glib/glib/gvarianttype.c
Christian Hergert 18a33f72db introspection: use (nullable) or (optional) instead of (allow-none)
If we have an input parameter (or return value) we need to use (nullable).
However, if it is an (inout) or (out) parameter, (optional) is sufficient.

It looks like (nullable) could be used for everything according to the
Annotation documentation, but (optional) is more specific.
2016-11-22 14:14:37 -08:00

1219 lines
34 KiB
C

/*
* Copyright © 2007, 2008 Ryan Lortie
* Copyright © 2009, 2010 Codethink Limited
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the licence, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*
* Author: Ryan Lortie <desrt@desrt.ca>
*/
#include "config.h"
#include "gvarianttype.h"
#include <glib/gtestutils.h>
#include <glib/gstrfuncs.h>
#include <string.h>
/**
* SECTION:gvarianttype
* @title: GVariantType
* @short_description: introduction to the GVariant type system
* @see_also: #GVariantType, #GVariant
*
* This section introduces the GVariant type system. It is based, in
* large part, on the D-Bus type system, with two major changes and
* some minor lifting of restrictions. The
* [D-Bus specification](http://dbus.freedesktop.org/doc/dbus-specification.html),
* therefore, provides a significant amount of
* information that is useful when working with GVariant.
*
* The first major change with respect to the D-Bus type system is the
* introduction of maybe (or "nullable") types. Any type in GVariant can be
* converted to a maybe type, in which case, "nothing" (or "null") becomes a
* valid value. Maybe types have been added by introducing the
* character "m" to type strings.
*
* The second major change is that the GVariant type system supports the
* concept of "indefinite types" -- types that are less specific than
* the normal types found in D-Bus. For example, it is possible to speak
* of "an array of any type" in GVariant, where the D-Bus type system
* would require you to speak of "an array of integers" or "an array of
* strings". Indefinite types have been added by introducing the
* characters "*", "?" and "r" to type strings.
*
* Finally, all arbitrary restrictions relating to the complexity of
* types are lifted along with the restriction that dictionary entries
* may only appear nested inside of arrays.
*
* Just as in D-Bus, GVariant types are described with strings ("type
* strings"). Subject to the differences mentioned above, these strings
* are of the same form as those found in DBus. Note, however: D-Bus
* always works in terms of messages and therefore individual type
* strings appear nowhere in its interface. Instead, "signatures"
* are a concatenation of the strings of the type of each argument in a
* message. GVariant deals with single values directly so GVariant type
* strings always describe the type of exactly one value. This means
* that a D-Bus signature string is generally not a valid GVariant type
* string -- except in the case that it is the signature of a message
* containing exactly one argument.
*
* An indefinite type is similar in spirit to what may be called an
* abstract type in other type systems. No value can exist that has an
* indefinite type as its type, but values can exist that have types
* that are subtypes of indefinite types. That is to say,
* g_variant_get_type() will never return an indefinite type, but
* calling g_variant_is_of_type() with an indefinite type may return
* %TRUE. For example, you cannot have a value that represents "an
* array of no particular type", but you can have an "array of integers"
* which certainly matches the type of "an array of no particular type",
* since "array of integers" is a subtype of "array of no particular
* type".
*
* This is similar to how instances of abstract classes may not
* directly exist in other type systems, but instances of their
* non-abstract subtypes may. For example, in GTK, no object that has
* the type of #GtkBin can exist (since #GtkBin is an abstract class),
* but a #GtkWindow can certainly be instantiated, and you would say
* that the #GtkWindow is a #GtkBin (since #GtkWindow is a subclass of
* #GtkBin).
*
* ## GVariant Type Strings
*
* A GVariant type string can be any of the following:
*
* - any basic type string (listed below)
*
* - "v", "r" or "*"
*
* - one of the characters 'a' or 'm', followed by another type string
*
* - the character '(', followed by a concatenation of zero or more other
* type strings, followed by the character ')'
*
* - the character '{', followed by a basic type string (see below),
* followed by another type string, followed by the character '}'
*
* A basic type string describes a basic type (as per
* g_variant_type_is_basic()) and is always a single character in length.
* The valid basic type strings are "b", "y", "n", "q", "i", "u", "x", "t",
* "h", "d", "s", "o", "g" and "?".
