mirror of
https://gitlab.gnome.org/GNOME/glib.git
synced 2025-01-28 15:06:15 +01:00
a70ba9c8b1
Divide monotonic time by 1e6 not 1e9 to get seconds.
527 lines
12 KiB
C
527 lines
12 KiB
C
/* GLIB - Library of useful routines for C programming
|
|
* Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 02111-1307, USA.
|
|
*/
|
|
|
|
/*
|
|
* Modified by the GLib Team and others 1997-2000. See the AUTHORS
|
|
* file for a list of people on the GLib Team. See the ChangeLog
|
|
* files for a list of changes. These files are distributed with
|
|
* GLib at ftp://ftp.gtk.org/pub/gtk/.
|
|
*/
|
|
|
|
/*
|
|
* MT safe
|
|
*/
|
|
|
|
#include "config.h"
|
|
#include "glibconfig.h"
|
|
|
|
#include <stdlib.h>
|
|
|
|
#ifdef HAVE_UNISTD_H
|
|
#include <unistd.h>
|
|
#endif /* HAVE_UNISTD_H */
|
|
|
|
#ifdef HAVE_SYS_TIME_H
|
|
#include <sys/time.h>
|
|
#endif
|
|
#include <time.h>
|
|
#ifndef G_OS_WIN32
|
|
#include <errno.h>
|
|
#endif /* G_OS_WIN32 */
|
|
|
|
#ifdef G_OS_WIN32
|
|
#include <windows.h>
|
|
#endif /* G_OS_WIN32 */
|
|
|
|
#include "gtimer.h"
|
|
|
|
#include "gmem.h"
|
|
#include "gstrfuncs.h"
|
|
#include "gtestutils.h"
|
|
#include "gmain.h"
|
|
|
|
/**
|
|
* SECTION: timers
|
|
* @title: Timers
|
|
* @short_description: keep track of elapsed time
|
|
*
|
|
* #GTimer records a start time, and counts microseconds elapsed since
|
|
* that time. This is done somewhat differently on different platforms,
|
|
* and can be tricky to get exactly right, so #GTimer provides a
|
|
* portable/convenient interface.
|
|
**/
|
|
|
|
/**
|
|
* GTimer:
|
|
*
|
|
* Opaque datatype that records a start time.
|
|
**/
|
|
struct _GTimer
|
|
{
|
|
guint64 start;
|
|
guint64 end;
|
|
|
|
guint active : 1;
|
|
};
|
|
|
|
/**
|
|
* g_timer_new:
|
|
* @Returns: a new #GTimer.
|
|
*
|
|
* Creates a new timer, and starts timing (i.e. g_timer_start() is
|
|
* implicitly called for you).
|
|
**/
|
|
GTimer*
|
|
g_timer_new (void)
|
|
{
|
|
GTimer *timer;
|
|
|
|
timer = g_new (GTimer, 1);
|
|
timer->active = TRUE;
|
|
|
|
timer->start = g_get_monotonic_time ();
|
|
|
|
return timer;
|
|
}
|
|
|
|
/**
|
|
* g_timer_destroy:
|
|
* @timer: a #GTimer to destroy.
|
|
*
|
|
* Destroys a timer, freeing associated resources.
|
|
**/
|
|
void
|
|
g_timer_destroy (GTimer *timer)
|
|
{
|
|
g_return_if_fail (timer != NULL);
|
|
|
|
g_free (timer);
|
|
}
|
|
|
|
/**
|
|
* g_timer_start:
|
|
* @timer: a #GTimer.
|
|
*
|
|
* Marks a start time, so that future calls to g_timer_elapsed() will
|
|
* report the time since g_timer_start() was called. g_timer_new()
|
|
* automatically marks the start time, so no need to call
|
|
* g_timer_start() immediately after creating the timer.
|
|
**/
|
|
void
|
|
g_timer_start (GTimer *timer)
|
|
{
|
|
g_return_if_fail (timer != NULL);
|
|
|
|
timer->active = TRUE;
|
|
|
|
timer->start = g_get_monotonic_time ();
|
|
}
|
|
|
|
/**
|
|
* g_timer_stop:
|
|
* @timer: a #GTimer.
|
|
*
|
|
* Marks an end time, so calls to g_timer_elapsed() will return the
|
|
* difference between this end time and the start time.
|
|
**/
|
|
void
|
|
g_timer_stop (GTimer *timer)
|
|
{
|
|
g_return_if_fail (timer != NULL);
|
|
|
|
timer->active = FALSE;
|
|
|
|
timer->end = g_get_monotonic_time ();
|
|
}
|
|
|
|
/**
|
|
* g_timer_reset:
|
|
* @timer: a #GTimer.
