mirror of
https://gitlab.gnome.org/GNOME/glib.git
synced 2024-11-05 00:46:16 +01:00
1462 lines
41 KiB
C
1462 lines
41 KiB
C
/* gchecksum.h - data hashing functions
|
|
*
|
|
* Copyright (C) 2007 Emmanuele Bassi <ebassi@gnome.org>
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Library General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Library General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Library General Public
|
|
* License along with this library; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 02111-1307, USA.
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include <string.h>
|
|
|
|
#include "glibconfig.h"
|
|
#include "gchecksum.h"
|
|
#include "glib.h"
|
|
#include "glibintl.h"
|
|
|
|
#include "galias.h"
|
|
|
|
/**
|
|
* SECTION: checksum
|
|
* @title: Data Checksums
|
|
* @short_description: Computes the checksum for data
|
|
*
|
|
* GLib provides a generic API for computing checksums (or "digests")
|
|
* for a sequence of arbitrary bytes, using various hashing algorithms
|
|
* like MD5, SHA-1 and SHA-256. Checksums are commonly used in various
|
|
* environments and specifications.
|
|
*
|
|
* GLib supports incremental checksums using the GChecksum data
|
|
* structure, by calling g_checksum_update() as long as there's data
|
|
* available and then using g_checksum_get_string() or
|
|
* g_checksum_get_digest() to compute the checksum and return it either
|
|
* as a string in hexadecimal form, or as a raw sequence of bytes. To
|
|
* compute the checksum for binary blobs and NUL-terminated strings in
|
|
* one go, use the convenience functions g_compute_checksum_for_data()
|
|
* and g_compute_checksum_for_string(), respectively.
|
|
*
|
|
* Support for checksums has been added in GLib 2.16
|
|
**/
|
|
|
|
#define IS_VALID_TYPE(type) ((type) >= G_CHECKSUM_MD5 && (type) <= G_CHECKSUM_SHA256)
|
|
|
|
/* The fact that these are lower case characters is part of the ABI */
|
|
static const gchar hex_digits[] = "0123456789abcdef";
|
|
|
|
#define MD5_DATASIZE 64
|
|
#define MD5_DIGEST_LEN 16
|
|
|
|
typedef struct
|
|
{
|
|
guint32 buf[4];
|
|
guint32 bits[2];
|
|
|
|
guchar data[MD5_DATASIZE];
|
|
|
|
guchar digest[MD5_DIGEST_LEN];
|
|
} Md5sum;
|
|
|
|
#define SHA1_DATASIZE 64
|
|
#define SHA1_DIGEST_LEN 20
|
|
|
|
typedef struct
|
|
{
|
|
guint32 buf[5];
|
|
guint32 bits[2];
|
|
|
|
/* we pack 64 unsigned chars into 16 32-bit unsigned integers */
|
|
guint32 data[16];
|
|
|
|
guchar digest[SHA1_DIGEST_LEN];
|
|
} Sha1sum;
|
|
|
|
#define SHA256_DATASIZE 64
|
|
#define SHA256_DIGEST_LEN 32
|
|
|
|
typedef struct
|
|
{
|
|
guint32 buf[8];
|
|
guint32 bits[2];
|
|
|
|
guint8 data[SHA256_DATASIZE];
|
|
|
|
guchar digest[SHA256_DIGEST_LEN];
|
|
} Sha256sum;
|
|
|
|
struct _GChecksum
|
|
{
|
|
GChecksumType type;
|
|
|
|
gchar *digest_str;
|
|
|
|
union {
|
|
Md5sum md5;
|
|
Sha1sum sha1;
|
|
Sha256sum sha256;
|
|
} sum;
|
|
};
|
|
|
|
/* we need different byte swapping functions because MD5 expects buffers
|
|
* to be little-endian, while SHA1 and SHA256 expect them in big-endian
|
|
* form.
|
|
*/
|
|
|
|
#if G_BYTE_ORDER == G_LITTLE_ENDIAN
|
|
#define md5_byte_reverse(buffer,length)
|
|
#else
|
|
/* assume that the passed buffer is integer aligned */
|
|
static inline void
|
|
md5_byte_reverse (guchar *buffer,
|
|
gulong length)
|
|
{
|
|
guint32 bit;
|
|
|
|
do
|
|
{
|
|
bit = (guint32) ((unsigned) buffer[3] << 8 | buffer[2]) << 16 |
|
|
((unsigned) buffer[1] << 8 | buffer[0]);
|
|
* (guint32 *) buffer = bit;
|
|
buffer += 4;
|
|
}
|
|
while (--length);
|
|
}
|
|
#endif /* G_BYTE_ORDER == G_LITTLE_ENDIAN */
|
|
|
|
#if G_BYTE_ORDER == G_BIG_ENDIAN
|
|
#define sha_byte_reverse(buffer,length)
|
|
#else
|
|
static inline void
|
|
sha_byte_reverse (guint32 *buffer,
|
|
gint length)
|
|
{
|
|
length /= sizeof (guint32);
|
|
while (length--)
|
|
{
|
|
*buffer = GUINT32_SWAP_LE_BE (*buffer);
|
|
++buffer;
|
|
}
|
|
}
|
|
#endif /* G_BYTE_ORDER == G_BIG_ENDIAN */
|
|
|
|
static gchar *
|
|
digest_to_string (guint8 *digest,
|
|
gsize digest_len)
|
|
{
|
|
gint len = digest_len * 2;
|
|
gint i;
|
|
gchar *retval;
|
|
|
|
retval = g_new (gchar, len + 1);
|
|
|
|
for (i = 0; i < digest_len; i++)
|
|
{
|
|
guint8 byte = digest[i];
|
|
|
|
retval[2 * i] = hex_digits[byte >> 4];
|
|
retval[2 * i + 1] = hex_digits[byte & 0xf];
|
|
}
|
|
|
|
retval[len] = 0;
|
|
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* MD5 Checksum
|
|
*/
|
|
|
|
/* This MD5 digest computation is based on the equivalent code
|
|
* written by Colin Plumb. It came with this notice:
|
|
*
|
|
* This code implements the MD5 message-digest algorithm.
|
|
* The algorithm is due to Ron Rivest. This code was
|
|
* written by Colin Plumb in 1993, no copyright is claimed.
|
|
* This code is in the public domain; do with it what you wish.
|
|
*
|
|
* Equivalent code is available from RSA Data Security, Inc.
|
|
* This code has been tested against that, and is equivalent,
|
|
* except that you don't need to include two pages of legalese
|
|
* with every copy.
|
|
*/
|
|
|
|
static void
|
|
md5_sum_init (Md5sum *md5)
|
|
{
|
|
/* arbitrary constants */
|
|
md5->buf[0] = 0x67452301;
|
|
md5->buf[1] = 0xefcdab89;
|
|
md5->buf[2] = 0x98badcfe;
|
|
md5->buf[3] = 0x10325476;
|
|
|
|
md5->bits[0] = md5->bits[1] = 0;
|
|
}
|
|
|
|
/*
|
|
* The core of the MD5 algorithm, this alters an existing MD5 hash to
|
|
* reflect the addition of 16 longwords of new data. md5_sum_update()
|
|
* blocks the data and converts bytes into longwords for this routine.