*
* The above definition is recursive to arbitrary depth. "aaaaai" and
* "(ui(nq((y)))s)" are both valid type strings, as is
* "a(aa(ui)(qna{ya(yd)}))".
*
* The meaning of each of the characters is as follows:
* - `b`: the type string of %G_VARIANT_TYPE_BOOLEAN; a boolean value.
* - `y`: the type string of %G_VARIANT_TYPE_BYTE; a byte.
* - `n`: the type string of %G_VARIANT_TYPE_INT16; a signed 16 bit integer.
* - `q`: the type string of %G_VARIANT_TYPE_UINT16; an unsigned 16 bit integer.
* - `i`: the type string of %G_VARIANT_TYPE_INT32; a signed 32 bit integer.
* - `u`: the type string of %G_VARIANT_TYPE_UINT32; an unsigned 32 bit integer.
* - `x`: the type string of %G_VARIANT_TYPE_INT64; a signed 64 bit integer.
* - `t`: the type string of %G_VARIANT_TYPE_UINT64; an unsigned 64 bit integer.
* - `h`: the type string of %G_VARIANT_TYPE_HANDLE; a signed 32 bit value
* that, by convention, is used as an index into an array of file
* descriptors that are sent alongside a D-Bus message.
* - `d`: the type string of %G_VARIANT_TYPE_DOUBLE; a double precision
* floating point value.
* - `s`: the type string of %G_VARIANT_TYPE_STRING; a string.
* - `o`: the type string of %G_VARIANT_TYPE_OBJECT_PATH; a string in the form
* of a D-Bus object path.
* - `g`: the type string of %G_VARIANT_TYPE_STRING; a string in the form of
* a D-Bus type signature.
* - `?`: the type string of %G_VARIANT_TYPE_BASIC; an indefinite type that
* is a supertype of any of the basic types.
* - `v`: the type string of %G_VARIANT_TYPE_VARIANT; a container type that
* contain any other type of value.
* - `a`: used as a prefix on another type string to mean an array of that
* type; the type string "ai", for example, is the type of an array of
* signed 32-bit integers.
* - `m`: used as a prefix on another type string to mean a "maybe", or
* "nullable", version of that type; the type string "ms", for example,
* is the type of a value that maybe contains a string, or maybe contains
* nothing.
* - `()`: used to enclose zero or more other concatenated type strings to
* create a tuple type; the type string "(is)", for example, is the type of
* a pair of an integer and a string.
* - `r`: the type string of %G_VARIANT_TYPE_TUPLE; an indefinite type that is
* a supertype of any tuple type, regardless of the number of items.
* - `{}`: used to enclose a basic type string concatenated with another type
* string to create a dictionary entry type, which usually appears inside of
* an array to form a dictionary; the type string "a{sd}", for example, is
* the type of a dictionary that maps strings to double precision floating
* point values.
*
* The first type (the basic type) is the key type and the second type is
* the value type. The reason that the first type is restricted to being a
* basic type is so that it can easily be hashed.
* - `*`: the type string of %G_VARIANT_TYPE_ANY; the indefinite type that is
* a supertype of all types. Note that, as with all type strings, this
* character represents exactly one type. It cannot be used inside of tuples
* to mean "any number of items".
*
* Any type string of a container that contains an indefinite type is,
* itself, an indefinite type. For example, the type string "a*"
* (corresponding to %G_VARIANT_TYPE_ARRAY) is an indefinite type
* that is a supertype of every array type. "(*s)" is a supertype
* of all tuples that contain exactly two items where the second
* item is a string.
*
* "a{?*}" is an indefinite type that is a supertype of all arrays
* containing dictionary entries where the key is any basic type and
* the value is any type at all. This is, by definition, a dictionary,
* so this type string corresponds to %G_VARIANT_TYPE_DICTIONARY. Note
* that, due to the restriction that the key of a dictionary entry must
* be a basic type, "{**}" is not a valid type string.