|
|
*
|
|
* This function is useless; it's fine to call g_timer_start() on an
|
|
* already-started timer to reset the start time, so g_timer_reset()
|
|
* serves no purpose.
|
|
**/
|
|
void
|
|
g_timer_reset (GTimer *timer)
|
|
{
|
|
g_return_if_fail (timer != NULL);
|
|
|
|
timer->start = g_get_monotonic_time ();
|
|
}
|
|
|
|
/**
|
|
* g_timer_continue:
|
|
* @timer: a #GTimer.
|
|
*
|
|
* Resumes a timer that has previously been stopped with
|
|
* g_timer_stop(). g_timer_stop() must be called before using this
|
|
* function.
|
|
*
|
|
* Since: 2.4
|
|
**/
|
|
void
|
|
g_timer_continue (GTimer *timer)
|
|
{
|
|
guint64 elapsed;
|
|
|
|
g_return_if_fail (timer != NULL);
|
|
g_return_if_fail (timer->active == FALSE);
|
|
|
|
/* Get elapsed time and reset timer start time
|
|
* to the current time minus the previously
|
|
* elapsed interval.
|
|
*/
|
|
|
|
elapsed = timer->end - timer->start;
|
|
|
|
timer->start = g_get_monotonic_time ();
|
|
|
|
timer->start -= elapsed;
|
|
|
|
timer->active = TRUE;
|
|
}
|
|
|
|
/**
|
|
* g_timer_elapsed:
|
|
* @timer: a #GTimer.
|
|
* @microseconds: return location for the fractional part of seconds
|
|
* elapsed, in microseconds (that is, the total number
|
|
* of microseconds elapsed, modulo 1000000), or %NULL
|
|
* @Returns: seconds elapsed as a floating point value, including any
|
|
* fractional part.
|
|
*
|
|
* If @timer has been started but not stopped, obtains the time since
|
|
* the timer was started. If @timer has been stopped, obtains the
|
|
* elapsed time between the time it was started and the time it was
|
|
* stopped. The return value is the number of seconds elapsed,
|
|
* including any fractional part. The @microseconds out parameter is
|
|
* essentially useless.
|
|
*
|
|
* <warning><para>
|
|
* Calling initialization functions, in particular g_thread_init(), while a
|
|
* timer is running will cause invalid return values from this function.
|
|
* </para></warning>
|
|
**/
|
|
gdouble
|
|
g_timer_elapsed (GTimer *timer,
|
|
gulong *microseconds)
|
|
{
|
|
gdouble total;
|
|
gint64 elapsed;
|
|
|
|
g_return_val_if_fail (timer != NULL, 0);
|
|
|
|
if (timer->active)
|
|
timer->end = g_get_monotonic_time ();
|
|
|
|
elapsed = timer->end - timer->start;
|
|
|
|
total = elapsed / 1e6;
|
|
|
|
if (microseconds)
|
|
*microseconds = elapsed % 1000000;
|
|
|
|
return total;
|
|
}
|
|
|
|
void
|
|
g_usleep (gulong microseconds)
|
|
{
|
|
#ifdef G_OS_WIN32
|
|
Sleep (microseconds / 1000);
|
|
#else
|
|
struct timespec request, remaining;
|
|
request.tv_sec = microseconds / G_USEC_PER_SEC;
|
|
request.tv_nsec = 1000 * (microseconds % G_USEC_PER_SEC);
|
|
while (nanosleep (&request, &remaining) == -1 && errno == EINTR)
|
|
request = remaining;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* g_time_val_add:
|
|
* @time_: a #GTimeVal
|
|
* @microseconds: number of microseconds to add to @time
|
|
*
|
|
* Adds the given number of microseconds to @time_. @microseconds can
|
|
* also be negative to decrease the value of @time_.
