- Add patch to fix build on armv7:

* armnn-fix-armv7.patch

OBS-URL: https://build.opensuse.org/package/show/science:machinelearning/armnn?expand=0&rev=92
This commit is contained in:
Guillaume GARDET 2024-09-06 13:30:37 +00:00 committed by Git OBS Bridge
commit a54685d0bf
16 changed files with 2219 additions and 0 deletions

23
.gitattributes vendored Normal file
View File

@ -0,0 +1,23 @@
## Default LFS
*.7z filter=lfs diff=lfs merge=lfs -text
*.bsp filter=lfs diff=lfs merge=lfs -text
*.bz2 filter=lfs diff=lfs merge=lfs -text
*.gem filter=lfs diff=lfs merge=lfs -text
*.gz filter=lfs diff=lfs merge=lfs -text
*.jar filter=lfs diff=lfs merge=lfs -text
*.lz filter=lfs diff=lfs merge=lfs -text
*.lzma filter=lfs diff=lfs merge=lfs -text
*.obscpio filter=lfs diff=lfs merge=lfs -text
*.oxt filter=lfs diff=lfs merge=lfs -text
*.pdf filter=lfs diff=lfs merge=lfs -text
*.png filter=lfs diff=lfs merge=lfs -text
*.rpm filter=lfs diff=lfs merge=lfs -text
*.tbz filter=lfs diff=lfs merge=lfs -text
*.tbz2 filter=lfs diff=lfs merge=lfs -text
*.tgz filter=lfs diff=lfs merge=lfs -text
*.ttf filter=lfs diff=lfs merge=lfs -text
*.txz filter=lfs diff=lfs merge=lfs -text
*.whl filter=lfs diff=lfs merge=lfs -text
*.xz filter=lfs diff=lfs merge=lfs -text
*.zip filter=lfs diff=lfs merge=lfs -text
*.zst filter=lfs diff=lfs merge=lfs -text

1
.gitignore vendored Normal file
View File

@ -0,0 +1 @@
.osc

View File

@ -0,0 +1,76 @@
From 964cb82f3b811aec6663255ab0aa589f0a3be0ee Mon Sep 17 00:00:00 2001
From: Qin Su <qsu@ti.com>
Date: Fri, 22 Feb 2019 14:10:07 -0500
Subject: [PATCH] add more test command line arguments
Updated by Guillaume_G to apply properly (s/BOOST_ASSERT/ARMNN_ASSERT/)
Upstream-Status: Inappropriate [TI only test code]
Signed-off-by: Qin Su <qsu@ti.com>
---
tests/InferenceTest.inl | 49 +++++++++++++++++++++++++++++++++++++++++++++++++
1 file changed, 49 insertions(+)
diff --git a/tests/InferenceTest.inl b/tests/InferenceTest.inl
index 538720b..6fd21b8 100644
--- a/tests/InferenceTest.inl
+++ b/tests/InferenceTest.inl
@@ -326,6 +326,55 @@ int ClassifierInferenceTestMain(int argc,
ARMNN_ASSERT(modelFilename);
ARMNN_ASSERT(inputBindingName);
ARMNN_ASSERT(outputBindingName);
+ int count;
+ const char *p_input;
+ char inmodelname[500];
+ char outtensorname[500];
+
+ /* parse command line */
+ for (count = 1; count < argc; count++)
+ {
+ if (*(argv[count]) == '+')
+ {
+ p_input = argv[count] + 1;
+ switch (*(p_input))
+ {
+ case 'i':
+ case 'I':
+ strcpy(inmodelname, p_input + 2);
+ modelFilename = &inmodelname[0];
+ std::cout << "Input model = " << modelFilename << std::endl;
+ break;
+ case 'o':
+ case 'O':
+ strcpy(outtensorname, p_input + 2);
+ outputBindingName = &outtensorname[0];
+ std::cout << "out tensor name = " << outputBindingName << std::endl;
+ break;
+ default:
+ break;
+ }
+ }
+ else if (*(argv[count]) == '-')
+ {
+ p_input = argv[count] + 1;
+ switch (*(p_input))
+ {
+ case '-':
+ p_input = argv[count] + 2;
+ case 'h':
+ case 'H':
+ std::cout <<"\nAdditional Options: " << std::endl;
+ std::cout <<" +i Set user specified inference model name." << std::endl;
+ std::cout <<" If not set, default name is used." << std::endl;
+ std::cout <<" +o Set user specified output tensor name." << std::endl;
+ std::cout <<" If not set, default name is used.\n" << std::endl;
+ break;
+ default:
+ break;
+ }
+ }
+ }
return InferenceTestMain(argc, argv, defaultTestCaseIds,
[=]
--
1.9.1

View File

@ -0,0 +1,71 @@
From 99a6c339f1828d3cd1b193cf702bada9011d900b Mon Sep 17 00:00:00 2001
From: Djordje Senicic <x0157990@ti.com>
Date: Mon, 24 Jun 2019 14:29:19 -0400
Subject: [PATCH] add armnn mobilenet test example
Upstream-Status: Inappropriate [TI only test code]
Signed-off-by: Qin Su <qsu@ti.com>
Signed-off-by: Djordje Senicic <x0157990@ti.com>
[Guillaume's update: Add boost_log dep]
[Guillaume's update: Update to apply on top of 20.08]
---
tests/CMakeLists.txt | 41 +++++++++++++++++++++++++++++++++++++++++
1 file changed, 41 insertions(+)
diff --git a/tests/CMakeLists.txt b/tests/CMakeLists.txt
index dfcf4b48..5a78d3a6 100644
--- a/tests/CMakeLists.txt
+++ b/tests/CMakeLists.txt
@@ -1,3 +1,6 @@
+find_package( OpenCV REQUIRED )
+include_directories( ${OpenCV_INCLUDE_DIRS} )
+
# UnitTests
include(CheckIncludeFiles)
@@ -348,3 +351,42 @@ if(BUILD_ARMNN_QUANTIZER)
target_include_directories(ImageCSVFileGenerator PRIVATE ../src/armnnUtils)
ImageTensorExecutor(ImageCSVFileGenerator)
endif()
+
+if (BUILD_ARMNN_EXAMPLES)
+ set(ArmnnExamples_sources
+ ArmnnExamples/ArmnnExamples.cpp)
+
+ add_executable_ex(ArmnnExamples ${ArmnnExamples_sources})
+
+ target_include_directories(ArmnnExamples PRIVATE ../src/armnnUtils)
+ target_include_directories(ArmnnExamples PRIVATE ../src/armnn)
+ target_include_directories(ArmnnExamples PRIVATE ../src/backends)
+
+ if (BUILD_CAFFE_PARSER)
+ target_link_libraries(ArmnnExamples armnnCaffeParser)
+ endif()
+ if (BUILD_TF_PARSER)
+ target_link_libraries(ArmnnExamples armnnTfParser)
+ endif()
+
+ if (BUILD_TF_LITE_PARSER)
+ target_link_libraries(ArmnnExamples armnnTfLiteParser)
+ endif()
+ if (BUILD_ONNX_PARSER)
+ target_link_libraries(ArmnnExamples armnnOnnxParser)
+ endif()
+
+ target_link_libraries(ArmnnExamples armnn)
+ target_link_libraries(ArmnnExamples ${CMAKE_THREAD_LIBS_INIT})
+ if(OPENCL_LIBRARIES)
+ target_link_libraries(ArmnnExamples ${OPENCL_LIBRARIES})
+ endif()
+
+ target_link_libraries(ArmnnExamples
+ ${Boost_LOG_LIBRARY}
+ ${Boost_SYSTEM_LIBRARY}
+ ${Boost_FILESYSTEM_LIBRARY}
+ ${Boost_PROGRAM_OPTIONS_LIBRARY}
+ ${OpenCV_LIBS})
+ addDllCopyCommands(ArmnnExamples)
+endif()
--
2.17.1