*/
static gboolean
g_variant_type_check (const GVariantType *type)
{
if (type == NULL)
return FALSE;
#if 0
return g_variant_type_string_scan ((const gchar *) type, NULL, NULL);
#else
return TRUE;
#endif
}
/**
* g_variant_type_string_scan:
* @string: a pointer to any string
* @limit: (nullable): the end of @string, or %NULL
* @endptr: (out) (optional): location to store the end pointer, or %NULL
*
* Scan for a single complete and valid GVariant type string in @string.
* The memory pointed to by @limit (or bytes beyond it) is never
* accessed.
*
* If a valid type string is found, @endptr is updated to point to the
* first character past the end of the string that was found and %TRUE
* is returned.
*
* If there is no valid type string starting at @string, or if the type
* string does not end before @limit then %FALSE is returned.
*
* For the simple case of checking if a string is a valid type string,
* see g_variant_type_string_is_valid().
*
* Returns: %TRUE if a valid type string was found
*
* Since: 2.24
**/
gboolean
g_variant_type_string_scan (const gchar *string,
const gchar *limit,
const gchar **endptr)
{
g_return_val_if_fail (string != NULL, FALSE);
if (string == limit || *string == '\0')
return FALSE;
switch (*string++)
{
case '(':
while (string == limit || *string != ')')
if (!g_variant_type_string_scan (string, limit, &string))
return FALSE;
string++;
break;
case '{':
if (string == limit || *string == '\0' || /* { */
!strchr ("bynqihuxtdsog?", *string++) || /* key */
!g_variant_type_string_scan (string, limit, &string) || /* value */
string == limit || *string++ != '}') /* } */
return FALSE;
break;
case 'm': case 'a':
return g_variant_type_string_scan (string, limit, endptr);
case 'b': case 'y': case 'n': case 'q': case 'i': case 'u':
case 'x': case 't': case 'd': case 's': case 'o': case 'g':
case 'v': case 'r': case '*': case '?': case 'h':
break;
default:
return FALSE;
}
if (endptr != NULL)
*endptr = string;
return TRUE;
}
/**
* g_variant_type_string_is_valid:
* @type_string: a pointer to any string
*
* Checks if @type_string is a valid GVariant type string. This call is
* equivalent to calling g_variant_type_string_scan() and confirming
* that the following character is a nul terminator.
*
* Returns: %TRUE if @type_string is exactly one valid type string
*
* Since 2.24
**/
gboolean
g_variant_type_string_is_valid (const gchar *type_string)
{
const gchar *endptr;
g_return_val_if_fail (type_string != NULL, FALSE);
if (!g_variant_type_string_scan (type_string, NULL, &endptr))
return FALSE;
return *endptr == '\0';
}
/**
* g_variant_type_free:
* @type: (nullable): a #GVariantType, or %NULL
*
* Frees a #GVariantType that was allocated with
* g_variant_type_copy(), g_variant_type_new() or one of the container
* type constructor functions.
*
* In the case that @type is %NULL, this function does nothing.
*
* Since 2.24
**/
void
g_variant_type_free (GVariantType *type)
{
g_return_if_fail (type == NULL || g_variant_type_check (type));
g_free (type);
}
/**
* g_variant_type_copy:
* @type: a #GVariantType
*
* Makes a copy of a #GVariantType. It is appropriate to call
* g_variant_type_free() on the return value. @type may not be %NULL.
*
* Returns: (transfer full): a new #GVariantType
*
* Since 2.24
**/
GVariantType *
g_variant_type_copy (const GVariantType *type)
{
gsize length;
gchar *new;
g_return_val_if_fail (g_variant_type_check (type), NULL);
length = g_variant_type_get_string_length (type);
new = g_malloc (length + 1);
memcpy (new, type, length);
new[length] = '\0';
return (GVariantType *) new;
}
/**
* g_variant_type_new:
* @type_string: a valid GVariant type string
*
* Creates a new #GVariantType corresponding to the type string given
* by @type_string. It is appropriate to call g_variant_type_free() on
* the return value.
*
* It is a programmer error to call this function with an invalid type
* string. Use g_variant_type_string_is_valid() if you are unsure.