|
|
*/
|
|
static void
|
|
md5_transform (guint32 buf[4],
|
|
guint32 const in[16])
|
|
{
|
|
register guint32 a, b, c, d;
|
|
|
|
/* The four core functions - F1 is optimized somewhat */
|
|
#define F1(x, y, z) (z ^ (x & (y ^ z)))
|
|
#define F2(x, y, z) F1 (z, x, y)
|
|
#define F3(x, y, z) (x ^ y ^ z)
|
|
#define F4(x, y, z) (y ^ (x | ~z))
|
|
|
|
/* This is the central step in the MD5 algorithm. */
|
|
#define md5_step(f, w, x, y, z, data, s) \
|
|
( w += f (x, y, z) + data, w = w << s | w >> (32 - s), w += x )
|
|
|
|
a = buf[0];
|
|
b = buf[1];
|
|
c = buf[2];
|
|
d = buf[3];
|
|
|
|
md5_step (F1, a, b, c, d, in[0] + 0xd76aa478, 7);
|
|
md5_step (F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
|
|
md5_step (F1, c, d, a, b, in[2] + 0x242070db, 17);
|
|
md5_step (F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
|
|
md5_step (F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
|
|
md5_step (F1, d, a, b, c, in[5] + 0x4787c62a, 12);
|
|
md5_step (F1, c, d, a, b, in[6] + 0xa8304613, 17);
|
|
md5_step (F1, b, c, d, a, in[7] + 0xfd469501, 22);
|
|
md5_step (F1, a, b, c, d, in[8] + 0x698098d8, 7);
|
|
md5_step (F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
|
|
md5_step (F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
|
|
md5_step (F1, b, c, d, a, in[11] + 0x895cd7be, 22);
|
|
md5_step (F1, a, b, c, d, in[12] + 0x6b901122, 7);
|
|
md5_step (F1, d, a, b, c, in[13] + 0xfd987193, 12);
|
|
md5_step (F1, c, d, a, b, in[14] + 0xa679438e, 17);
|
|
md5_step (F1, b, c, d, a, in[15] + 0x49b40821, 22);
|
|
|
|
md5_step (F2, a, b, c, d, in[1] + 0xf61e2562, 5);
|
|
md5_step (F2, d, a, b, c, in[6] + 0xc040b340, 9);
|
|
md5_step (F2, c, d, a, b, in[11] + 0x265e5a51, 14);
|
|
md5_step (F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
|
|
md5_step (F2, a, b, c, d, in[5] + 0xd62f105d, 5);
|
|
md5_step (F2, d, a, b, c, in[10] + 0x02441453, 9);
|
|
md5_step (F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
|
|
md5_step (F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
|
|
md5_step (F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
|
|
md5_step (F2, d, a, b, c, in[14] + 0xc33707d6, 9);
|
|
md5_step (F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
|
|
md5_step (F2, b, c, d, a, in[8] + 0x455a14ed, 20);
|
|
md5_step (F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
|
|
md5_step (F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
|
|
md5_step (F2, c, d, a, b, in[7] + 0x676f02d9, 14);
|
|
md5_step (F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
|
|
|
|
md5_step (F3, a, b, c, d, in[5] + 0xfffa3942, 4);
|
|
md5_step (F3, d, a, b, c, in[8] + 0x8771f681, 11);
|
|
md5_step (F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
|
|
md5_step (F3, b, c, d, a, in[14] + 0xfde5380c, 23);
|
|
md5_step (F3, a, b, c, d, in[1] + 0xa4beea44, 4);
|
|
md5_step (F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
|
|
md5_step (F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
|
|
md5_step (F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
|
|
md5_step (F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
|
|
md5_step (F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
|
|
md5_step (F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
|
|
md5_step (F3, b, c, d, a, in[6] + 0x04881d05, 23);
|
|
md5_step (F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
|
|
md5_step (F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
|
|
md5_step (F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
|
|
md5_step (F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
|
|
|
|
md5_step (F4, a, b, c, d, in[0] + 0xf4292244, 6);
|
|
md5_step (F4, d, a, b, c, in[7] + 0x432aff97, 10);
|
|
md5_step (F4, c, d, a, b, in[14] + 0xab9423a7, 15);
|
|
md5_step (F4, b, c, d, a, in[5] + 0xfc93a039, 21);
|
|
md5_step (F4, a, b, c, d, in[12] + 0x655b59c3, 6);
|
|
md5_step (F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
|
|
md5_step (F4, c, d, a, b, in[10] + 0xffeff47d, 15);
|
|
md5_step (F4, b, c, d, a, in[1] + 0x85845dd1, 21);
|
|
md5_step (F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
|
|
md5_step (F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
|
|
md5_step (F4, c, d, a, b, in[6] + 0xa3014314, 15);
|
|
md5_step (F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
|
|
md5_step (F4, a, b, c, d, in[4] + 0xf7537e82, 6);
|
|
md5_step (F4, d, a, b, c, in[11] + 0xbd3af235, 10);
|
|
md5_step (F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
|
|
md5_step (F4, b, c, d, a, in[9] + 0xeb86d391, 21);
|
|
|
|
buf[0] += a;
|
|
buf[1] += b;
|
|
buf[2] += c;
|
|
buf[3] += d;
|
|
|
|
#undef F1
|
|
#undef F2
|
|
#undef F3
|
|
#undef F4
|
|
#undef md5_step
|
|
}
|
|
|
|
static void
|
|
md5_sum_update (Md5sum *md5,
|
|
const guchar *data,
|
|
gsize length)
|
|
{
|
|
guint32 bit;
|
|
|
|
bit = md5->bits[0];
|
|
md5->bits[0] = bit + ((guint32) length << 3);
|
|
|
|
/* carry from low to high */
|
|
if (md5->bits[0] < bit)
|
|
md5->bits[1] += 1;
|
|
|
|
md5->bits[1] += length >> 29;
|
|
|
|
/* bytes already in Md5sum->data */
|
|
bit = (bit >> 3) & 0x3f;
|
|
|
|
/* handle any leading odd-sized chunks */
|
|
if (bit)
|
|
{
|
|
guchar *p = (guchar *) md5->data + bit;
|
|
|
|
bit = MD5_DATASIZE - bit;
|
|
if (length < bit)
|
|
{
|
|
memcpy (p, data, length);
|
|
return;
|
|
}
|
|
|
|
memcpy (p, data, bit);
|
|
|
|
md5_byte_reverse (md5->data, 16);
|
|
md5_transform (md5->buf, (guint32 *) md5->data);
|
|
|
|
data += bit;
|
|
length -= bit;
|
|
}
|
|
|
|
/* process data in 64-byte chunks */
|
|
while (length >= MD5_DATASIZE)
|
|
{
|
|
memcpy (md5->data, data, MD5_DATASIZE);
|
|
|
|
md5_byte_reverse (md5->data, 16);
|
|
md5_transform (md5->buf, (guint32 *) md5->data);
|
|
|
|
data += MD5_DATASIZE;
|
|
length -= MD5_DATASIZE;
|
|
}
|
|
|
|
/* handle any remaining bytes of data */
|
|
memcpy (md5->data, data, length);
|
|
}
|
|
|
|
/* closes a checksum */
|
|
static void
|
|
md5_sum_close (Md5sum *md5)
|
|
{
|
|
guint count;
|
|
guchar *p;
|
|
|
|
/* Compute number of bytes mod 64 */
|
|
count = (md5->bits[0] >> 3) & 0x3F;
|
|
|
|
/* Set the first char of padding to 0x80.