View File

@ -0,0 +1,680 @@
From 4d5e7db268a4f816e24449e8ad011e35890f0c7e Mon Sep 17 00:00:00 2001
From: Qin Su <qsu@ti.com>
Date: Fri, 22 Feb 2019 13:39:09 -0500
Subject: [PATCH] armnn mobilenet test example
Upstream-Status: Inappropriate [TI only test code]
Signed-off-by: Qin Su <qsu@ti.com>
[Guillaume's update: s#Logging.hpp#armnn/Logging.hpp#]
[Guillaume's update: Add #include <boost/log/trivial.hpp>]
[Guillaume's update: Drop armnnUtils::ConfigureLogging(...)]
[Guillaume's update: Handle boost::variant to mapbox::util::variant update]
---
tests/ArmnnExamples/ArmnnExamples.cpp | 654 ++++++++++++++++++++++++++++++++++
1 file changed, 654 insertions(+)
create mode 100644 tests/ArmnnExamples/ArmnnExamples.cpp
diff --git a/tests/ArmnnExamples/ArmnnExamples.cpp b/tests/ArmnnExamples/ArmnnExamples.cpp
new file mode 100644
index 0000000..53a11cc
--- /dev/null
+++ b/tests/ArmnnExamples/ArmnnExamples.cpp
@@ -0,0 +1,654 @@
+/******************************************************************************
+ * Copyright (c) 2018, Texas Instruments Incorporated - http://www.ti.com/
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * * Neither the name of Texas Instruments Incorporated nor the
+ * names of its contributors may be used to endorse or promote products
+ * derived from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
+ * THE POSSIBILITY OF SUCH DAMAGE.
+ *****************************************************************************///
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// See LICENSE file in the project root for full license information.
+//
+#include <armnn/ArmNN.hpp>
+#include <boost/log/trivial.hpp>
+
+#include <utility>
+#include <armnn/TypesUtils.hpp>
+
+#if defined(ARMNN_CAFFE_PARSER)
+#include "armnnCaffeParser/ICaffeParser.hpp"
+#endif
+#if defined(ARMNN_TF_PARSER)
+#include "armnnTfParser/ITfParser.hpp"
+#endif
+#if defined(ARMNN_TF_LITE_PARSER)
+#include "armnnTfLiteParser/ITfLiteParser.hpp"
+#endif
+#if defined(ARMNN_ONNX_PARSER)
+#include "armnnOnnxParser/IOnnxParser.hpp"
+#endif
+#include <mapbox/variant.hpp> /*#include "CsvReader.hpp"*/
+#include "../InferenceTest.hpp"
+#include <armnn/Logging.hpp>
+#include <Profiling.hpp>
+
+#include <boost/algorithm/string/trim.hpp>
+#include <boost/algorithm/string/split.hpp>
+#include <boost/algorithm/string/classification.hpp>
+#include <boost/program_options.hpp>
+
+#include <iostream>
+#include <fstream>
+#include <functional>
+#include <future>
+#include <algorithm>
+#include <iterator>
+#include<vector>
+
+#include <signal.h>
+#include "opencv2/core.hpp"
+#include "opencv2/imgproc.hpp"
+#include "opencv2/highgui.hpp"
+#include "opencv2/videoio.hpp"
+#include <time.h>
+
+using namespace cv;
+
+#define INPUT_IMAGE 0
+#define INPUT_VIDEO 1
+#define INPUT_CAMERA 2
+
+Mat test_image;
+Rect rectCrop;
+
+time_point<high_resolution_clock> predictStart;
+time_point<high_resolution_clock> predictEnd;
+
+void imagenetCallBackFunc(int event, int x, int y, int flags, void* userdata)
+{
+ if ( event == EVENT_RBUTTONDOWN )
+ {
+ std::cout << "Right button of the mouse is clicked - position (" << x << ", " << y << ")" << " ... prepare to exit!" << std::endl;
+ exit(0);
+ }
+}
+
+inline float Lerpfloat(float a, float b, float w)
+{
+ return w * b + (1.f - w) * a;
+}
+
+// Load a single image
+struct ImageData
+{
+ unsigned int m_width;
+ unsigned int m_height;
+ unsigned int m_chnum;
+ unsigned int m_size;
+ std::vector<uint8_t> m_image;
+};
+// Load a single image
+std::unique_ptr<ImageData> loadImageData(std::string image_path, VideoCapture &cap, cv::Mat img, int input_type)
+{
+ //cv::Mat img;
+ if (input_type == INPUT_IMAGE)
+ {
+ /* use OpenCV to get the image */
+ img = cv::imread(image_path, CV_LOAD_IMAGE_COLOR);
+ }
+ cv::cvtColor(img, img, CV_BGR2RGB); //convert image format from BGR(openCV format) to RGB (armnn required format).
+
+ // store image and label in output Image
+ std::unique_ptr<ImageData> ret(new ImageData);
+ ret->m_width = static_cast<unsigned int>(img.cols);
+ ret->m_height = static_cast<unsigned int>(img.rows);
+ ret->m_chnum = static_cast<unsigned int>(img.channels());
+ ret->m_size = static_cast<unsigned int>(img.cols*img.rows*img.channels());
+ ret->m_image.resize(ret->m_size);
+
+ for (unsigned int i = 0; i < ret->m_size; i++)
+ {
+ ret->m_image[i] = static_cast<uint8_t>(img.data[i]);
+ }
+ return ret;
+}
+// to resize input tensor size
+std::vector<float> ResizeBilinear(std::vector<uint8_t> input,
+ const unsigned int inWidth,
+ const unsigned int inHeight,
+ const unsigned int inChnum,
+ const unsigned int outputWidth,
+ const unsigned int outputHeight)
+{
+ std::vector<float> out;
+ out.resize(outputWidth * outputHeight * 3);
+
+ // We follow the definition of TensorFlow and AndroidNN: the top-left corner of a texel in the output
+ // image is projected into the input image to figure out the interpolants and weights. Note that this
+ // will yield different results than if projecting the centre of output texels.
+
+ const unsigned int inputWidth = inWidth;
+ const unsigned int inputHeight = inHeight;
+
+ // How much to scale pixel coordinates in the output image to get the corresponding pixel coordinates
+ // in the input image.
+ const float scaleY = boost::numeric_cast<float>(inputHeight) / boost::numeric_cast<float>(outputHeight);
+ const float scaleX = boost::numeric_cast<float>(inputWidth) / boost::numeric_cast<float>(outputWidth);
+
+ uint8_t rgb_x0y0[3];
+ uint8_t rgb_x1y0[3];
+ uint8_t rgb_x0y1[3];
+ uint8_t rgb_x1y1[3];
+ unsigned int pixelOffset00, pixelOffset10, pixelOffset01, pixelOffset11;
+ for (unsigned int y = 0; y < outputHeight; ++y)
+ {
+ // Corresponding real-valued height coordinate in input image.
+ const float iy = boost::numeric_cast<float>(y) * scaleY;
+ // Discrete height coordinate of top-left texel (in the 2x2 texel area used for interpolation).
+ const float fiy = floorf(iy);
+ const unsigned int y0 = boost::numeric_cast<unsigned int>(fiy);
+
+ // Interpolation weight (range [0,1])
+ const float yw = iy - fiy;
+
+ for (unsigned int x = 0; x < outputWidth; ++x)
+ {
+ // Real-valued and discrete width coordinates in input image.
+ const float ix = boost::numeric_cast<float>(x) * scaleX;
+ const float fix = floorf(ix);
+ const unsigned int x0 = boost::numeric_cast<unsigned int>(fix);
+
+ // Interpolation weight (range [0,1]).
+ const float xw = ix - fix;
+
+ // Discrete width/height coordinates of texels below and to the right of (x0, y0).
+ const unsigned int x1 = std::min(x0 + 1, inputWidth - 1u);
+ const unsigned int y1 = std::min(y0 + 1, inputHeight - 1u);
+
+ pixelOffset00 = x0 * inChnum + y0 * inputWidth * inChnum;
+ pixelOffset10 = x1 * inChnum + y0 * inputWidth * inChnum;
+ pixelOffset01 = x0 * inChnum + y1 * inputWidth * inChnum;
+ pixelOffset11 = x1 * inChnum + y1 * inputWidth * inChnum;
+ for (unsigned int c = 0; c < 3; ++c)
+ {
+ rgb_x0y0[c] = input[pixelOffset00+c];
+ rgb_x1y0[c] = input[pixelOffset10+c];
+ rgb_x0y1[c] = input[pixelOffset01+c];
+ rgb_x1y1[c] = input[pixelOffset11+c];
+ }
+
+ for (unsigned c=0; c<3; ++c)
+ {
+ const float ly0 = Lerpfloat(float(rgb_x0y0[c]), float(rgb_x1y0[c]), xw);
+ const float ly1 = Lerpfloat(float(rgb_x0y1[c]), float(rgb_x1y1[c]), xw);
+ const float l = Lerpfloat(ly0, ly1, yw);
+ out[(3*((y*outputWidth)+x)) + c] = static_cast<float>(l)/255.0f;
+ }
+ }
+ }
+ return out;
+}
+
+namespace
+{
+
+ // Configure boost::program_options for command-line parsing and validation.
+ namespace po = boost::program_options;
+
+ template<typename T, typename TParseElementFunc>
+ std::vector<T> ParseArrayImpl(std::istream& stream, TParseElementFunc parseElementFunc)
+ {
+ std::vector<T> result;
+ // Processes line-by-line.
+ std::string line;
+ while (std::getline(stream, line))
+ {
+ std::vector<std::string> tokens;