*
* Returns: (transfer full): a new #GVariantType
*
* Since: 2.24
*/
GVariantType *
g_variant_type_new (const gchar *type_string)
{
g_return_val_if_fail (type_string != NULL, NULL);
return g_variant_type_copy (G_VARIANT_TYPE (type_string));
}
/**
* g_variant_type_get_string_length:
* @type: a #GVariantType
*
* Returns the length of the type string corresponding to the given
* @type. This function must be used to determine the valid extent of
* the memory region returned by g_variant_type_peek_string().
*
* Returns: the length of the corresponding type string
*
* Since 2.24
**/
gsize
g_variant_type_get_string_length (const GVariantType *type)
{
const gchar *type_string = (const gchar *) type;
gint brackets = 0;
gsize index = 0;
g_return_val_if_fail (g_variant_type_check (type), 0);
do
{
while (type_string[index] == 'a' || type_string[index] == 'm')
index++;
if (type_string[index] == '(' || type_string[index] == '{')
brackets++;
else if (type_string[index] == ')' || type_string[index] == '}')
brackets--;
index++;
}
while (brackets);
return index;
}
/*
This function is not introspectable, it returns something that
is not an array and neither a string
*/
/**
* g_variant_type_peek_string: (skip)
* @type: a #GVariantType
*
* Returns the type string corresponding to the given @type. The
* result is not nul-terminated; in order to determine its length you
* must call g_variant_type_get_string_length().
*
* To get a nul-terminated string, see g_variant_type_dup_string().
*
* Returns: the corresponding type string (not nul-terminated)
*
* Since 2.24
**/
const gchar *
g_variant_type_peek_string (const GVariantType *type)
{
g_return_val_if_fail (g_variant_type_check (type), NULL);
return (const gchar *) type;
}
/**
* g_variant_type_dup_string:
* @type: a #GVariantType
*
* Returns a newly-allocated copy of the type string corresponding to
* @type. The returned string is nul-terminated. It is appropriate to
* call g_free() on the return value.
*
* Returns: (transfer full): the corresponding type string
*
* Since 2.24
**/
gchar *
g_variant_type_dup_string (const GVariantType *type)
{
g_return_val_if_fail (g_variant_type_check (type), NULL);
return g_strndup (g_variant_type_peek_string (type),
g_variant_type_get_string_length (type));
}
/**
* g_variant_type_is_definite:
* @type: a #GVariantType
*
* Determines if the given @type is definite (ie: not indefinite).
*
* A type is definite if its type string does not contain any indefinite
* type characters ('*', '?', or 'r').
*
* A #GVariant instance may not have an indefinite type, so calling
* this function on the result of g_variant_get_type() will always
* result in %TRUE being returned. Calling this function on an
* indefinite type like %G_VARIANT_TYPE_ARRAY, however, will result in
* %FALSE being returned.
*
* Returns: %TRUE if @type is definite
*
* Since 2.24
**/
gboolean
g_variant_type_is_definite (const GVariantType *type)
{
const gchar *type_string;
gsize type_length;
gsize i;
g_return_val_if_fail (g_variant_type_check (type), FALSE);
type_length = g_variant_type_get_string_length (type);
type_string = g_variant_type_peek_string (type);
for (i = 0; i < type_length; i++)
if (type_string[i] == '*' ||
type_string[i] == '?' ||
type_string[i] == 'r')
return FALSE;
return TRUE;
}
/**
* g_variant_type_is_container:
* @type: a #GVariantType
*
* Determines if the given @type is a container type.
*
* Container types are any array, maybe, tuple, or dictionary
* entry types plus the variant type.
*
* This function returns %TRUE for any indefinite type for which every
* definite subtype is a container -- %G_VARIANT_TYPE_ARRAY, for
* example.
*
* Returns: %TRUE if @type is a container type
*
* Since 2.24
**/
gboolean
g_variant_type_is_container (const GVariantType *type)
{
gchar first_char;
g_return_val_if_fail (g_variant_type_check (type), FALSE);
first_char = g_variant_type_peek_string (type)[0];
switch (first_char)
{
case 'a':
case 'm':
case 'r':
case '(':
case '{':
case 'v':
return TRUE;
default:
return FALSE;
}
}
/**
* g_variant_type_is_basic:
* @type: a #GVariantType
*
* Determines if the given @type is a basic type.
*
* Basic types are booleans, bytes, integers, doubles, strings, object
* paths and signatures.