|
|
**/
|
|
void
|
|
g_time_val_add (GTimeVal *time_, glong microseconds)
|
|
{
|
|
g_return_if_fail (time_->tv_usec >= 0 && time_->tv_usec < G_USEC_PER_SEC);
|
|
|
|
if (microseconds >= 0)
|
|
{
|
|
time_->tv_usec += microseconds % G_USEC_PER_SEC;
|
|
time_->tv_sec += microseconds / G_USEC_PER_SEC;
|
|
if (time_->tv_usec >= G_USEC_PER_SEC)
|
|
{
|
|
time_->tv_usec -= G_USEC_PER_SEC;
|
|
time_->tv_sec++;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
microseconds *= -1;
|
|
time_->tv_usec -= microseconds % G_USEC_PER_SEC;
|
|
time_->tv_sec -= microseconds / G_USEC_PER_SEC;
|
|
if (time_->tv_usec < 0)
|
|
{
|
|
time_->tv_usec += G_USEC_PER_SEC;
|
|
time_->tv_sec--;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* converts a broken down date representation, relative to UTC, to
|
|
* a timestamp; it uses timegm() if it's available.
|
|
*/
|
|
static time_t
|
|
mktime_utc (struct tm *tm)
|
|
{
|
|
time_t retval;
|
|
|
|
#ifndef HAVE_TIMEGM
|
|
static const gint days_before[] =
|
|
{
|
|
0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
|
|
};
|
|
#endif
|
|
|
|
#ifndef HAVE_TIMEGM
|
|
if (tm->tm_mon < 0 || tm->tm_mon > 11)
|
|
return (time_t) -1;
|
|
|
|
retval = (tm->tm_year - 70) * 365;
|
|
retval += (tm->tm_year - 68) / 4;
|
|
retval += days_before[tm->tm_mon] + tm->tm_mday - 1;
|
|
|
|
if (tm->tm_year % 4 == 0 && tm->tm_mon < 2)
|
|
retval -= 1;
|
|
|
|
retval = ((((retval * 24) + tm->tm_hour) * 60) + tm->tm_min) * 60 + tm->tm_sec;
|
|
#else
|
|
retval = timegm (tm);
|
|
#endif /* !HAVE_TIMEGM */
|
|
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* g_time_val_from_iso8601:
|
|
* @iso_date: an ISO 8601 encoded date string
|
|
* @time_: a #GTimeVal
|
|
*
|
|
* Converts a string containing an ISO 8601 encoded date and time
|
|
* to a #GTimeVal and puts it into @time_.
|
|
*
|
|
* Return value: %TRUE if the conversion was successful.
|
|
*
|
|
* Since: 2.12
|
|
*/
|
|
gboolean
|
|
g_time_val_from_iso8601 (const gchar *iso_date,
|
|
GTimeVal *time_)
|
|
{
|
|
struct tm tm = {0};
|
|
long val;
|
|
|
|
g_return_val_if_fail (iso_date != NULL, FALSE);
|
|
g_return_val_if_fail (time_ != NULL, FALSE);
|
|
|
|
/* Ensure that the first character is a digit,
|
|
* the first digit of the date, otherwise we don't
|
|
* have an ISO 8601 date */
|
|
while (g_ascii_isspace (*iso_date))
|
|
iso_date++;
|
|
|
|
if (*iso_date == '\0')
|
|
return FALSE;
|
|
|
|
if (!g_ascii_isdigit (*iso_date) && *iso_date != '-' && *iso_date != '+')
|
|
return FALSE;
|
|
|
|
val = strtoul (iso_date, (char **)&iso_date, 10);
|
|
if (*iso_date == '-')
|
|
{
|
|
/* YYYY-MM-DD */
|
|
tm.tm_year = val - 1900;
|
|
iso_date++;
|
|
tm.tm_mon = strtoul (iso_date, (char **)&iso_date, 10) - 1;
|
|
|
|
if (*iso_date++ != '-')
|
|
return FALSE;
|
|
|
|
tm.tm_mday = strtoul (iso_date, (char **)&iso_date, 10);
|
|
}
|
|
else
|
|
{
|
|
/* YYYYMMDD */
|
|
tm.tm_mday = val % 100;
|
|
tm.tm_mon = (val % 10000) / 100 - 1;
|
|
tm.tm_year = val / 10000 - 1900;
|
|
}
|
|
|
|
if (*iso_date != 'T')
|
|
{
|
|
/* Date only */
|
|
if (*iso_date == '\0')
|
|
return TRUE;
|
|
return FALSE;
|
|
}
|
|
|
|
iso_date++;
|
|
|
|
/* If there is a 'T' then there has to be a time */
|
|
if (!g_ascii_isdigit (*iso_date))
|
|
return FALSE;
|
|
|
|
val = strtoul (iso_date, (char **)&iso_date, 10);
|
|
if (*iso_date == ':')
|
|
{
|
|
/* hh:mm:ss */
|
|
tm.tm_hour = val;
|
|
iso_date++;
|
|
tm.tm_min = strtoul (iso_date, (char **)&iso_date, 10);
|
|
|
|
if (*iso_date++ != ':')
|
|
return FALSE;
|
|
|
|
tm.tm_sec = strtoul (iso_date, (char **)&iso_date, 10);
|
|
}
|
|
else
|
|
{
|
|
/* hhmmss */
|
|
tm.tm_sec = val % 100;
|
|
tm.tm_min = (val % 10000) / 100;
|
|
tm.tm_hour = val / 10000;
|
|
}
|
|
|
|
time_->tv_usec = 0;
|
|
|
|
if (*iso_date == ',' || *iso_date == '.')