+ try
+ {
+ // Coverity fix: boost::split() may throw an exception of type boost::bad_function_call.
+ boost::split(tokens, line, boost::algorithm::is_any_of("\t ,;:"), boost::token_compress_on);
+ }
+ catch (const std::exception& e)
+ {
+ BOOST_LOG_TRIVIAL(error) << "An error occurred when splitting tokens: " << e.what();
+ continue;
+ }
+ for (const std::string& token : tokens)
+ {
+ if (!token.empty())
+ {
+ try
+ {
+ result.push_back(parseElementFunc(token));
+ }
+ catch (const std::exception&)
+ {
+ BOOST_LOG_TRIVIAL(error) << "'" << token << "' is not a valid number. It has been ignored.";
+ }
+ }
+ }
+ }
+
+ return result;
+ }
+
+ template<typename T>
+ std::vector<T> ParseArray(std::istream& stream);
+ template<>
+ std::vector<unsigned int> ParseArray(std::istream& stream)
+ {
+ return ParseArrayImpl<unsigned int>(stream,
+ [](const std::string& s) { return boost::numeric_cast<unsigned int>(std::stoi(s)); });
+ }
+ void RemoveDuplicateDevices(std::vector<armnn::BackendId>& computeDevices)
+ {
+ // Mark the duplicate devices as 'Undefined'.
+ for (auto i = computeDevices.begin(); i != computeDevices.end(); ++i)
+ {
+ for (auto j = std::next(i); j != computeDevices.end(); ++j)
+ {
+ if (*j == *i)
+ {
+ *j = armnn::Compute::Undefined;
+ }
+ }
+ }
+
+ // Remove 'Undefined' devices.
+ computeDevices.erase(std::remove(computeDevices.begin(), computeDevices.end(), armnn::Compute::Undefined),
+ computeDevices.end());
+ }
+} // namespace
+
+template<typename TParser, typename TDataType>
+int MainImpl(const char* modelPath,
+ bool isModelBinary,
+ const std::vector<armnn::BackendId>& computeDevices,
+ const char* inputName,
+ const armnn::TensorShape* inputTensorShape,
+ const char* inputTensorDataFilePath,
+ const char* outputName,
+ bool enableProfiling,
+ const size_t number_frame,
+ const std::shared_ptr<armnn::IRuntime>& runtime = nullptr)
+{
+ // Loads input tensor.
+ std::vector<uint8_t> input;
+ std::vector<float> input_resized;
+ using TContainer = mapbox::util::variant<std::vector<float>, std::vector<int>, std::vector<unsigned char>>;
+
+ try
+ {
+ // Creates an InferenceModel, which will parse the model and load it into an IRuntime.
+ typename InferenceModel<TParser, TDataType>::Params params;
+ //const armnn::TensorShape inputTensorShape({ 1, 224, 224 3});
+
+ params.m_ModelPath = modelPath;
+ params.m_IsModelBinary = isModelBinary;
+ params.m_ComputeDevices = computeDevices;
+ params.m_InputBindings = { inputName };
+ params.m_InputShapes = { *inputTensorShape };
+ params.m_OutputBindings = { outputName };
+ //params.m_EnableProfiling = enableProfiling;
+ params.m_SubgraphId = 0;
+ InferenceModel<TParser, TDataType> model(params, enableProfiling, runtime);
+
+ VideoCapture cap;
+ int input_type = INPUT_IMAGE;
+ std::string filename = inputTensorDataFilePath;
+
+ size_t i = filename.rfind("camera_live_input", filename.length());
+ if (i != string::npos)
+ {
+ cap = VideoCapture(1);
+ namedWindow("ARMNN MobileNet Example", WINDOW_AUTOSIZE | CV_GUI_NORMAL);
+ input_type = INPUT_CAMERA; //camera input
+ }
+ else if((filename.substr(filename.find_last_of(".") + 1) == "mp4") ||
+ (filename.substr(filename.find_last_of(".") + 1) == "mov") ||
+ (filename.substr(filename.find_last_of(".") + 1) == "avi") )
+ {
+ cap = VideoCapture(inputTensorDataFilePath);
+ if (! cap.isOpened())
+ {
+ std::cout << "Cannot open video input: " << inputTensorDataFilePath << std::endl;
+ return (-1);
+ }
+
+ namedWindow("ARMNN MobileNet Example", WINDOW_AUTOSIZE | CV_GUI_NORMAL);
+ input_type = INPUT_VIDEO; //video clip input
+ }
+ if (input_type != INPUT_IMAGE)
+ {
+ //set the callback function for any mouse event. Used for right click mouse to exit the program.
+ setMouseCallback("ARMNN MobileNet Example", imagenetCallBackFunc, NULL);
+ }
+
+ for (unsigned int i=0; i < number_frame; i++)
+ {
+ if (input_type != INPUT_IMAGE)
+ {
+ cap.grab();
+ cap.retrieve(test_image);
+ }
+ std::unique_ptr<ImageData> inputData = loadImageData(inputTensorDataFilePath, cap, test_image, input_type);
+ input.resize(inputData->m_size);
+
+ input = std::move(inputData->m_image);
+ input_resized = ResizeBilinear(input, inputData->m_width, inputData->m_height, inputData->m_chnum, 224, 224);
+
+ // Set up input data container
+ std::vector<TContainer> inputDataContainer(1, std::move(input_resized));
+
+ // Set up output data container
+ std::vector<TContainer> outputDataContainers;
+ outputDataContainers.push_back(std::vector<float>(model.GetOutputSize()));
+
+ //profile start
+ predictStart = high_resolution_clock::now();
+ // Execute model
+ model.Run(inputDataContainer, outputDataContainers);
+ //profile end
+ predictEnd = high_resolution_clock::now();
+
+ double timeTakenS = duration<double>(predictEnd - predictStart).count();
+ double preformance_ret = static_cast<double>(1.0/timeTakenS);
+
+ //retrieve output
+ std::vector<float>& outputData = (mapbox::util::get<std::vector<float>>(outputDataContainers[0]));
+ //output TOP predictions
+ std::string predict_target_name;
+ // find the out with the highest confidence
+ int label = static_cast<int>(std::distance(outputData.begin(), std::max_element(outputData.begin(), outputData.end())));
+ std::fstream file("/usr/share/arm/armnn/models/labels.txt");
+ //std::string predict_target_name;
+ for (int i=0; i <= label; i++)
+ {
+ std::getline(file, predict_target_name);
+ }
+ //get the probability of the top prediction
+ float prob = 100*outputData.data()[label];
+ //clean the top one so as to find the second top prediction
+ outputData.data()[label] = 0;
+ std::cout << "Top(1) prediction is " << predict_target_name << " with confidence: " << prob << "%" << std::endl;
+ //output next TOP 4 predictions
+ for (int ii=1; ii<5; ii++)
+ {
+ std::string predict_target_name_n;
+ // find the out with the highest confidence
+ int label = static_cast<int>(std::distance(outputData.begin(), std::max_element(outputData.begin(), outputData.end())));
+ std::fstream file("/usr/share/arm/armnn/models/labels.txt");
+ //std::string predict_target_name;
+ for (int i=0; i <= label; i++)
+ {
+ std::getline(file, predict_target_name_n);
+ }
+ //get the probability of the prediction
+ float prob = 100*outputData.data()[label];
+ //clean the top one so as to find the second top prediction
+ outputData.data()[label] = 0;
+
+ std::cout << "Top(" << (ii+1) << ") prediction is " << predict_target_name_n << " with confidence: " << prob << "%" << std::endl;
+ }
+ std::cout << "Performance (FPS): " << preformance_ret << std::endl;
+
+ if (input_type != INPUT_IMAGE)
+ {
+ //convert image format back to BGR for OpenCV imshow from RGB format required by armnn.
+ cv::cvtColor(test_image, test_image, CV_RGB2BGR);
+ // output identified object name on top of input image
+ cv::putText(test_image, predict_target_name,
+ cv::Point(rectCrop.x + 5,rectCrop.y + 20), // Coordinates
+ cv::FONT_HERSHEY_COMPLEX_SMALL, // Font
+ 1.0, // Scale. 2.0 = 2x bigger
+ cv::Scalar(0,0,255), // Color
+ 1, // Thickness
+ 8); // Line type
+
+ // output preformance in FPS on top of input image
+ std::string preformance_ret_string = "Performance (FPS): " + boost::lexical_cast<std::string>(preformance_ret);
+ cv::putText(test_image, preformance_ret_string,
+ cv::Point(rectCrop.x + 5,rectCrop.y + 40), // Coordinates
+ cv::FONT_HERSHEY_COMPLEX_SMALL, // Font
+ 1.0, // Scale. 2.0 = 2x bigger
+ cv::Scalar(0,0,255), // Color
+ 1, // Thickness
+ 8); // Line type
+
+ cv::imshow("ARMNN MobileNet Example", test_image);
+ waitKey(2);
+ }
+ }
+ }
+ catch (armnn::Exception const& e)
+ {
+ BOOST_LOG_TRIVIAL(fatal) << "Armnn Error: " << e.what();
+ return EXIT_FAILURE;
+ }
+ return EXIT_SUCCESS;
+}
+
+// This will run a test
+int RunTest(const std::string& modelFormat,
+ const std::string& inputTensorShapeStr,