*
* Only a basic type may be used as the key of a dictionary entry.
*
* This function returns %FALSE for all indefinite types except
* %G_VARIANT_TYPE_BASIC.
*
* Returns: %TRUE if @type is a basic type
*
* Since 2.24
**/
gboolean
g_variant_type_is_basic (const GVariantType *type)
{
gchar first_char;
g_return_val_if_fail (g_variant_type_check (type), FALSE);
first_char = g_variant_type_peek_string (type)[0];
switch (first_char)
{
case 'b':
case 'y':
case 'n':
case 'q':
case 'i':
case 'h':
case 'u':
case 't':
case 'x':
case 'd':
case 's':
case 'o':
case 'g':
case '?':
return TRUE;
default:
return FALSE;
}
}
/**
* g_variant_type_is_maybe:
* @type: a #GVariantType
*
* Determines if the given @type is a maybe type. This is true if the
* type string for @type starts with an 'm'.
*
* This function returns %TRUE for any indefinite type for which every
* definite subtype is a maybe type -- %G_VARIANT_TYPE_MAYBE, for
* example.
*
* Returns: %TRUE if @type is a maybe type
*
* Since 2.24
**/
gboolean
g_variant_type_is_maybe (const GVariantType *type)
{
g_return_val_if_fail (g_variant_type_check (type), FALSE);
return g_variant_type_peek_string (type)[0] == 'm';
}
/**
* g_variant_type_is_array:
* @type: a #GVariantType
*
* Determines if the given @type is an array type. This is true if the
* type string for @type starts with an 'a'.
*
* This function returns %TRUE for any indefinite type for which every
* definite subtype is an array type -- %G_VARIANT_TYPE_ARRAY, for
* example.
*
* Returns: %TRUE if @type is an array type
*
* Since 2.24
**/
gboolean
g_variant_type_is_array (const GVariantType *type)
{
g_return_val_if_fail (g_variant_type_check (type), FALSE);
return g_variant_type_peek_string (type)[0] == 'a';
}
/**
* g_variant_type_is_tuple:
* @type: a #GVariantType
*
* Determines if the given @type is a tuple type. This is true if the
* type string for @type starts with a '(' or if @type is
* %G_VARIANT_TYPE_TUPLE.
*
* This function returns %TRUE for any indefinite type for which every
* definite subtype is a tuple type -- %G_VARIANT_TYPE_TUPLE, for
* example.
*
* Returns: %TRUE if @type is a tuple type
*
* Since 2.24
**/
gboolean
g_variant_type_is_tuple (const GVariantType *type)
{
gchar type_char;
g_return_val_if_fail (g_variant_type_check (type), FALSE);
type_char = g_variant_type_peek_string (type)[0];
return type_char == 'r' || type_char == '(';
}
/**
* g_variant_type_is_dict_entry:
* @type: a #GVariantType
*
* Determines if the given @type is a dictionary entry type. This is
* true if the type string for @type starts with a '{'.
*
* This function returns %TRUE for any indefinite type for which every
* definite subtype is a dictionary entry type --
* %G_VARIANT_TYPE_DICT_ENTRY, for example.
*
* Returns: %TRUE if @type is a dictionary entry type
*
* Since 2.24
**/
gboolean
g_variant_type_is_dict_entry (const GVariantType *type)
{
g_return_val_if_fail (g_variant_type_check (type), FALSE);
return g_variant_type_peek_string (type)[0] == '{';
}
/**
* g_variant_type_is_variant:
* @type: a #GVariantType
*
* Determines if the given @type is the variant type.
*
* Returns: %TRUE if @type is the variant type
*
* Since 2.24
**/
gboolean
g_variant_type_is_variant (const GVariantType *type)
{
g_return_val_if_fail (g_variant_type_check (type), FALSE);
return g_variant_type_peek_string (type)[0] == 'v';
}
/**
* g_variant_type_hash:
* @type: (type GVariantType): a #GVariantType
*
* Hashes @type.
*
* The argument type of @type is only #gconstpointer to allow use with
* #GHashTable without function pointer casting. A valid
* #GVariantType must be provided.