|
|
* This is safe since there is always at least one byte free
|
|
*/
|
|
p = md5->data + count;
|
|
*p++ = 0x80;
|
|
|
|
/* Bytes of padding needed to make 64 bytes */
|
|
count = MD5_DATASIZE - 1 - count;
|
|
|
|
/* Pad out to 56 mod 64 */
|
|
if (count < 8)
|
|
{
|
|
/* Two lots of padding: Pad the first block to 64 bytes */
|
|
memset (p, 0, count);
|
|
|
|
md5_byte_reverse (md5->data, 16);
|
|
md5_transform (md5->buf, (guint32 *) md5->data);
|
|
|
|
/* Now fill the next block with 56 bytes */
|
|
memset (md5->data, 0, MD5_DATASIZE - 8);
|
|
}
|
|
else
|
|
{
|
|
/* Pad block to 56 bytes */
|
|
memset (p, 0, count - 8);
|
|
}
|
|
|
|
md5_byte_reverse (md5->data, 14);
|
|
|
|
/* Append length in bits and transform */
|
|
((guint32 *) md5->data)[14] = md5->bits[0];
|
|
((guint32 *) md5->data)[15] = md5->bits[1];
|
|
|
|
md5_transform (md5->buf, (guint32 *) md5->data);
|
|
md5_byte_reverse ((guchar *) md5->buf, 4);
|
|
|
|
memcpy (md5->digest, md5->buf, 16);
|
|
|
|
/* Reset buffers in case they contain sensitive data */
|
|
memset (md5->buf, 0, sizeof (md5->buf));
|
|
memset (md5->data, 0, sizeof (md5->data));
|
|
}
|
|
|
|
static gchar *
|
|
md5_sum_to_string (Md5sum *md5)
|
|
{
|
|
return digest_to_string (md5->digest, MD5_DIGEST_LEN);
|
|
}
|
|
|
|
static void
|
|
md5_sum_digest (Md5sum *md5,
|
|
guint8 *digest)
|
|
{
|
|
gint i;
|
|
|
|
for (i = 0; i < MD5_DIGEST_LEN; i++)
|
|
digest[i] = md5->digest[i];
|
|
}
|
|
|
|
/*
|
|
* SHA-1 Checksum
|
|
*/
|
|
|
|
/* The following implementation comes from D-Bus dbus-sha.c. I've changed
|
|
* it to use GLib types and to work more like the MD5 implementation above.
|
|
* I left the comments to have an history of this code.
|
|
* -- Emmanuele Bassi, ebassi@gnome.org
|
|
*/
|
|
|
|
/* The following comments have the history of where this code
|
|
* comes from. I actually copied it from GNet in GNOME CVS.
|
|
* - hp@redhat.com
|
|
*/
|
|
|
|
/*
|
|
* sha.h : Implementation of the Secure Hash Algorithm
|
|
*
|
|
* Part of the Python Cryptography Toolkit, version 1.0.0
|
|
*
|
|
* Copyright (C) 1995, A.M. Kuchling
|
|
*
|
|
* Distribute and use freely; there are no restrictions on further
|
|
* dissemination and usage except those imposed by the laws of your
|
|
* country of residence.
|
|
*
|
|
*/
|
|
|
|
/* SHA: NIST's Secure Hash Algorithm */
|
|
|
|
/* Based on SHA code originally posted to sci.crypt by Peter Gutmann
|
|
in message <30ajo5$oe8@ccu2.auckland.ac.nz>.
|
|
Modified to test for endianness on creation of SHA objects by AMK.
|
|
Also, the original specification of SHA was found to have a weakness
|
|
by NSA/NIST. This code implements the fixed version of SHA.
|
|
*/
|
|
|
|
/* Here's the first paragraph of Peter Gutmann's posting:
|
|
|
|
The following is my SHA (FIPS 180) code updated to allow use of the "fixed"
|
|
SHA, thanks to Jim Gillogly and an anonymous contributor for the information on
|
|
what's changed in the new version. The fix is a simple change which involves
|
|
adding a single rotate in the initial expansion function. It is unknown
|
|
whether this is an optimal solution to the problem which was discovered in the
|
|
SHA or whether it's simply a bandaid which fixes the problem with a minimum of
|
|
effort (for example the reengineering of a great many Capstone chips).
|
|
*/
|
|
|
|
static void
|
|
sha1_sum_init (Sha1sum *sha1)
|
|
{
|
|
/* initialize constants */
|
|
sha1->buf[0] = 0x67452301L;
|
|
sha1->buf[1] = 0xEFCDAB89L;
|
|
sha1->buf[2] = 0x98BADCFEL;
|
|
sha1->buf[3] = 0x10325476L;
|
|
sha1->buf[4] = 0xC3D2E1F0L;
|
|
|
|
/* initialize bits */
|
|
sha1->bits[0] = sha1->bits[1] = 0;
|
|
}
|
|
|
|
/* The SHA f()-functions. */
|
|
|
|
#define f1(x,y,z) (z ^ (x & (y ^ z))) /* Rounds 0-19 */
|
|
#define f2(x,y,z) (x ^ y ^ z) /* Rounds 20-39 */
|
|
#define f3(x,y,z) (( x & y) | (z & (x | y))) /* Rounds 40-59 */
|
|
#define f4(x,y,z) (x ^ y ^ z) /* Rounds 60-79 */
|
|
|
|
/* The SHA Mysterious Constants */
|
|
#define K1 0x5A827999L /* Rounds 0-19 */
|
|
#define K2 0x6ED9EBA1L /* Rounds 20-39 */
|
|
#define K3 0x8F1BBCDCL /* Rounds 40-59 */
|
|
#define K4 0xCA62C1D6L /* Rounds 60-79 */
|
|
|
|
/* 32-bit rotate left - kludged with shifts */
|
|
#define ROTL(n,X) (((X) << n ) | ((X) >> (32 - n)))
|
|
|
|
/* The initial expanding function. The hash function is defined over an
|
|
80-word expanded input array W, where the first 16 are copies of the input
|
|
data, and the remaining 64 are defined by
|
|
|
|
W[ i ] = W[ i - 16 ] ^ W[ i - 14 ] ^ W[ i - 8 ] ^ W[ i - 3 ]
|
|
|
|
This implementation generates these values on the fly in a circular
|
|
buffer - thanks to Colin Plumb, colin@nyx10.cs.du.edu for this
|
|
optimization.
|
|
|
|
The updated SHA changes the expanding function by adding a rotate of 1
|
|
bit. Thanks to Jim Gillogly, jim@rand.org, and an anonymous contributor
|
|
for this information */
|
|
|
|
#define expand(W,i) (W[ i & 15 ] = ROTL (1, (W[ i & 15] ^ \
|
|
W[(i - 14) & 15] ^ \
|
|
W[(i - 8) & 15] ^ \
|
|
W[(i - 3) & 15])))
|
|
|
|
|
|
/* The prototype SHA sub-round. The fundamental sub-round is:
|
|
|
|
a' = e + ROTL( 5, a ) + f( b, c, d ) + k + data;
|
|
b' = a;
|
|
c' = ROTL( 30, b );
|
|
d' = c;
|
|
e' = d;
|
|
|
|
but this is implemented by unrolling the loop 5 times and renaming the
|
|
variables ( e, a, b, c, d ) = ( a', b', c', d', e' ) each iteration.