+ const vector<armnn::BackendId>& computeDevice,
+ const std::string& modelPath,
+ const std::string& inputName,
+ const std::string& inputTensorDataFilePath,
+ const std::string& outputName,
+ bool enableProfiling,
+ const size_t subgraphId,
+ const std::shared_ptr<armnn::IRuntime>& runtime = nullptr)
+{
+ // Parse model binary flag from the model-format string we got from the command-line
+ bool isModelBinary;
+ if (modelFormat.find("bin") != std::string::npos)
+ {
+ isModelBinary = true;
+ }
+ else if (modelFormat.find("txt") != std::string::npos || modelFormat.find("text") != std::string::npos)
+ {
+ isModelBinary = false;
+ }
+ else
+ {
+ BOOST_LOG_TRIVIAL(fatal) << "Unknown model format: '" << modelFormat << "'. Please include 'binary' or 'text'";
+ return EXIT_FAILURE;
+ }
+
+ // Parse input tensor shape from the string we got from the command-line.
+ std::unique_ptr<armnn::TensorShape> inputTensorShape;
+ if (!inputTensorShapeStr.empty())
+ {
+ std::stringstream ss(inputTensorShapeStr);
+ std::vector<unsigned int> dims = ParseArray<unsigned int>(ss);
+ try
+ {
+ // Coverity fix: An exception of type armnn::InvalidArgumentException is thrown and never caught.
+ inputTensorShape = std::make_unique<armnn::TensorShape>(dims.size(), dims.data());
+ }
+ catch (const armnn::InvalidArgumentException& e)
+ {
+ BOOST_LOG_TRIVIAL(fatal) << "Cannot create tensor shape: " << e.what();
+ return EXIT_FAILURE;
+ }
+ }
+ // Forward to implementation based on the parser type
+ if (modelFormat.find("caffe") != std::string::npos)
+ {
+#if defined(ARMNN_CAFFE_PARSER)
+ return MainImpl<armnnCaffeParser::ICaffeParser, float>(modelPath.c_str(), isModelBinary, computeDevice,
+ inputName.c_str(), inputTensorShape.get(),
+ inputTensorDataFilePath.c_str(), outputName.c_str(),
+ enableProfiling, subgraphId, runtime);
+#else
+ BOOST_LOG_TRIVIAL(fatal) << "Not built with Caffe parser support.";
+ return EXIT_FAILURE;
+#endif
+ }
+ else if (modelFormat.find("onnx") != std::string::npos)
+ {
+#if defined(ARMNN_ONNX_PARSER)
+ return MainImpl<armnnOnnxParser::IOnnxParser, float>(modelPath.c_str(), isModelBinary, computeDevice,
+ inputName.c_str(), inputTensorShape.get(),
+ inputTensorDataFilePath.c_str(), outputName.c_str(),
+ enableProfiling, subgraphId, runtime);
+#else
+ BOOST_LOG_TRIVIAL(fatal) << "Not built with Onnx parser support.";
+ return EXIT_FAILURE;
+#endif
+ }
+ else if (modelFormat.find("tensorflow") != std::string::npos)
+ {
+#if defined(ARMNN_TF_PARSER)
+ return MainImpl<armnnTfParser::ITfParser, float>(modelPath.c_str(), isModelBinary, computeDevice,
+ inputName.c_str(), inputTensorShape.get(),
+ inputTensorDataFilePath.c_str(), outputName.c_str(),
+ enableProfiling, subgraphId, runtime);
+#else
+ BOOST_LOG_TRIVIAL(fatal) << "Not built with Tensorflow parser support.";
+ return EXIT_FAILURE;
+#endif
+ }
+ else if(modelFormat.find("tflite") != std::string::npos)
+ {
+#if defined(ARMNN_TF_LITE_PARSER)
+ if (! isModelBinary)
+ {
+ BOOST_LOG_TRIVIAL(fatal) << "Unknown model format: '" << modelFormat << "'. Only 'binary' format supported \
+ for tflite files";
+ return EXIT_FAILURE;
+ }
+ return MainImpl<armnnTfLiteParser::ITfLiteParser, float>(modelPath.c_str(), isModelBinary, computeDevice,
+ inputName.c_str(), inputTensorShape.get(),
+ inputTensorDataFilePath.c_str(), outputName.c_str(),
+ enableProfiling, subgraphId, runtime);
+#else
+ BOOST_LOG_TRIVIAL(fatal) << "Unknown model format: '" << modelFormat <<
+ "'. Please include 'caffe', 'tensorflow', 'tflite' or 'onnx'";
+ return EXIT_FAILURE;
+#endif
+ }
+ else
+ {
+ BOOST_LOG_TRIVIAL(fatal) << "Unknown model format: '" << modelFormat <<
+ "'. Please include 'caffe', 'tensorflow', 'tflite' or 'onnx'";
+ return EXIT_FAILURE;
+ }
+}
+
+int main(int argc, const char* argv[])
+{
+ // Configures logging for both the ARMNN library and this test program.
+#ifdef NDEBUG
+ armnn::LogSeverity level = armnn::LogSeverity::Info;
+#else
+ armnn::LogSeverity level = armnn::LogSeverity::Debug;
+#endif
+ armnn::ConfigureLogging(true, true, level);
+
+ std::string testCasesFile;
+
+ std::string modelFormat = "tensorflow-binary";
+ std::string modelPath = "/usr/share/arm/armnn/models/mobilenet_v1_1.0_224_frozen.pb";
+ std::string inputName = "input";
+ std::string inputTensorShapeStr = "1 224 224 3";
+ std::string inputTensorDataFilePath = "/usr/share/arm/armnn/testvecs/test2.mp4";
+ std::string outputName = "MobilenetV1/Predictions/Reshape_1";
+ std::vector<armnn::BackendId> computeDevices = {armnn::Compute::CpuAcc};
+ // Catch ctrl-c to ensure a clean exit
+ signal(SIGABRT, exit);
+ signal(SIGTERM, exit);
+
+ if (argc == 1)
+ {
+ return RunTest(modelFormat, inputTensorShapeStr, computeDevices,
+ modelPath, inputName, inputTensorDataFilePath, outputName, false, 1000);
+ }
+ else
+ {
+ size_t subgraphId = 0;
+ po::options_description desc("Options");
+ try
+ {
+ desc.add_options()
+ ("help", "Display usage information")
+ ("test-cases,t", po::value(&testCasesFile), "Path to a CSV file containing test cases to run. "
+ "If set, further parameters -- with the exception of compute device and concurrency -- will be ignored, "
+ "as they are expected to be defined in the file for each test in particular.")
+ ("concurrent,n", po::bool_switch()->default_value(false),
+ "Whether or not the test cases should be executed in parallel")
+ ("model-format,f", po::value(&modelFormat),
+ "caffe-binary, caffe-text, onnx-binary, onnx-text, tflite-binary, tensorflow-binary or tensorflow-text.")
+ ("model-path,m", po::value(&modelPath), "Path to model file, e.g. .caffemodel, .prototxt,"
+ " .tflite, .onnx")
+ ("compute,c", po::value<std::vector<armnn::BackendId>>()->multitoken(),
+ "The preferred order of devices to run layers on by default. Possible choices: CpuAcc, CpuRef, GpuAcc")
+ ("input-name,i", po::value(&inputName), "Identifier of the input tensor in the network.")
+ ("input-tensor-shape,s", po::value(&inputTensorShapeStr),
+ "The shape of the input tensor in the network as a flat array of integers separated by whitespace. "
+ "This parameter is optional, depending on the network.")
+ ("input-tensor-data,d", po::value(&inputTensorDataFilePath),
+ "Input test file name. It can be image/video clip file name or use 'camera_live_input' to select camera input.")
+ ("output-name,o", po::value(&outputName), "Identifier of the output tensor in the network.")
+ ("event-based-profiling,e", po::bool_switch()->default_value(false),
+ "Enables built in profiler. If unset, defaults to off.")
+ ("number_frame", po::value<size_t>(&subgraphId)->default_value(1), "Number of frames to process.");
+ }
+ catch (const std::exception& e)
+ {
+ // Coverity points out that default_value(...) can throw a bad_lexical_cast,
+ // and that desc.add_options() can throw boost::io::too_few_args.
+ // They really won't in any of these cases.
+ BOOST_ASSERT_MSG(false, "Caught unexpected exception");
+ BOOST_LOG_TRIVIAL(fatal) << "Fatal internal error: " << e.what();
+ return EXIT_FAILURE;
+ }
+
+ // Parses the command-line.
+ po::variables_map vm;
+ try
+ {
+ po::store(po::parse_command_line(argc, argv, desc), vm);
+ po::notify(vm);
+ }
+ catch (const po::error& e)
+ {
+ std::cerr << e.what() << std::endl << std::endl;
+ std::cerr << desc << std::endl;
+ return EXIT_FAILURE;
+ }
+
+ // Run single test
+ // Get the preferred order of compute devices.
+ std::vector<armnn::BackendId> computeDevices = vm["compute"].as<std::vector<armnn::BackendId>>();
+ bool enableProfiling = vm["event-based-profiling"].as<bool>();
+
+ // Remove duplicates from the list of compute devices.
+ RemoveDuplicateDevices(computeDevices);
+
+ return RunTest(modelFormat, inputTensorShapeStr, computeDevices,
+ modelPath, inputName, inputTensorDataFilePath, outputName, enableProfiling, subgraphId);
+ }
+}
+
--
1.9.1