*
* Returns: the hash value
*
* Since 2.24
**/
guint
g_variant_type_hash (gconstpointer type)
{
const gchar *type_string;
guint value = 0;
gsize length;
gsize i;
g_return_val_if_fail (g_variant_type_check (type), 0);
type_string = g_variant_type_peek_string (type);
length = g_variant_type_get_string_length (type);
for (i = 0; i < length; i++)
value = (value << 5) - value + type_string[i];
return value;
}
/**
* g_variant_type_equal:
* @type1: (type GVariantType): a #GVariantType
* @type2: (type GVariantType): a #GVariantType
*
* Compares @type1 and @type2 for equality.
*
* Only returns %TRUE if the types are exactly equal. Even if one type
* is an indefinite type and the other is a subtype of it, %FALSE will
* be returned if they are not exactly equal. If you want to check for
* subtypes, use g_variant_type_is_subtype_of().
*
* The argument types of @type1 and @type2 are only #gconstpointer to
* allow use with #GHashTable without function pointer casting. For
* both arguments, a valid #GVariantType must be provided.
*
* Returns: %TRUE if @type1 and @type2 are exactly equal
*
* Since 2.24
**/
gboolean
g_variant_type_equal (gconstpointer type1,
gconstpointer type2)
{
const gchar *string1, *string2;
gsize size1, size2;
g_return_val_if_fail (g_variant_type_check (type1), FALSE);
g_return_val_if_fail (g_variant_type_check (type2), FALSE);
if (type1 == type2)
return TRUE;
size1 = g_variant_type_get_string_length (type1);
size2 = g_variant_type_get_string_length (type2);
if (size1 != size2)
return FALSE;
string1 = g_variant_type_peek_string (type1);
string2 = g_variant_type_peek_string (type2);
return memcmp (string1, string2, size1) == 0;
}
/**
* g_variant_type_is_subtype_of:
* @type: a #GVariantType
* @supertype: a #GVariantType
*
* Checks if @type is a subtype of @supertype.
*
* This function returns %TRUE if @type is a subtype of @supertype. All
* types are considered to be subtypes of themselves. Aside from that,
* only indefinite types can have subtypes.
*
* Returns: %TRUE if @type is a subtype of @supertype
*
* Since 2.24
**/
gboolean
g_variant_type_is_subtype_of (const GVariantType *type,
const GVariantType *supertype)
{
const gchar *supertype_string;
const gchar *supertype_end;
const gchar *type_string;
g_return_val_if_fail (g_variant_type_check (type), FALSE);
g_return_val_if_fail (g_variant_type_check (supertype), FALSE);
supertype_string = g_variant_type_peek_string (supertype);
type_string = g_variant_type_peek_string (type);
supertype_end = supertype_string +
g_variant_type_get_string_length (supertype);
/* we know that type and supertype are both well-formed, so it's
* safe to treat this merely as a text processing problem.
*/
while (supertype_string < supertype_end)
{
char supertype_char = *supertype_string++;
if (supertype_char == *type_string)
type_string++;
else if (*type_string == ')')
return FALSE;
else
{
const GVariantType *target_type = (GVariantType *) type_string;
switch (supertype_char)
{
case 'r':
if (!g_variant_type_is_tuple (target_type))
return FALSE;
break;
case '*':
break;
case '?':
if (!g_variant_type_is_basic (target_type))
return FALSE;
break;
default:
return FALSE;
}
type_string += g_variant_type_get_string_length (target_type);
}
}
return TRUE;
}
/**
* g_variant_type_element:
* @type: an array or maybe #GVariantType
*
* Determines the element type of an array or maybe type.
*
* This function may only be used with array or maybe types.
*
* Returns: (transfer none): the element type of @type
*
* Since 2.24
**/
const GVariantType *
g_variant_type_element (const GVariantType *type)
{
const gchar *type_string;
g_return_val_if_fail (g_variant_type_check (type), NULL);
type_string = g_variant_type_peek_string (type);
g_assert (type_string[0] == 'a' || type_string[0] == 'm');
return (const GVariantType *) &type_string[1];
}
/**
* g_variant_type_first:
* @type: a tuple or dictionary entry #GVariantType
*
* Determines the first item type of a tuple or dictionary entry
* type.
*
* This function may only be used with tuple or dictionary entry types,
* but must not be used with the generic tuple type
* %G_VARIANT_TYPE_TUPLE.