|
|
This code is then replicated 20 times for each of the 4 functions, using
|
|
the next 20 values from the W[] array each time */
|
|
|
|
#define subRound(a, b, c, d, e, f, k, data) \
|
|
(e += ROTL (5, a) + f(b, c, d) + k + data, b = ROTL (30, b))
|
|
|
|
static void
|
|
sha1_transform (guint32 buf[5],
|
|
guint32 in[16])
|
|
{
|
|
guint32 A, B, C, D, E;
|
|
|
|
A = buf[0];
|
|
B = buf[1];
|
|
C = buf[2];
|
|
D = buf[3];
|
|
E = buf[4];
|
|
|
|
/* Heavy mangling, in 4 sub-rounds of 20 interations each. */
|
|
subRound (A, B, C, D, E, f1, K1, in[0]);
|
|
subRound (E, A, B, C, D, f1, K1, in[1]);
|
|
subRound (D, E, A, B, C, f1, K1, in[2]);
|
|
subRound (C, D, E, A, B, f1, K1, in[3]);
|
|
subRound (B, C, D, E, A, f1, K1, in[4]);
|
|
subRound (A, B, C, D, E, f1, K1, in[5]);
|
|
subRound (E, A, B, C, D, f1, K1, in[6]);
|
|
subRound (D, E, A, B, C, f1, K1, in[7]);
|
|
subRound (C, D, E, A, B, f1, K1, in[8]);
|
|
subRound (B, C, D, E, A, f1, K1, in[9]);
|
|
subRound (A, B, C, D, E, f1, K1, in[10]);
|
|
subRound (E, A, B, C, D, f1, K1, in[11]);
|
|
subRound (D, E, A, B, C, f1, K1, in[12]);
|
|
subRound (C, D, E, A, B, f1, K1, in[13]);
|
|
subRound (B, C, D, E, A, f1, K1, in[14]);
|
|
subRound (A, B, C, D, E, f1, K1, in[15]);
|
|
subRound (E, A, B, C, D, f1, K1, expand (in, 16));
|
|
subRound (D, E, A, B, C, f1, K1, expand (in, 17));
|
|
subRound (C, D, E, A, B, f1, K1, expand (in, 18));
|
|
subRound (B, C, D, E, A, f1, K1, expand (in, 19));
|
|
|
|
subRound (A, B, C, D, E, f2, K2, expand (in, 20));
|
|
subRound (E, A, B, C, D, f2, K2, expand (in, 21));
|
|
subRound (D, E, A, B, C, f2, K2, expand (in, 22));
|
|
subRound (C, D, E, A, B, f2, K2, expand (in, 23));
|
|
subRound (B, C, D, E, A, f2, K2, expand (in, 24));
|
|
subRound (A, B, C, D, E, f2, K2, expand (in, 25));
|
|
subRound (E, A, B, C, D, f2, K2, expand (in, 26));
|
|
subRound (D, E, A, B, C, f2, K2, expand (in, 27));
|
|
subRound (C, D, E, A, B, f2, K2, expand (in, 28));
|
|
subRound (B, C, D, E, A, f2, K2, expand (in, 29));
|
|
subRound (A, B, C, D, E, f2, K2, expand (in, 30));
|
|
subRound (E, A, B, C, D, f2, K2, expand (in, 31));
|
|
subRound (D, E, A, B, C, f2, K2, expand (in, 32));
|
|
subRound (C, D, E, A, B, f2, K2, expand (in, 33));
|
|
subRound (B, C, D, E, A, f2, K2, expand (in, 34));
|
|
subRound (A, B, C, D, E, f2, K2, expand (in, 35));
|
|
subRound (E, A, B, C, D, f2, K2, expand (in, 36));
|
|
subRound (D, E, A, B, C, f2, K2, expand (in, 37));
|
|
subRound (C, D, E, A, B, f2, K2, expand (in, 38));
|
|
subRound (B, C, D, E, A, f2, K2, expand (in, 39));
|
|
|
|
subRound (A, B, C, D, E, f3, K3, expand (in, 40));
|
|
subRound (E, A, B, C, D, f3, K3, expand (in, 41));
|
|
subRound (D, E, A, B, C, f3, K3, expand (in, 42));
|
|
subRound (C, D, E, A, B, f3, K3, expand (in, 43));
|
|
subRound (B, C, D, E, A, f3, K3, expand (in, 44));
|
|
subRound (A, B, C, D, E, f3, K3, expand (in, 45));
|
|
subRound (E, A, B, C, D, f3, K3, expand (in, 46));
|
|
subRound (D, E, A, B, C, f3, K3, expand (in, 47));
|
|
subRound (C, D, E, A, B, f3, K3, expand (in, 48));
|
|
subRound (B, C, D, E, A, f3, K3, expand (in, 49));
|
|
subRound (A, B, C, D, E, f3, K3, expand (in, 50));
|
|
subRound (E, A, B, C, D, f3, K3, expand (in, 51));
|
|
subRound (D, E, A, B, C, f3, K3, expand (in, 52));
|
|
subRound (C, D, E, A, B, f3, K3, expand (in, 53));
|
|
subRound (B, C, D, E, A, f3, K3, expand (in, 54));
|
|
subRound (A, B, C, D, E, f3, K3, expand (in, 55));
|
|
subRound (E, A, B, C, D, f3, K3, expand (in, 56));
|
|
subRound (D, E, A, B, C, f3, K3, expand (in, 57));
|
|
subRound (C, D, E, A, B, f3, K3, expand (in, 58));
|
|
subRound (B, C, D, E, A, f3, K3, expand (in, 59));
|
|
|
|
subRound (A, B, C, D, E, f4, K4, expand (in, 60));
|
|
subRound (E, A, B, C, D, f4, K4, expand (in, 61));
|
|
subRound (D, E, A, B, C, f4, K4, expand (in, 62));
|
|
subRound (C, D, E, A, B, f4, K4, expand (in, 63));
|
|
subRound (B, C, D, E, A, f4, K4, expand (in, 64));
|
|
subRound (A, B, C, D, E, f4, K4, expand (in, 65));
|
|
subRound (E, A, B, C, D, f4, K4, expand (in, 66));
|
|
subRound (D, E, A, B, C, f4, K4, expand (in, 67));
|
|
subRound (C, D, E, A, B, f4, K4, expand (in, 68));
|
|
subRound (B, C, D, E, A, f4, K4, expand (in, 69));
|
|
subRound (A, B, C, D, E, f4, K4, expand (in, 70));
|
|
subRound (E, A, B, C, D, f4, K4, expand (in, 71));
|
|
subRound (D, E, A, B, C, f4, K4, expand (in, 72));
|
|
subRound (C, D, E, A, B, f4, K4, expand (in, 73));
|
|
subRound (B, C, D, E, A, f4, K4, expand (in, 74));
|
|
subRound (A, B, C, D, E, f4, K4, expand (in, 75));
|
|
subRound (E, A, B, C, D, f4, K4, expand (in, 76));
|
|
subRound (D, E, A, B, C, f4, K4, expand (in, 77));
|
|
subRound (C, D, E, A, B, f4, K4, expand (in, 78));
|
|
subRound (B, C, D, E, A, f4, K4, expand (in, 79));
|
|
|
|
/* Build message digest */
|
|
buf[0] += A;
|
|
buf[1] += B;
|
|
buf[2] += C;
|
|
buf[3] += D;
|
|
buf[4] += E;
|
|
}
|
|
|
|
#undef K1
|
|
#undef K2
|
|
#undef K3
|
|
#undef K4
|
|
#undef f1
|
|
#undef f2
|
|
#undef f3
|
|
#undef f4
|
|
#undef ROTL
|
|
#undef expand
|
|
#undef subRound
|
|
|
|
static void
|
|
sha1_sum_update (Sha1sum *sha1,
|
|
const guchar *buffer,
|
|
gsize count)
|
|
{
|
|
guint32 tmp;
|
|
guint dataCount;
|
|
|
|