View File

@ -0,0 +1,60 @@
From ee152f3b68f91c5fff336306d011becdcf3a6b17 Mon Sep 17 00:00:00 2001
From: Djordje Senicic <x0157990@ti.com>
Date: Sat, 24 Aug 2019 17:58:38 -0400
Subject: [PATCH] command line options for video port selection
- Add command line selection <0|1|2|3> of video port used for live camera input
Upstream-Status: Inappropriate [TI only test code]
Signed-off-by: Djordje Senicic <x0157990@ti.com>
---
tests/ArmnnExamples/ArmnnExamples.cpp | 23 ++++++++++++++++++++---
1 file changed, 20 insertions(+), 3 deletions(-)
diff --git a/tests/ArmnnExamples/ArmnnExamples.cpp b/tests/ArmnnExamples/ArmnnExamples.cpp
index 638fc145..d1526539 100644
--- a/tests/ArmnnExamples/ArmnnExamples.cpp
+++ b/tests/ArmnnExamples/ArmnnExamples.cpp
@@ -316,10 +316,27 @@ int MainImpl(const char* modelPath,
int input_type = INPUT_IMAGE;
std::string filename = inputTensorDataFilePath;
- size_t i = filename.rfind("camera_live_input", filename.length());
+ size_t i = filename.rfind("camera_live_input", filename.length());
if (i != string::npos)
{
- cap = VideoCapture(1);
+ int vport = 1;
+ size_t loc_i = filename.rfind("camera_live_input0", filename.length());
+ if(loc_i != string::npos) vport = 0;
+ else {
+ loc_i = filename.rfind("camera_live_input1", filename.length());
+ if(loc_i != string::npos) vport = 1;
+ else {
+ loc_i = filename.rfind("camera_live_input2", filename.length());
+ if(loc_i != string::npos) vport = 2;
+ else {
+ loc_i = filename.rfind("camera_live_input3", filename.length());
+ if(loc_i != string::npos) vport = 3;
+ else std::cout << "Setting ports beyond 3 not supported - using default!" << std::endl;
+ }
+ }
+ }
+ std::cout << "Using video" << vport << std::endl;
+ cap = VideoCapture(vport);
namedWindow("ARMNN MobileNet Example", WINDOW_AUTOSIZE | CV_GUI_NORMAL);
input_type = INPUT_CAMERA; //camera input
}
@@ -609,7 +626,7 @@ int main(int argc, const char* argv[])
"The shape of the input tensor in the network as a flat array of integers separated by whitespace. "
"This parameter is optional, depending on the network.")
("input-tensor-data,d", po::value(&inputTensorDataFilePath),
- "Input test file name. It can be image/video clip file name or use 'camera_live_input' to select camera input.")
+ "Input test file name. It can be image/video clip file name or 'camera_live_input or camera_live_input<0|1|2|3>' to select camera input.")
("output-name,o", po::value(&outputName), "Identifier of the output tensor in the network.")
("event-based-profiling,e", po::bool_switch()->default_value(false),
"Enables built in profiler. If unset, defaults to off.")
--
2.17.1

View File

@ -0,0 +1,28 @@
From a3e266a2de7c45116428f4e21645a2657534191b Mon Sep 17 00:00:00 2001
From: Djordje Senicic <x0157990@ti.com>
Date: Mon, 26 Aug 2019 03:51:39 -0400
Subject: [PATCH] armnnexamples: update for 19.08 modifications
Upstream-Status: Inappropriate [TI only test code]
Signed-off-by: Djordje Senicic <x0157990@ti.com>
---
tests/ArmnnExamples/ArmnnExamples.cpp | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/tests/ArmnnExamples/ArmnnExamples.cpp b/tests/ArmnnExamples/ArmnnExamples.cpp
index d1526539..c10a4fc0 100644
--- a/tests/ArmnnExamples/ArmnnExamples.cpp
+++ b/tests/ArmnnExamples/ArmnnExamples.cpp
@@ -310,7 +310,7 @@ int MainImpl(const char* modelPath,
params.m_OutputBindings = { outputName };
//params.m_EnableProfiling = enableProfiling;
params.m_SubgraphId = 0;
- InferenceModel<TParser, TDataType> model(params, enableProfiling, runtime);
+ InferenceModel<TParser, TDataType> model(params, enableProfiling, "", runtime);
VideoCapture cap;
int input_type = INPUT_IMAGE;
--
2.17.1