*
* In the case of a dictionary entry type, this returns the type of
* the key.
*
* %NULL is returned in case of @type being %G_VARIANT_TYPE_UNIT.
*
* This call, together with g_variant_type_next() provides an iterator
* interface over tuple and dictionary entry types.
*
* Returns: (transfer none): the first item type of @type, or %NULL
*
* Since 2.24
**/
const GVariantType *
g_variant_type_first (const GVariantType *type)
{
const gchar *type_string;
g_return_val_if_fail (g_variant_type_check (type), NULL);
type_string = g_variant_type_peek_string (type);
g_assert (type_string[0] == '(' || type_string[0] == '{');
if (type_string[1] == ')')
return NULL;
return (const GVariantType *) &type_string[1];
}
/**
* g_variant_type_next:
* @type: a #GVariantType from a previous call
*
* Determines the next item type of a tuple or dictionary entry
* type.
*
* @type must be the result of a previous call to
* g_variant_type_first() or g_variant_type_next().
*
* If called on the key type of a dictionary entry then this call
* returns the value type. If called on the value type of a dictionary
* entry then this call returns %NULL.
*
* For tuples, %NULL is returned when @type is the last item in a tuple.
*
* Returns: (transfer none): the next #GVariantType after @type, or %NULL
*
* Since 2.24
**/
const GVariantType *
g_variant_type_next (const GVariantType *type)
{
const gchar *type_string;
g_return_val_if_fail (g_variant_type_check (type), NULL);
type_string = g_variant_type_peek_string (type);
type_string += g_variant_type_get_string_length (type);
if (*type_string == ')' || *type_string == '}')
return NULL;
return (const GVariantType *) type_string;
}
/**
* g_variant_type_n_items:
* @type: a tuple or dictionary entry #GVariantType
*
* Determines the number of items contained in a tuple or
* dictionary entry type.
*
* This function may only be used with tuple or dictionary entry types,
* but must not be used with the generic tuple type
* %G_VARIANT_TYPE_TUPLE.
*
* In the case of a dictionary entry type, this function will always
* return 2.
*
* Returns: the number of items in @type
*
* Since 2.24
**/
gsize
g_variant_type_n_items (const GVariantType *type)
{
gsize count = 0;
g_return_val_if_fail (g_variant_type_check (type), 0);
for (type = g_variant_type_first (type);
type;
type = g_variant_type_next (type))
count++;
return count;
}
/**
* g_variant_type_key:
* @type: a dictionary entry #GVariantType
*
* Determines the key type of a dictionary entry type.
*
* This function may only be used with a dictionary entry type. Other
* than the additional restriction, this call is equivalent to
* g_variant_type_first().
*
* Returns: (transfer none): the key type of the dictionary entry
*
* Since 2.24
**/
const GVariantType *
g_variant_type_key (const GVariantType *type)
{
const gchar *type_string;
g_return_val_if_fail (g_variant_type_check (type), NULL);
type_string = g_variant_type_peek_string (type);
g_assert (type_string[0] == '{');
return (const GVariantType *) &type_string[1];
}
/**
* g_variant_type_value:
* @type: a dictionary entry #GVariantType
*
* Determines the value type of a dictionary entry type.
*
* This function may only be used with a dictionary entry type.
*
* Returns: (transfer none): the value type of the dictionary entry
*
* Since 2.24
**/
const GVariantType *
g_variant_type_value (const GVariantType *type)
{
const gchar *type_string;
g_return_val_if_fail (g_variant_type_check (type), NULL);
type_string = g_variant_type_peek_string (type);
g_assert (type_string[0] == '{');
return g_variant_type_next (g_variant_type_key (type));
}
/**
* g_variant_type_new_tuple:
* @items: (array length=length): an array of #GVariantTypes, one for each item
* @length: the length of @items, or -1
*
* Constructs a new tuple type, from @items.
*
* @length is the number of items in @items, or -1 to indicate that
* @items is %NULL-terminated.
*
* It is appropriate to call g_variant_type_free() on the return value.
