_errno;
|
|
req->u.service.targets = _g_resolver_targets_from_res_query (req->u.service.rrname, answer, len, herr, error);
|
|
#elif defined(G_OS_WIN32)
|
|
status = DnsQuery_A (req->u.service.rrname, DNS_TYPE_SRV,
|
|
DNS_QUERY_STANDARD, NULL, &results, NULL);
|
|
req->u.service.targets = _g_resolver_targets_from_DnsQuery (req->u.service.rrname, status, results, error);
|
|
DnsRecordListFree (results, DnsFreeRecordList);
|
|
#endif
|
|
}
|
|
|
|
static GList *
|
|
lookup_service (GResolver *resolver,
|
|
const gchar *rrname,
|
|
GCancellable *cancellable,
|
|
GError **error)
|
|
{
|
|
GThreadedResolver *gtr = G_THREADED_RESOLVER (resolver);
|
|
GThreadedResolverRequest *req;
|
|
GList *targets;
|
|
|
|
req = g_threaded_resolver_request_new (do_lookup_service, NULL, cancellable);
|
|
req->u.service.rrname = (char *)rrname;
|
|
resolve_sync (gtr, req, error);
|
|
|
|
targets = req->u.service.targets;
|
|
g_threaded_resolver_request_unref (req);
|
|
return targets;
|
|
}
|
|
|
|
static void
|
|
free_lookup_service (GThreadedResolverRequest *req)
|
|
{
|
|
g_free (req->u.service.rrname);
|
|
if (req->u.service.targets)
|
|
g_resolver_free_targets (req->u.service.targets);
|
|
}
|
|
|
|
static void
|
|
lookup_service_async (GResolver *resolver,
|
|
const char *rrname,
|
|
GCancellable *cancellable,
|
|
GAsyncReadyCallback callback,
|
|
gpointer user_data)
|
|
{
|
|
GThreadedResolver *gtr = G_THREADED_RESOLVER (resolver);
|
|
GThreadedResolverRequest *req;
|
|
|
|
req = g_threaded_resolver_request_new (do_lookup_service,
|
|
free_lookup_service,
|
|
cancellable);
|
|
req->u.service.rrname = g_strdup (rrname);
|
|
resolve_async (gtr, req, callback, user_data, lookup_service_async);
|
|
}
|
|
|
|
static GList *
|
|
lookup_service_finish (GResolver *resolver,
|
|
GAsyncResult *result,
|
|
GError **error)
|
|
{
|
|
GThreadedResolverRequest *req;
|
|
GList *targets;
|
|
|
|
req = resolve_finish (resolver, result, lookup_service_async, error);
|
|
targets = req->u.service.targets;
|
|
req->u.service.targets = NULL;
|
|
return targets;
|
|
}
|
|
|
|
|
|
static void
|
|
g_threaded_resolver_class_init (GThreadedResolverClass *threaded_class)
|
|
{
|
|
GResolverClass *resolver_class = G_RESOLVER_CLASS (threaded_class);
|
|
GObjectClass *object_class = G_OBJECT_CLASS (threaded_class);
|
|
|
|
resolver_class->lookup_by_name = lookup_by_name;
|
|
resolver_class->lookup_by_name_async = lookup_by_name_async;
|
|
resolver_class->lookup_by_name_finish = lookup_by_name_finish;
|
|
resolver_class->lookup_by_address = lookup_by_address;
|
|
resolver_class->lookup_by_address_async = lookup_by_address_async;
|
|
resolver_class->lookup_by_address_finish = lookup_by_address_finish;
|
|
resolver_class->lookup_service = lookup_service;
|
|
resolver_class->lookup_service_async = lookup_service_async;
|
|
resolver_class->lookup_service_finish = lookup_service_finish;
|
|
|
|
object_class->finalize = finalize;
|
|
}
|