10
_constraints Normal file
View File

@ -0,0 +1,10 @@
<constraints>
<hardware>
<memory>
<size unit="G">6</size>
</memory>
<disk>
<size unit="G">4</size>
</disk>
</hardware>
</constraints>

3
_multibuild Normal file
View File

@ -0,0 +1,3 @@
<multibuild>
<flavor>opencl</flavor>
</multibuild>

3
armnn-24.05.tar.gz Normal file
View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:b06c0b03d1447fb1c9222a8dc1f7fc0aac8dbd9defdf67087de2d305b1dbd323
size 28629675

3
armnn-24.08.tar.gz Normal file
View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:6af3453b6a0238f9734bbeb13e006f07f7a7a459a978a21423555819415fa328
size 28695424

18
armnn-fix-armv7.patch Normal file
View File

@ -0,0 +1,18 @@
--- armnn-24.08/include/armnn/Numpy.hpp.orig 2024-09-06 11:05:16.800066800 +0200
+++ armnn-24.08/include/armnn/Numpy.hpp 2024-09-06 11:05:58.717592900 +0200
@@ -157,7 +157,7 @@ namespace armnnNumpy
inline void CreateHeader(std::ifstream& ifStream, HeaderInfo& headerInfo, Header& header)
{
char stringBuffer[headerInfo.m_HeaderLen];
- ifStream.read(stringBuffer, headerInfo.m_HeaderLen);
+ ifStream.read(stringBuffer, static_cast<std::streamsize>(headerInfo.m_HeaderLen));
header.m_HeaderString = std::string(stringBuffer, headerInfo.m_HeaderLen);
// Remove new line character at the end of the string
@@ -403,4 +403,4 @@ namespace armnnNumpy
}
}
-#endif // NUMPY_HPP
\ No newline at end of file
+#endif // NUMPY_HPP

View File

@ -0,0 +1,19 @@
--- armnn-19.08.orig/tests/CMakeLists.txt 2019-10-17 09:11:02.836949176 +0200
+++ armnn-19.08/tests/CMakeLists.txt 2019-10-17 09:10:50.384869262 +0200
@@ -1,6 +1,3 @@
-find_package( OpenCV REQUIRED )
-include_directories( ${OpenCV_INCLUDE_DIRS} )
-
# UnitTests
include(CheckIncludeFiles)
@@ -368,6 +365,9 @@ if(BUILD_ARMNN_QUANTIZER)
endif()
if (BUILD_ARMNN_EXAMPLES)
+ find_package( OpenCV REQUIRED )
+ include_directories( ${OpenCV_INCLUDE_DIRS} )
+
set(ArmnnExamples_sources
ArmnnExamples/ArmnnExamples.cpp)

4
armnn-rpmlintrc Normal file
View File

@ -0,0 +1,4 @@
# This line is mandatory to access the configuration functions
from Config import *
addFilter(".*opencl.* shlib-policy-name-error")