/* Update bitcount */
|
|
tmp = sha1->bits[0];
|
|
if ((sha1->bits[0] = tmp + ((guint32) count << 3) ) < tmp)
|
|
sha1->bits[1] += 1; /* Carry from low to high */
|
|
sha1->bits[1] += count >> 29;
|
|
|
|
/* Get count of bytes already in data */
|
|
dataCount = (guint) (tmp >> 3) & 0x3F;
|
|
|
|
/* Handle any leading odd-sized chunks */
|
|
if (dataCount)
|
|
{
|
|
guchar *p = (guchar *) sha1->data + dataCount;
|
|
|
|
dataCount = SHA1_DATASIZE - dataCount;
|
|
if (count < dataCount)
|
|
{
|
|
memcpy (p, buffer, count);
|
|
return;
|
|
}
|
|
|
|
memcpy (p, buffer, dataCount);
|
|
|
|
sha_byte_reverse (sha1->data, SHA1_DATASIZE);
|
|
sha1_transform (sha1->buf, sha1->data);
|
|
|
|
buffer += dataCount;
|
|
count -= dataCount;
|
|
}
|
|
|
|
/* Process data in SHA1_DATASIZE chunks */
|
|
while (count >= SHA1_DATASIZE)
|
|
{
|
|
memcpy (sha1->data, buffer, SHA1_DATASIZE);
|
|
|
|
sha_byte_reverse (sha1->data, SHA1_DATASIZE);
|
|
sha1_transform (sha1->buf, sha1->data);
|
|
|
|
buffer += SHA1_DATASIZE;
|
|
count -= SHA1_DATASIZE;
|
|
}
|
|
|
|
/* Handle any remaining bytes of data. */
|
|
memcpy (sha1->data, buffer, count);
|
|
}
|
|
|
|
/* Final wrapup - pad to SHA_DATASIZE-byte boundary with the bit pattern
|
|
1 0* (64-bit count of bits processed, MSB-first) */
|
|
static void
|
|
sha1_sum_close (Sha1sum *sha1)
|
|
{
|
|
gint count;
|
|
guchar *data_p;
|
|
|
|
/* Compute number of bytes mod 64 */
|
|
count = (gint) ((sha1->bits[0] >> 3) & 0x3f);
|
|
|
|
/* Set the first char of padding to 0x80. This is safe since there is
|
|
always at least one byte free */
|
|
data_p = (guchar *) sha1->data + count;
|
|
*data_p++ = 0x80;
|
|
|
|
/* Bytes of padding needed to make 64 bytes */
|
|
count = SHA1_DATASIZE - 1 - count;
|
|
|
|
/* Pad out to 56 mod 64 */
|
|
if (count < 8)
|
|
{
|
|
/* Two lots of padding: Pad the first block to 64 bytes */
|
|
memset (data_p, 0, count);
|
|
|
|
sha_byte_reverse (sha1->data, SHA1_DATASIZE);
|
|
sha1_transform (sha1->buf, sha1->data);
|
|
|
|
/* Now fill the next block with 56 bytes */
|
|
memset (sha1->data, 0, SHA1_DATASIZE - 8);
|
|
}
|
|
else
|
|
{
|
|
/* Pad block to 56 bytes */
|
|
memset (data_p, 0, count - 8);
|
|
}
|
|
|
|
/* Append length in bits and transform */
|
|
sha1->data[14] = sha1->bits[1];
|
|
sha1->data[15] = sha1->bits[0];
|
|
|
|
sha_byte_reverse (sha1->data, SHA1_DATASIZE - 8);
|
|
sha1_transform (sha1->buf, sha1->data);
|
|
sha_byte_reverse (sha1->buf, SHA1_DIGEST_LEN);
|
|
|
|
memcpy (sha1->digest, sha1->buf, SHA1_DIGEST_LEN);
|
|
|
|
/* Reset buffers in case they contain sensitive data */
|
|
memset (sha1->buf, 0, sizeof (sha1->buf));
|
|
memset (sha1->data, 0, sizeof (sha1->data));
|
|
}
|
|
|
|
static gchar *
|
|
sha1_sum_to_string (Sha1sum *sha1)
|
|
{
|
|
return digest_to_string (sha1->digest, SHA1_DIGEST_LEN);
|
|
}
|
|
|
|
static void
|
|
sha1_sum_digest (Sha1sum *sha1,
|
|
guint8 *digest)
|
|
{
|
|
gint i;
|
|
|
|
for (i = 0; i < SHA1_DIGEST_LEN; i++)
|
|
digest[i] = sha1->digest[i];
|
|
}
|
|
|
|
/*
|
|
* SHA-256 Checksum
|
|
*/
|
|
|
|
/* adapted from the SHA256 implementation in gsk/src/hash/gskhash.c.
|
|
*
|
|
* Copyright (C) 2006 Dave Benson
|
|
* Released under the terms of the GNU Lesser General Public License
|
|
*/
|
|
|
|
static void
|
|
sha256_sum_init (Sha256sum *sha256)
|
|
{
|
|
sha256->buf[0] = 0x6a09e667;
|
|
sha256->buf[1] = 0xbb67ae85;
|
|
sha256->buf[2] = 0x3c6ef372;
|
|
sha256->buf[3] = 0xa54ff53a;
|
|
sha256->buf[4] = 0x510e527f;
|
|
sha256->buf[5] = 0x9b05688c;
|
|
sha256->buf[6] = 0x1f83d9ab;
|
|
sha256->buf[7] = 0x5be0cd19;
|
|
|
|
sha256->bits[0] = sha256->bits[1] = 0;
|
|
}
|
|
|
|
#define GET_UINT32(n,b,i) G_STMT_START{ \
|
|
(n) = ((guint32) (b)[(i) ] << 24) \
|
|
| ((guint32) (b)[(i) + 1] << 16) \
|
|
| ((guint32) (b)[(i) + 2] << 8) \
|
|
| ((guint32) (b)[(i) + 3] ); } G_STMT_END
|
|
|
|
#define PUT_UINT32(n,b,i) G_STMT_START{ \
|
|
(b)[(i) ] = (guint8) ((n) >> 24); \
|
|
(b)[(i) + 1] = (guint8) ((n) >> 16); \
|
|
(b)[(i) + 2] = (guint8) ((n) >> 8); \
|
|
(b)[(i) + 3] = (guint8) ((n) ); } G_STMT_END
|
|
|
|
static void
|
|
sha256_transform (guint32 buf[8],
|
|
guint8 const data[64])
|
|
{
|
|
guint32 temp1, temp2, W[64];
|
|
guint32 A, B, C, D, E, F, G, H;
|
|
|
|
GET_UINT32 (W[0], data, 0);
|
|
GET_UINT32 (W[1], data, 4);
|
|
GET_UINT32 (W[2], data, 8);
|
|
GET_UINT32 (W[3], data, 12);
|
|
GET_UINT32 (W[4], data, 16);
|
|
GET_UINT32 (W[5], data, 20);
|
|
GET_UINT32 (W[6], data, 24);
|
|
GET_UINT32 (W[7], data, 28);
|
|
GET_UINT32 (W[8], data, 32);
|
|
GET_UINT32 (W[9], data, 36);
|
|
GET_UINT32 (W[10], data, 40);
|
|
GET_UINT32 (W[11], data, 44);
|
|
GET_UINT32 (W[12], data, 48);
|
|
GET_UINT32 (W[13], data, 52);
|
|
GET_UINT32 (W[14], data, 56);
|
|
GET_UINT32 (W[15], data, 60);
|
|
|
|
#define SHR(x,n) ((x & 0xFFFFFFFF) >> n)
|
|
#define ROTR(x,n) (SHR (x,n) | (x << (32 - n)))
|
|
|
|
#define S0(x) (ROTR (x, 7) ^ ROTR (x,18) ^ SHR (x, 3))
|
|
#define S1(x) (ROTR (x,17) ^ ROTR (x,19) ^ SHR (x,10))
|
|
#define S2(x) (ROTR (x, 2) ^ ROTR (x,13) ^ ROTR (x,22))
|
|
#define S3(x) (ROTR (x, 6) ^ ROTR (x,11) ^ ROTR (x,25))
|
|
|
|
#define F0(x,y,z) ((x & y) | (z & (x | y)))
|
|
#define F1(x,y,z) (z ^ (x & (y ^ z)))
|
|
|
|