*
* Returns: (transfer full): a new tuple #GVariantType
*
* Since 2.24
**/
static GVariantType *
g_variant_type_new_tuple_slow (const GVariantType * const *items,
gint length)
{
/* the "slow" version is needed in case the static buffer of 1024
* bytes is exceeded when running the normal version. this will
* happen only in truly insane code, so it can be slow.
*/
GString *string;
gsize i;
string = g_string_new ("(");
for (i = 0; i < length; i++)
{
const GVariantType *type;
gsize size;
g_return_val_if_fail (g_variant_type_check (items[i]), NULL);
type = items[i];
size = g_variant_type_get_string_length (type);
g_string_append_len (string, (const gchar *) type, size);
}
g_string_append_c (string, ')');
return (GVariantType *) g_string_free (string, FALSE);
}
GVariantType *
g_variant_type_new_tuple (const GVariantType * const *items,
gint length)
{
char buffer[1024];
gsize offset;
gsize i;
g_return_val_if_fail (length == 0 || items != NULL, NULL);
if (length < 0)
for (length = 0; items[length] != NULL; length++);
offset = 0;
buffer[offset++] = '(';
for (i = 0; i < length; i++)
{
const GVariantType *type;
gsize size;
g_return_val_if_fail (g_variant_type_check (items[i]), NULL);
type = items[i];
size = g_variant_type_get_string_length (type);
if (offset + size >= sizeof buffer) /* leave room for ')' */
return g_variant_type_new_tuple_slow (items, length);
memcpy (&buffer[offset], type, size);
offset += size;
}
g_assert (offset < sizeof buffer);
buffer[offset++] = ')';
return (GVariantType *) g_memdup (buffer, offset);
}
/**
* g_variant_type_new_array: (constructor)
* @element: a #GVariantType
*
* Constructs the type corresponding to an array of elements of the
* type @type.
*
* It is appropriate to call g_variant_type_free() on the return value.
*
* Returns: (transfer full): a new array #GVariantType
*
* Since 2.24
**/
GVariantType *
g_variant_type_new_array (const GVariantType *element)
{
gsize size;
gchar *new;
g_return_val_if_fail (g_variant_type_check (element), NULL);
size = g_variant_type_get_string_length (element);
new = g_malloc (size + 1);
new[0] = 'a';
memcpy (new + 1, element, size);
return (GVariantType *) new;
}
/**
* g_variant_type_new_maybe: (constructor)
* @element: a #GVariantType
*
* Constructs the type corresponding to a maybe instance containing
* type @type or Nothing.
*
* It is appropriate to call g_variant_type_free() on the return value.
*
* Returns: (transfer full): a new maybe #GVariantType
*
* Since 2.24
**/
GVariantType *
g_variant_type_new_maybe (const GVariantType *element)
{
gsize size;
gchar *new;
g_return_val_if_fail (g_variant_type_check (element), NULL);
size = g_variant_type_get_string_length (element);
new = g_malloc (size + 1);
new[0] = 'm';
memcpy (new + 1, element, size);
return (GVariantType *) new;
}
/**
* g_variant_type_new_dict_entry: (constructor)
* @key: a basic #GVariantType
* @value: a #GVariantType
*
* Constructs the type corresponding to a dictionary entry with a key
* of type @key and a value of type @value.
*
* It is appropriate to call g_variant_type_free() on the return value.
*
* Returns: (transfer full): a new dictionary entry #GVariantType
*
* Since 2.24
**/
GVariantType *
g_variant_type_new_dict_entry (const GVariantType *key,
const GVariantType *value)
{
gsize keysize, valsize;
gchar *new;
g_return_val_if_fail (g_variant_type_check (key), NULL);
g_return_val_if_fail (g_variant_type_check (value), NULL);
keysize = g_variant_type_get_string_length (key);
valsize = g_variant_type_get_string_length (value);
new = g_malloc (1 + keysize + valsize + 1);
new[0] = '{';
memcpy (new + 1, key, keysize);
memcpy (new + 1 + keysize, value, valsize);
new[1 + keysize + valsize] = '}';
return (GVariantType *) new;
}
/* private */
const GVariantType *
g_variant_type_checked_ (const gchar *type_string)
{
g_return_val_if_fail (g_variant_type_string_is_valid (type_string), NULL);
return (const GVariantType *) type_string;
}