597
armnn.changes Normal file
View File

@ -0,0 +1,597 @@
-------------------------------------------------------------------
Fri Sep 6 13:29:47 UTC 2024 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Add patch to fix build on armv7:
* armnn-fix-armv7.patch
-------------------------------------------------------------------
Tue Sep 3 09:59:35 UTC 2024 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Update to 24.08:
* Changelog: https://github.com/ARM-software/armnn/releases/tag/v24.08
-------------------------------------------------------------------
Tue Jun 18 07:40:01 UTC 2024 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Update to 24.05:
* Changelog: https://github.com/ARM-software/armnn/releases/tag/v24.05
-------------------------------------------------------------------
Wed Apr 3 09:21:48 UTC 2024 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Update to 24.02:
* Changelog: https://github.com/ARM-software/armnn/releases/tag/v24.02
-------------------------------------------------------------------
Tue Feb 20 10:17:12 UTC 2024 - Dominique Leuenberger <dimstar@opensuse.org>
- Use %patch -P N instead of deprecated %patchN.
-------------------------------------------------------------------
Thu Dec 7 09:09:13 UTC 2023 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Update to 23.11:
* Changelog: https://github.com/ARM-software/armnn/releases/tag/v23.11
-------------------------------------------------------------------
Tue Sep 5 14:29:53 UTC 2023 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Update to 23.08:
* Changelog: https://github.com/ARM-software/armnn/releases/tag/v23.08
-------------------------------------------------------------------
Mon Jun 12 12:28:32 UTC 2023 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Update to 23.05:
* Changelog: https://github.com/ARM-software/armnn/releases/tag/v23.05
- Drop upstream patches:
* armnn-fix-gcc13.patch
* armnn-fix-gcc13-2.patch
* 4cf40d7.diff
-------------------------------------------------------------------
Thu Apr 20 12:48:18 UTC 2023 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Add additionnal gcc13 fixes:
* 4cf40d7.diff
* armnn-fix-gcc13-2.patch
-------------------------------------------------------------------
Wed Apr 5 06:06:27 UTC 2023 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Update armnn-fix-gcc13.patch with upstream patch
-------------------------------------------------------------------
Tue Mar 21 10:45:26 UTC 2023 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Add patch to fix build with GCC13:
* armnn-fix-gcc13.patch
-------------------------------------------------------------------
Wed Mar 15 09:03:42 UTC 2023 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Update to 23.02:
* Changelog: https://github.com/ARM-software/armnn/releases/tag/v23.02
- Drop upstream patches:
* armnn-gh711.patch
* armnn-281e97b.patch
-------------------------------------------------------------------
Wed Dec 14 15:41:22 UTC 2022 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- tensorflow-lite >= 2.10 is only avaialble on Tumbleweed
-------------------------------------------------------------------
Wed Dec 14 15:38:39 UTC 2022 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Add patch to use static libraries not object libraries for
support library:
* armnn-281e97b.patch
-------------------------------------------------------------------
Mon Nov 28 07:40:40 UTC 2022 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Update to 22.11:
* Changelog: https://github.com/ARM-software/armnn/releases/tag/v22.11
* Add libarmnnTestUtils
- Add patch to fix build:
* armnn-gh711.patch
-------------------------------------------------------------------
Tue Aug 30 09:19:52 UTC 2022 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Update to 22.08:
* Changelog: https://github.com/ARM-software/armnn/releases/tag/v22.08
- Drop upstream patch:
* armnn-fix-gcc12.patch
-------------------------------------------------------------------
Tue May 31 13:31:55 UTC 2022 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Update to 22.05:
* Changelog: https://github.com/ARM-software/armnn/releases/tag/v22.05
- Add patch to fix build with GCC12 and new flatbuffers:
* armnn-fix-gcc12.patch
-------------------------------------------------------------------
Tue Mar 15 13:06:29 UTC 2022 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Update to 22.02:
* Changelog: https://github.com/ARM-software/armnn/releases/tag/v22.02
* Add libarmnnTestUtils
-------------------------------------------------------------------
Wed Dec 1 10:03:31 UTC 2021 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Update to 21.11:
* Changelog: https://github.com/ARM-software/armnn/releases/tag/v21.11
* Main changes:
- New capabilities and improve performance
- ABI/API Changes
The following front-end API changes have occurred during the
implementation of 21.11 that users should be aware of before
upgrading. Due to these changes we have bumped our ARMNN_VERSION
to 27.0.0, the Delegate to 25.0.0 and also bumping
our Parsers to 24.3.0 following Semantic Versioning guidelines.
- Drop upstream patches:
* 96beb97.diff
* febc20f.diff
* e118e04.diff
* 0011-update-doctest-for-glibc2.34.patch
-------------------------------------------------------------------
Mon Oct 25 07:21:27 UTC 2021 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Add upstream patch to fix stringop-overread error:
* e118e04.diff
-------------------------------------------------------------------
Thu Oct 21 15:24:42 UTC 2021 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Add upstream patch to fix uninitialized var error:
* febc20f.diff
- Remove most -Wno-error* flags which are not needed anymore
-------------------------------------------------------------------
Wed Oct 20 08:41:14 UTC 2021 - Atri Bhattacharya <badshah400@gmail.com>
- Add 0011-update-doctest-for-glibc2.34.patch: Update doctest to
version 2.4.6 to allow Arm NN to build with glibc 2.34; patch
taken from upstream commits 13d2e0d and 4ec6d42and rebased for
current version.
-------------------------------------------------------------------
Thu Sep 9 08:04:50 UTC 2021 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Update to 21.08:
* Changelog: https://github.com/ARM-software/armnn/releases/tag/v21.08
* Main changes:
- new capabilities and improve performance:
* Added the ability to import protected DMA Buffers and
allow Arm NN to run inferences that are in Protected GPU Memory.
As well as providing Custom Memory Allocator which supports
importing malloc, Dma_buf and protected Dma buffers.
* Users with multi core NPUs has been given the ability to pin
inferences to selected cores giving them the ability to balance
parallel workloads across the NPU and increase throughput.
* Boost has been completely removed from the code base making
Arm NN easier to integrate into other software stacks.
* Added support for non-constant weights and biases on
FullyConnected which lay the groundwork for supporting more models.
* More operators supported on Arm NN, TfLite Parser, TfLite
Delegate and Android NNAPI driver.
- Drop upstream patch:
* armnn-fix-include.patch
-------------------------------------------------------------------
Fri Jul 16 08:23:43 UTC 2021 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Add '-Wno-error=stringop-overread' to workaround build error
with GCC11 with openCL enabled
-------------------------------------------------------------------
Tue Jul 13 08:07:14 UTC 2021 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Add '-Wno-error=uninitialized -Wno-error=array-bounds' to
workaround build issues with GCC11 - https://github.com/ARM-software/armnn/issues/548
-------------------------------------------------------------------
Tue May 25 06:49:01 UTC 2021 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Fix libarmnnOnnxParser version
-------------------------------------------------------------------
Fri May 21 06:55:48 UTC 2021 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Update to 21.05:
* Changelog: https://github.com/ARM-software/armnn/releases/tag/v21.05
* Main changes:
- new capabilities to allow users attain higher performance by:
* Making the Arm NN Core thread safe opening the possibility of
running multiple inferences on the same model in parallel
software threads.
* Allowing graphs on the GPU backend import their input and
output buffers either from correctly aligned main memory or
from kernel memory exposed as a dma_buf, thus reducing memory
usage and saving the time involved in copying data into and
out of the GPU memory space.
- In addition to this, support was added to allow the MobileBERT
network to be parsed and run.
- Finally three deprecated components: the Tensorflow Parser,
the Caffe Parser and the Arm NN Quantizer tool, were removed
- Add patch to fix include path:
* armnn-fix-include.patch
- Disable armnn-extratests as it fails to build with current version
-------------------------------------------------------------------
Mon Mar 29 12:17:08 UTC 2021 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Update to 21.02:
* Changelog: https://github.com/ARM-software/armnn/releases/tag/v21.02
- Drop upstream patch:
* c5c40fe.diff
-------------------------------------------------------------------
Mon Feb 15 09:48:06 UTC 2021 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Fix instalaltion of cmake files with an upstream patch:
* c5c40fe.diff
-------------------------------------------------------------------
Mon Jan 25 08:21:39 UTC 2021 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Backport patch to fix tflite parser when built against
tensorflow 2.4:
* 96beb97.diff
-------------------------------------------------------------------
Wed Dec 9 14:33:19 UTC 2020 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Update to 20.11:
* Changelog: https://github.com/ARM-software/armnn/releases/tag/v20.11
- Refresh patch to handle boost::variant to mapbox::util::variant update:
* 0006-armnn-mobilenet-test-example.patch
-------------------------------------------------------------------
Fri Sep 4 16:07:09 UTC 2020 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Add python support, disabled for now as it does not install
files atm
-------------------------------------------------------------------
Fri Sep 4 14:56:36 UTC 2020 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Package libtimelineDecoderJson
-------------------------------------------------------------------
Thu Sep 3 11:18:40 UTC 2020 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Update to 20.08:
* Changelog: https://github.com/ARM-software/armnn/releases/tag/v20.08
- Refresh patch:
* 0005-add-armnn-mobilenet-test-example.patch
- Drop upstream patch:
* armnn-fix-catch.patch
- Disable ONNX on Tumbleweed since there is a compatibility issue
with ONNX 1.7.0, see: https://github.com/ARM-software/armnn/issues/419
-------------------------------------------------------------------
Wed Jun 17 07:19:10 UTC 2020 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Build only where ComputeLibrary is built:
aarch64 armv7 and x86_64
-------------------------------------------------------------------
Thu Jun 4 09:51:23 UTC 2020 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Unify Leap/SLE options
- Update to 20.05:
* Changelog: https://github.com/ARM-software/armnn/releases/tag/v20.05
- Drop upstream patch:
* armnn-enable-use-of-arm-compute-shared-library.patch
- Refresh patch:
* 0003-add-more-test-command-line-arguments.patch
- Add new patch to fix build with gcc10:
* armnn-fix-catch.patch
- Package new libtimelineDecode and libarmnnBasePipeServer
-------------------------------------------------------------------
Thu May 28 15:10:11 UTC 2020 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Apply boost link fixes only for armnn_extra_tests
- Apply patches for armnn_extra_tests only when
armnn_extra_tests is built
-------------------------------------------------------------------