|
|
{
|
|
glong mul = 100000;
|
|
|
|
while (g_ascii_isdigit (*++iso_date))
|
|
{
|
|
time_->tv_usec += (*iso_date - '0') * mul;
|
|
mul /= 10;
|
|
}
|
|
}
|
|
|
|
/* Now parse the offset and convert tm to a time_t */
|
|
if (*iso_date == 'Z')
|
|
{
|
|
iso_date++;
|
|
time_->tv_sec = mktime_utc (&tm);
|
|
}
|
|
else if (*iso_date == '+' || *iso_date == '-')
|
|
{
|
|
gint sign = (*iso_date == '+') ? -1 : 1;
|
|
|
|
val = strtoul (iso_date + 1, (char **)&iso_date, 10);
|
|
|
|
if (*iso_date == ':')
|
|
val = 60 * val + strtoul (iso_date + 1, (char **)&iso_date, 10);
|
|
else
|
|
val = 60 * (val / 100) + (val % 100);
|
|
|
|
time_->tv_sec = mktime_utc (&tm) + (time_t) (60 * val * sign);
|
|
}
|
|
else
|
|
{
|
|
/* No "Z" or offset, so local time */
|
|
tm.tm_isdst = -1; /* locale selects DST */
|
|
time_->tv_sec = mktime (&tm);
|
|
}
|
|
|
|
while (g_ascii_isspace (*iso_date))
|
|
iso_date++;
|
|
|
|
return *iso_date == '\0';
|
|
}
|
|
|
|
/**
|
|
* g_time_val_to_iso8601:
|
|
* @time_: a #GTimeVal
|
|
*
|
|
* Converts @time_ into an ISO 8601 encoded string, relative to the
|
|
* Coordinated Universal Time (UTC).
|
|
*
|
|
* Return value: a newly allocated string containing an ISO 8601 date
|
|
*
|
|
* Since: 2.12
|
|
*/
|
|
gchar *
|
|
g_time_val_to_iso8601 (GTimeVal *time_)
|
|
{
|
|
gchar *retval;
|
|
struct tm *tm;
|
|
#ifdef HAVE_GMTIME_R
|
|
struct tm tm_;
|
|
#endif
|
|
time_t secs;
|
|
|
|
g_return_val_if_fail (time_->tv_usec >= 0 && time_->tv_usec < G_USEC_PER_SEC, NULL);
|
|
|
|
secs = time_->tv_sec;
|
|
#ifdef _WIN32
|
|
tm = gmtime (&secs);
|
|
#else
|
|
#ifdef HAVE_GMTIME_R
|
|
tm = gmtime_r (&secs, &tm_);
|
|
#else
|
|
tm = gmtime (&secs);
|
|
#endif
|
|
#endif
|
|
|
|
if (time_->tv_usec != 0)
|
|
{
|
|
/* ISO 8601 date and time format, with fractionary seconds:
|
|
* YYYY-MM-DDTHH:MM:SS.MMMMMMZ
|
|
*/
|
|
retval = g_strdup_printf ("%4d-%02d-%02dT%02d:%02d:%02d.%06ldZ",
|
|
tm->tm_year + 1900,
|
|
tm->tm_mon + 1,
|
|
tm->tm_mday,
|
|
tm->tm_hour,
|
|
tm->tm_min,
|
|
tm->tm_sec,
|
|
time_->tv_usec);
|
|
}
|
|
else
|
|
{
|
|
/* ISO 8601 date and time format:
|
|
* YYYY-MM-DDTHH:MM:SSZ
|
|
*/
|
|
retval = g_strdup_printf ("%4d-%02d-%02dT%02d:%02d:%02dZ",
|
|
tm->tm_year + 1900,
|
|
tm->tm_mon + 1,
|
|
tm->tm_mday,
|
|
tm->tm_hour,
|
|
tm->tm_min,
|
|
tm->tm_sec);
|
|
}
|
|
|
|
return retval;
|
|
}
|