#define R(t) (W[t] = S1(W[t - 2]) + W[t - 7] + \
|
|
S0(W[t - 15]) + W[t - 16])
|
|
|
|
#define P(a,b,c,d,e,f,g,h,x,K) G_STMT_START { \
|
|
temp1 = h + S3(e) + F1(e,f,g) + K + x; \
|
|
temp2 = S2(a) + F0(a,b,c); \
|
|
d += temp1; h = temp1 + temp2; } G_STMT_END
|
|
|
|
A = buf[0];
|
|
B = buf[1];
|
|
C = buf[2];
|
|
D = buf[3];
|
|
E = buf[4];
|
|
F = buf[5];
|
|
G = buf[6];
|
|
H = buf[7];
|
|
|
|
P (A, B, C, D, E, F, G, H, W[ 0], 0x428A2F98);
|
|
P (H, A, B, C, D, E, F, G, W[ 1], 0x71374491);
|
|
P (G, H, A, B, C, D, E, F, W[ 2], 0xB5C0FBCF);
|
|
P (F, G, H, A, B, C, D, E, W[ 3], 0xE9B5DBA5);
|
|
P (E, F, G, H, A, B, C, D, W[ 4], 0x3956C25B);
|
|
P (D, E, F, G, H, A, B, C, W[ 5], 0x59F111F1);
|
|
P (C, D, E, F, G, H, A, B, W[ 6], 0x923F82A4);
|
|
P (B, C, D, E, F, G, H, A, W[ 7], 0xAB1C5ED5);
|
|
P (A, B, C, D, E, F, G, H, W[ 8], 0xD807AA98);
|
|
P (H, A, B, C, D, E, F, G, W[ 9], 0x12835B01);
|
|
P (G, H, A, B, C, D, E, F, W[10], 0x243185BE);
|
|
P (F, G, H, A, B, C, D, E, W[11], 0x550C7DC3);
|
|
P (E, F, G, H, A, B, C, D, W[12], 0x72BE5D74);
|
|
P (D, E, F, G, H, A, B, C, W[13], 0x80DEB1FE);
|
|
P (C, D, E, F, G, H, A, B, W[14], 0x9BDC06A7);
|
|
P (B, C, D, E, F, G, H, A, W[15], 0xC19BF174);
|
|
P (A, B, C, D, E, F, G, H, R(16), 0xE49B69C1);
|
|
P (H, A, B, C, D, E, F, G, R(17), 0xEFBE4786);
|
|
P (G, H, A, B, C, D, E, F, R(18), 0x0FC19DC6);
|
|
P (F, G, H, A, B, C, D, E, R(19), 0x240CA1CC);
|
|
P (E, F, G, H, A, B, C, D, R(20), 0x2DE92C6F);
|
|
P (D, E, F, G, H, A, B, C, R(21), 0x4A7484AA);
|
|
P (C, D, E, F, G, H, A, B, R(22), 0x5CB0A9DC);
|
|
P (B, C, D, E, F, G, H, A, R(23), 0x76F988DA);
|
|
P (A, B, C, D, E, F, G, H, R(24), 0x983E5152);
|
|
P (H, A, B, C, D, E, F, G, R(25), 0xA831C66D);
|
|
P (G, H, A, B, C, D, E, F, R(26), 0xB00327C8);
|
|
P (F, G, H, A, B, C, D, E, R(27), 0xBF597FC7);
|
|
P (E, F, G, H, A, B, C, D, R(28), 0xC6E00BF3);
|
|
P (D, E, F, G, H, A, B, C, R(29), 0xD5A79147);
|
|
P (C, D, E, F, G, H, A, B, R(30), 0x06CA6351);
|
|
P (B, C, D, E, F, G, H, A, R(31), 0x14292967);
|
|
P (A, B, C, D, E, F, G, H, R(32), 0x27B70A85);
|
|
P (H, A, B, C, D, E, F, G, R(33), 0x2E1B2138);
|
|
P (G, H, A, B, C, D, E, F, R(34), 0x4D2C6DFC);
|
|
P (F, G, H, A, B, C, D, E, R(35), 0x53380D13);
|
|
P (E, F, G, H, A, B, C, D, R(36), 0x650A7354);
|
|
P (D, E, F, G, H, A, B, C, R(37), 0x766A0ABB);
|
|
P (C, D, E, F, G, H, A, B, R(38), 0x81C2C92E);
|
|
P (B, C, D, E, F, G, H, A, R(39), 0x92722C85);
|
|
P (A, B, C, D, E, F, G, H, R(40), 0xA2BFE8A1);
|
|
P (H, A, B, C, D, E, F, G, R(41), 0xA81A664B);
|
|
P (G, H, A, B, C, D, E, F, R(42), 0xC24B8B70);
|
|
P (F, G, H, A, B, C, D, E, R(43), 0xC76C51A3);
|
|
P (E, F, G, H, A, B, C, D, R(44), 0xD192E819);
|
|
P (D, E, F, G, H, A, B, C, R(45), 0xD6990624);
|
|
P (C, D, E, F, G, H, A, B, R(46), 0xF40E3585);
|
|
P (B, C, D, E, F, G, H, A, R(47), 0x106AA070);
|
|
P (A, B, C, D, E, F, G, H, R(48), 0x19A4C116);
|
|
P (H, A, B, C, D, E, F, G, R(49), 0x1E376C08);
|
|
P (G, H, A, B, C, D, E, F, R(50), 0x2748774C);
|
|
P (F, G, H, A, B, C, D, E, R(51), 0x34B0BCB5);
|
|
P (E, F, G, H, A, B, C, D, R(52), 0x391C0CB3);
|
|
P (D, E, F, G, H, A, B, C, R(53), 0x4ED8AA4A);
|
|
P (C, D, E, F, G, H, A, B, R(54), 0x5B9CCA4F);
|
|
P (B, C, D, E, F, G, H, A, R(55), 0x682E6FF3);
|
|
P (A, B, C, D, E, F, G, H, R(56), 0x748F82EE);
|
|
P (H, A, B, C, D, E, F, G, R(57), 0x78A5636F);
|
|
P (G, H, A, B, C, D, E, F, R(58), 0x84C87814);
|
|
P (F, G, H, A, B, C, D, E, R(59), 0x8CC70208);
|
|
P (E, F, G, H, A, B, C, D, R(60), 0x90BEFFFA);
|
|
P (D, E, F, G, H, A, B, C, R(61), 0xA4506CEB);
|
|
P (C, D, E, F, G, H, A, B, R(62), 0xBEF9A3F7);
|
|
P (B, C, D, E, F, G, H, A, R(63), 0xC67178F2);
|
|
|
|
#undef SHR
|
|
#undef ROTR
|
|
#undef S0
|
|
#undef S1
|
|
#undef S2
|
|
#undef S3
|
|
#undef F0
|
|
#undef F1
|
|
#undef R
|
|
#undef P
|
|
|
|
buf[0] += A;
|
|
buf[1] += B;
|
|
buf[2] += C;
|
|
buf[3] += D;
|
|
buf[4] += E;
|
|
buf[5] += F;
|
|
buf[6] += G;
|
|
buf[7] += H;
|
|
}
|
|
|
|
static void
|
|
sha256_sum_update (Sha256sum *sha256,
|
|
const guchar *buffer,
|
|
gsize length)
|
|
{
|
|
guint32 left, fill;
|
|
const guint8 *input = buffer;
|
|
|
|
if (length == 0)
|
|
return;
|
|
|
|
left = sha256->bits[0] & 0x3F;
|
|
fill = 64 - left;
|
|
|
|
sha256->bits[0] += length;
|
|
sha256->bits[0] &= 0xFFFFFFFF;
|
|
|
|
if (sha256->bits[0] < length)
|
|
sha256->bits[1]++;
|
|
|
|
if (left > 0 && length >= fill)
|
|
{
|
|
memcpy ((sha256->data + left), input, fill);
|
|
|
|
sha256_transform (sha256->buf, sha256->data);
|
|
length -= fill;
|
|
input += fill;
|
|
|
|
left = 0;
|
|
}
|
|
|
|
while (length >= SHA256_DATASIZE)
|
|
{
|
|
sha256_transform (sha256->buf, input);
|
|
|
|
length -= 64;
|
|
input += 64;
|
|
}
|
|
|
|
if (length)
|
|
memcpy (sha256->data + left, input, length);
|
|
}
|
|
|
|
static guint8 sha256_padding[64] =
|
|
{
|
|
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
|
|
};
|
|
|
|
static void
|
|
sha256_sum_close (Sha256sum *sha256)
|
|
{
|
|
guint32 last, padn;
|
|
guint32 high, low;
|
|
guint8 msglen[8];
|
|
|
|
high = (sha256->bits[0] >> 29)
|
|
| (sha256->bits[1] << 3);
|
|
low = (sha256->bits[0] << 3);
|
|
|
|
PUT_UINT32 (high, msglen, 0);
|
|
PUT_UINT32 (low, msglen, 4);
|
|
|
|
last = sha256->bits[0] & 0x3F;
|
|
padn = (last < 56) ? (56 - last) : (120 - last);
|
|
|
|
sha256_sum_update (sha256, sha256_padding, padn);
|
|
sha256_sum_update (sha256, msglen, 8);
|
|
|
|
PUT_UINT32 (sha256->buf[0], sha256->digest, 0);
|
|
PUT_UINT32 (sha256->buf[1], sha256->digest, 4);
|
|
PUT_UINT32 (sha256->buf[2], sha256->digest, 8);
|
|
PUT_UINT32 (sha256->buf[3], sha256->digest, 12);
|
|
PUT_UINT32 (sha256->buf[4], sha256->digest, 16);
|
|
PUT_UINT32 (sha256->buf[5], sha256->digest, 20);
|
|
PUT_UINT32 (sha256->buf[6], sha256->digest, 24);
|
|
PUT_UINT32 (sha256->buf[7], sha256->digest, 28);
|
|
}
|
|
|
|
#undef PUT_UINT32
|
|
#undef GET_UINT32
|
|
|
|
static gchar *
|
|
sha256_sum_to_string (Sha256sum *sha256)
|
|
{
|
|
return digest_to_string (sha256->digest, SHA256_DIGEST_LEN);
|
|
}
|
|
|
|
static void
|
|
sha256_sum_digest (Sha256sum *sha256,
|
|
guint8 *digest)
|
|
{
|
|
gint i;
|
|
|
|
for (i = 0; i < SHA256_DIGEST_LEN; i++)
|
|
digest[i] = sha256->digest[i];
|
|
}
|
|
|
|
|
|
/*
|
|
* Public API
|
|
*/
|
|
|
|
/**
|
|
* g_checksum_type_get_length:
|
|
* @checksum_type: a #GChecksumType
|
|
*
|
|
* Gets the length in bytes of digests of type @checksum_type
|
|
*
|
|
* Return value: the checksum length, or -1 if @checksum_type is
|
|
* not supported.
|
|
*
|
|
* Since: 2.16
|
|
*/
|
|
gssize
|
|
g_checksum_type_get_length (GChecksumType checksum_type)
|
|
{
|
|
gssize len = -1;
|
|
|
|
switch (checksum_type)
|
|
{
|
|
case G_CHECKSUM_MD5:
|
|
len = MD5_DIGEST_LEN;
|
|
break;
|
|
case G_CHECKSUM_SHA1:
|
|
len = SHA1_DIGEST_LEN;
|
|
break;
|
|
case G_CHECKSUM_SHA256:
|
|
len = SHA256_DIGEST_LEN;
|
|
break;
|
|
default:
|
|
len = -1;
|
|
break;
|
|
}
|
|
|
|
return len;
|
|
}
|
|
|
|
/**
|
|
* g_checksum_new:
|
|
* @checksum_type: the desired type of checksum
|
|
*
|
|
* Creates a new #GChecksum, using the checksum algorithm @checksum_type.
|
|
* If the @checksum_type is not known, %NULL is returned.
|
|
* A #GChecksum can be used to compute the checksum, or digest, of an
|
|
* arbitrary binary blob, using different hashing algorithms.
|
|
*
|
|
* A #GChecksum works by feeding a binary blob through g_checksum_update()
|
|
* until there is data to be checked; the digest can then be extracted
|
|
* using g_checksum_get_string(), which will return the checksum as a
|
|
* hexadecimal string; or g_checksum_get_digest(), which will return a
|
|
* vector of raw bytes. Once either g_checksum_get_string() or
|
|
* g_checksum_get_digest() have been called on a #GChecksum, the checksum
|
|
* will be closed and it won't be possible to call g_checksum_update()
|
|
* on it anymore.
|
|
*
|
|
* Return value: the newly created #GChecksum, or %NULL.
|
|
* Use g_checksum_free() to free the memory allocated by it.
|
|
*
|
|
* Since: 2.16
|
|
*/
|
|
GChecksum *
|
|
g_checksum_new (GChecksumType checksum_type)
|
|
{
|
|
GChecksum *checksum;
|
|
|
|
if (! IS_VALID_TYPE (checksum_type))
|
|
return NULL;
|
|
|
|
checksum = g_slice_new0 (GChecksum);
|
|
checksum->type = checksum_type;
|
|
|
|
g_checksum_reset (checksum);
|
|
|
|
return checksum;
|
|
}
|
|
|
|
/**
|
|
* g_checksum_reset:
|
|
* @checksum: the #GChecksum to reset
|
|
*
|
|
* Resets the state of the @checksum back to its initial state.
|
|
*
|
|
* Since: 2.18
|
|
**/
|
|
void
|
|
g_checksum_reset (GChecksum *checksum)
|
|
{
|
|
g_return_if_fail (checksum != NULL);
|
|
|
|
g_free (checksum->digest_str);
|
|
checksum->digest_str = NULL;
|
|
|
|
switch (checksum->type)
|
|
{
|
|
case G_CHECKSUM_MD5:
|
|
md5_sum_init (&(checksum->sum.md5));
|
|
break;
|
|
case G_CHECKSUM_SHA1:
|
|
sha1_sum_init (&(checksum->sum.sha1));
|
|
break;
|
|
case G_CHECKSUM_SHA256:
|
|
sha256_sum_init (&(checksum->sum.sha256));
|
|
break;
|
|
default:
|
|
g_assert_not_reached ();
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* g_checksum_copy:
|
|
* @checksum: the #GChecksum to copy
|
|
*
|
|
* Copies a #GChecksum. If @checksum has been closed, by calling
|
|
* g_checksum_get_string() or g_checksum_get_digest(), the copied
|
|
* checksum will be closed as well.
|
|
*
|
|
* Return value: the copy of the passed #GChecksum. Use g_checksum_free()
|
|
* when finished using it.
|
|
*
|
|
* Since: 2.16
|
|
*/
|
|
GChecksum *
|
|
g_checksum_copy (const GChecksum *checksum)
|
|
{
|
|
GChecksum *copy;
|
|
|
|
g_return_val_if_fail (checksum != NULL, NULL);
|
|
|
|
copy = g_slice_new (GChecksum);
|
|
*copy = *checksum;
|
|
|
|
copy->digest_str = g_strdup (checksum->digest_str);
|
|
|
|
return copy;
|
|
}
|
|
|
|
/**
|
|
* g_checksum_free:
|
|
* @checksum: a #GChecksum
|
|
*
|
|
* Frees the memory allocated for @checksum.
|
|
*
|
|
* Since: 2.16
|
|
*/
|
|
void
|
|
g_checksum_free (GChecksum *checksum)
|
|
{
|
|
if (G_LIKELY (checksum))
|
|
{
|
|
g_free (checksum->digest_str);
|
|
|
|
g_slice_free (GChecksum, checksum);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* g_checksum_update:
|
|
* @checksum: a #GChecksum
|
|
* @data: buffer used to compute the checksum
|
|
* @length: size of the buffer, or -1 if it is a null-terminated string.
|
|
*
|
|
* Feeds @data into an existing #GChecksum. The checksum must still be
|
|
* open, that is g_checksum_get_string() or g_checksum_get_digest() must
|
|
* not have been called on @checksum.
|
|
*
|
|
* Since: 2.16
|
|
*/
|
|
void
|
|
g_checksum_update (GChecksum *checksum,
|
|
const guchar *data,
|
|
gssize length)
|
|
{
|
|
g_return_if_fail (checksum != NULL);
|
|
g_return_if_fail (data != NULL);
|
|
|
|
if (length < 0)
|
|
length = strlen ((const gchar *) data);
|
|
|
|
if (checksum->digest_str)
|
|
{
|
|
g_warning ("The checksum `%s' has been closed and cannot be updated "
|
|
"anymore.",
|
|
checksum->digest_str);
|
|
return;
|
|
}
|
|
|
|
switch (checksum->type)
|
|
{
|
|
case G_CHECKSUM_MD5:
|
|
md5_sum_update (&(checksum->sum.md5), data, length);
|
|
break;
|
|
case G_CHECKSUM_SHA1:
|
|
sha1_sum_update (&(checksum->sum.sha1), data, length);
|
|
break;
|
|
case G_CHECKSUM_SHA256:
|
|
sha256_sum_update (&(checksum->sum.sha256), data, length);
|
|
break;
|
|
default:
|
|
g_assert_not_reached ();
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* g_checksum_get_string:
|
|
* @checksum: a #GChecksum
|
|
*
|
|
* Gets the digest as an hexadecimal string.
|
|
*
|
|
* Once this function has been called the #GChecksum can no longer be
|
|
* updated with g_checksum_update().
|
|
*
|
|
* The hexadecimal characters will be lower case.
|
|
*
|
|
* Return value: the hexadecimal representation of the checksum. The
|
|
* returned string is owned by the checksum and should not be modified
|
|
* or freed.
|
|
*
|
|
* Since: 2.16
|
|
*/
|
|
G_CONST_RETURN gchar *
|
|
g_checksum_get_string (GChecksum *checksum)
|
|
{
|
|
gchar *str = NULL;
|
|
|
|
g_return_val_if_fail (checksum != NULL, NULL);
|
|
|
|
if (checksum->digest_str)
|
|
return checksum->digest_str;
|
|
|
|
switch (checksum->type)
|
|
{
|
|
case G_CHECKSUM_MD5:
|
|
md5_sum_close (&(checksum->sum.md5));
|
|
str = md5_sum_to_string (&(checksum->sum.md5));
|
|
break;
|
|
case G_CHECKSUM_SHA1:
|
|
sha1_sum_close (&(checksum->sum.sha1));
|
|
str = sha1_sum_to_string (&(checksum->sum.sha1));
|
|
break;
|
|
case G_CHECKSUM_SHA256:
|
|
sha256_sum_close (&(checksum->sum.sha256));
|
|
str = sha256_sum_to_string (&(checksum->sum.sha256));
|
|
break;
|
|
default:
|
|
g_assert_not_reached ();
|
|
break;
|
|
}
|
|
|
|
checksum->digest_str = str;
|
|
|
|
return checksum->digest_str;
|
|
}
|
|
|
|
/**
|
|
* g_checksum_get_digest:
|
|
* @checksum: a #GChecksum
|
|
* @buffer: output buffer
|
|
* @digest_len: an inout parameter. The caller initializes it to the size of @buffer.
|
|
* After the call it contains the length of the digest.
|
|
*
|
|
* Gets the digest from @checksum as a raw binary vector and places it
|
|
* into @buffer. The size of the digest depends on the type of checksum.
|
|
*
|
|
* Once this function has been called, the #GChecksum is closed and can
|
|
* no longer be updated with g_checksum_update().
|
|
*
|
|
* Since: 2.16
|
|
*/
|
|
void
|
|
g_checksum_get_digest (GChecksum *checksum,
|
|
guint8 *buffer,
|
|
gsize *digest_len)
|
|
{
|
|
gboolean checksum_open = FALSE;
|
|
gchar *str = NULL;
|
|
gsize len;
|
|
|
|
g_return_if_fail (checksum != NULL);
|
|
|
|
len = g_checksum_type_get_length (checksum->type);
|
|
g_return_if_fail (*digest_len >= len);
|
|
|
|
checksum_open = !!(checksum->digest_str == NULL);
|
|
|
|
switch (checksum->type)
|
|
{
|
|
case G_CHECKSUM_MD5:
|
|
if (checksum_open)
|
|
{
|
|
md5_sum_close (&(checksum->sum.md5));
|
|
str = md5_sum_to_string (&(checksum->sum.md5));
|
|
}
|
|
md5_sum_digest (&(checksum->sum.md5), buffer);
|
|
break;
|
|
case G_CHECKSUM_SHA1:
|
|
if (checksum_open)
|
|
{
|
|
sha1_sum_close (&(checksum->sum.sha1));
|
|
str = sha1_sum_to_string (&(checksum->sum.sha1));
|
|
}
|
|
sha1_sum_digest (&(checksum->sum.sha1), buffer);
|
|
break;
|
|
case G_CHECKSUM_SHA256:
|
|
if (checksum_open)
|
|
{
|
|
sha256_sum_close (&(checksum->sum.sha256));
|
|
str = sha256_sum_to_string (&(checksum->sum.sha256));
|
|
}
|
|
sha256_sum_digest (&(checksum->sum.sha256), buffer);
|
|
break;
|
|
default:
|
|
g_assert_not_reached ();
|
|
break;
|
|
}
|
|
|
|
if (str)
|
|
checksum->digest_str = str;
|
|
|
|
*digest_len = len;
|
|
}
|
|
|
|
/**
|
|
* g_compute_checksum_for_data:
|
|
* @checksum_type: a #GChecksumType
|
|
* @data: binary blob to compute the digest of
|
|
* @length: length of @data
|
|
*
|
|
* Computes the checksum for a binary @data of @length. This is a
|
|
* convenience wrapper for g_checksum_new(), g_checksum_get_string()
|
|
* and g_checksum_free().
|
|
*
|
|
* The hexadecimal string returned will be in lower case.
|
|
*
|
|
* Return value: the digest of the binary data as a string in hexadecimal.
|
|
* The returned string should be freed with g_free() when done using it.
|
|
*
|
|
* Since: 2.16
|
|
*/
|
|
gchar *
|
|
g_compute_checksum_for_data (GChecksumType checksum_type,
|
|
const guchar *data,
|
|
gsize length)
|
|
{
|
|
GChecksum *checksum;
|
|
gchar *retval;
|
|
|
|
g_return_val_if_fail (IS_VALID_TYPE (checksum_type), NULL);
|
|
g_return_val_if_fail (data != NULL, NULL);
|
|
|
|
checksum = g_checksum_new (checksum_type);
|
|
if (!checksum)
|
|
return NULL;
|
|
|
|
g_checksum_update (checksum, data, length);
|
|
retval = g_strdup (g_checksum_get_string (checksum));
|
|
g_checksum_free (checksum);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* g_compute_checksum_for_string:
|
|
* @checksum_type: a #GChecksumType
|
|
* @str: the string to compute the checksum of
|
|
* @length: the length of the string, or -1 if the string is null-terminated.
|
|
*
|
|
* Computes the checksum of a string.
|
|
*
|
|
* The hexadecimal string returned will be in lower case.
|
|
*
|
|
* Return value: the checksum as a hexadecimal string. The returned string
|
|
* should be freed with g_free() when done using it.
|
|
*
|
|
* Since: 2.16
|
|
*/
|
|
gchar *
|
|
g_compute_checksum_for_string (GChecksumType checksum_type,
|
|
const gchar *str,
|
|
gssize length)
|
|
{
|
|
g_return_val_if_fail (IS_VALID_TYPE (checksum_type), NULL);
|
|
g_return_val_if_fail (str != NULL, NULL);
|
|
|
|
if (length < 0)
|
|
length = strlen (str);
|
|
|
|
return g_compute_checksum_for_data (checksum_type, (const guchar *) str, length);
|
|
}
|
|
|
|
#define __G_CHECKSUM_C__
|
|
#include "galiasdef.c"
|