Tue Mar 31 15:23:29 UTC 2020 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Disable RPATH to fix build on Leap15.2/SLE15SP2
-------------------------------------------------------------------
Tue Mar 24 14:01:29 UTC 2020 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Add '-Wno-error=deprecated-declarations' to fix build with latest
protobuf 3.11.x (Tumbleweed)
https://github.com/ARM-software/armnn/issues/366
- Use python-onnx package instead of python-onnx-devel, since it
is now a single package.
-------------------------------------------------------------------
Wed Mar 11 08:41:20 UTC 2020 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Fix build on Leap 15.2
-------------------------------------------------------------------
Mon Mar 9 17:47:42 UTC 2020 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Update to 20.02:
* Changelog: https://github.com/ARM-software/armnn/releases/tag/v20.02
* Drop upstream patch:
- armnn-fix_include.patch
* Refresh patch:
- 0006-armnn-mobilenet-test-example.patch
* Replace downstream patch:
- 0007-enable-use-of-arm-compute-shared-library.patch
by upstream patch:
- armnn-enable-use-of-arm-compute-shared-library.patch
* Add 'vim' as BuildRequires since it needs 'xxd' tool
- Use TensorFlow 2 also on Leap 15.2 / SLE15SP2
-------------------------------------------------------------------
Mon Feb 10 13:01:53 UTC 2020 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Use Tensorflow 2.x only for Tumbleweed, as TensorFlow2 is not
available in Leap 15.2
- Skip some tests if TensorFlow < 1.14 is used
-------------------------------------------------------------------
Tue Jan 28 12:33:19 UTC 2020 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Enable ONNX on Leap 15.2
-------------------------------------------------------------------
Tue Jan 28 09:48:55 UTC 2020 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Use tensorflow2 as armnn 19.11 now requires TensorFlow >= 1.14
-------------------------------------------------------------------
Mon Jan 20 15:21:09 UTC 2020 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Disable ArmnnConverter and ArmnnQuantizer packaging by default
as it requires libQuantizer.so to be packaged, which is not yet
-------------------------------------------------------------------
Tue Jan 14 13:07:58 UTC 2020 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Package ArmnnConverter and ArmnnQuantizer
-------------------------------------------------------------------
Tue Jan 14 11:59:14 UTC 2020 - Dominique Leuenberger <dimstar@opensuse.org>
- ExcludeArch %ix86: Parts of the build deps (tensorflow/bazel) are
not supported on ix86.
-------------------------------------------------------------------
Fri Dec 6 13:45:57 UTC 2019 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Update to 19.11:
* Changelog: https://github.com/ARM-software/armnn/releases/tag/v19.11
- Remove upstreamed patches:
* armnn-generate-versioned-library.patch
* armnn-fix_boost.patch
* armnn-fix_arm32_dep.patch
* armnn-fix_arm32.patch
- Add patch to fix include:
* armnn-fix_include.patch
-------------------------------------------------------------------
Mon Nov 25 14:16:29 UTC 2019 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- tensorflow-devel package now includes *.pb.* files, so
remove TensorFlow parser build workaround:
* armnn-fix_tensorflow_link.patch
-------------------------------------------------------------------
Mon Oct 28 15:38:27 UTC 2019 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Add a conflict between armnn-extratests and armnn-opencl-extratests
-------------------------------------------------------------------
Mon Oct 28 13:06:56 UTC 2019 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Add a conflict between armnn-devel and armnn-opencl-devel
-------------------------------------------------------------------
Mon Oct 28 09:56:16 UTC 2019 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Enable ONNX for Tumbleweed
-------------------------------------------------------------------
Thu Oct 17 06:57:00 UTC 2019 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Add downstream ArmnnExamples in a separate '-extratests' package
with patches:
* 0003-add-more-test-command-line-arguments.patch
* 0005-add-armnn-mobilenet-test-example.patch
* 0006-armnn-mobilenet-test-example.patch
* 0007-enable-use-of-arm-compute-shared-library.patch
* 0009-command-line-options-for-video-port-selection.patch
* 0010-armnnexamples-update-for-19.08-modifications.patch
- Fix build when extratests are disabled
* armnn-fix_find_opencv.patch
-------------------------------------------------------------------
Mon Oct 7 13:00:59 UTC 2019 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Replace patch with an upstreamable version:
* armnn-generate-versioned-library.patch
-------------------------------------------------------------------
Tue Oct 1 19:04:50 UTC 2019 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Add ONNX Parser support (disabled by default as there is no
official ONNX package yet)
-------------------------------------------------------------------
Tue Oct 1 14:30:13 UTC 2019 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Re-enable Tensorflow on Tumbleweed as boo#1151150 is now fixed
-------------------------------------------------------------------
Thu Sep 19 07:21:48 UTC 2019 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Update _constraints
-------------------------------------------------------------------
Wed Sep 18 12:26:55 UTC 2019 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Enable openCL only on a separate flavor as runtime requires
libOpenCL.so, libGLES_mali.so, or libmali.so
-------------------------------------------------------------------
Wed Sep 18 11:53:30 UTC 2019 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Enable openCL support
- Disable UnitTests when openCL support is enabled as it fails
on OBS workers
-------------------------------------------------------------------
Wed Sep 18 09:57:39 UTC 2019 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Add patches to make UnitTests to pass on armv7:
* armnn-fix_arm32.patch
* armnn-fix_arm32_dep.patch
-------------------------------------------------------------------
Thu Sep 5 11:22:41 UTC 2019 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Disable TensorFlow as on 15.1 only x86_64 succeed and on TW we
have incompatibility with protobuf (3.8.0 in TW and
Tensorflow uses 3.6.1 internally) - boo#1151150
-------------------------------------------------------------------
Thu Sep 5 07:25:16 UTC 2019 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Update to 19.08:
- Changelog: https://github.com/ARM-software/armnn/releases/tag/v19.08
- Remove upstreamed patch:
* armnn-fix_quantizer_link.patch
* armnn-fix_caffe_parser_with_new_protobuf.patch
- Refresh patch:
* armnn-generate-versioned-library.patch
- Drop patches not needed anymore:
* armnn-remove_broken_std_move.patch
* armnn-fix_build_with_gcc9.patch
-------------------------------------------------------------------
Wed Sep 4 16:15:58 UTC 2019 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Disable LTO until lto link is fixed
https://github.com/ARM-software/armnn/issues/251
-------------------------------------------------------------------
Tue Jun 18 11:54:48 UTC 2019 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Fix build in Tumbleweed, with latest protobuf:
* armnn-fix_caffe_parser_with_new_protobuf.patch
-------------------------------------------------------------------
Tue Jun 11 14:17:34 UTC 2019 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Enable Tensorflow parser
- Fix link with Tensorflow:
* armnn-fix_tensorflow_link.patch
-------------------------------------------------------------------
Wed Jun 5 09:07:12 UTC 2019 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Build and package libarmnnTfLiteParser
- Fix libarmnnQuantizer build with:
* armnn-fix_quantizer_link.patch
-------------------------------------------------------------------
Tue Jun 4 09:22:24 UTC 2019 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Add _constraints to avoid OOM errors
-------------------------------------------------------------------
Mon Jun 3 11:40:47 UTC 2019 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Update to 19.05:
- Changelog: https://github.com/ARM-software/armnn/releases/tag/v19.05
- Remove upstreamed patch:
* armnn-fix_stb_include.patch
- Rebase patch:
* armnn-generate-versioned-library.patch
- Update patch:
* armnn-remove_broken_std_move.patch
-------------------------------------------------------------------
Mon Jun 3 09:15:25 UTC 2019 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Fix build on Tumbleweed with:
* armnn-fix_build_with_gcc9.patch
-------------------------------------------------------------------
Wed May 29 15:19:15 UTC 2019 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Fix build on Tumbleweed with:
* armnn-remove_broken_std_move.patch
-------------------------------------------------------------------
Wed May 29 08:12:43 UTC 2019 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Call ldconfig in post/postun for libarmnnCaffeParser
-------------------------------------------------------------------
Mon May 27 05:42:06 UTC 2019 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Enable and fix Caffe parser
- Use %cmake_build macro
-------------------------------------------------------------------
Fri Apr 19 10:11:29 UTC 2019 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Add compute_cl option, disabled by default since check fails as
no openCL are enabled in OBS
-------------------------------------------------------------------
Thu Apr 11 09:35:54 UTC 2019 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Split libarmnn and libarmnnSerializer to separate packages
-------------------------------------------------------------------
Thu Apr 11 07:38:23 UTC 2019 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Add patch to have versionned libs:
* armnn-generate-versioned-library.patch
- Package versionned libs
-------------------------------------------------------------------
Tue Apr 9 16:18:55 UTC 2019 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Enable NEON backend on AArch64
- Add patch to enable use of shared lib for ComputeLibrary:
* 0007-enable-use-of-arm-compute-shared-library.patch
-------------------------------------------------------------------
Tue Mar 26 14:29:39 UTC 2019 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Update to 19.02
- Remove upstreamed patch:
* armnn-fix_catching_polymorphic_type.patch
-------------------------------------------------------------------
Thu Jan 17 12:51:41 UTC 2019 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Update to 18.11
- Add patch to fix build:
* armnn-fix_catching_polymorphic_type.patch
* armnn-fix_boost.patch
* armnn-fix_stb_include.patch
-------------------------------------------------------------------
Thu Sep 13 12:51:53 UTC 2018 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Initial version 18.08

623
armnn.spec Normal file
View File

@ -0,0 +1,623 @@
#
# spec file for package armnn
#
# Copyright (c) 2024 SUSE LLC
#
# All modifications and additions to the file contributed by third parties
# remain the property of their copyright owners, unless otherwise agreed
# upon. The license for this file, and modifications and additions to the
# file, is the same license as for the pristine package itself (unless the
# license for the pristine package is not an Open Source License, in which
# case the license is the MIT License). An "Open Source License" is a
# license that conforms to the Open Source Definition (Version 1.9)
# published by the Open Source Initiative.
# Please submit bugfixes or comments via https://bugs.opensuse.org/
#
# Disable LTO until UnitTests passes with LTO enabled - https://github.com/ARM-software/armnn/issues/623
%define _lto_cflags %{nil}
# Disable Python binding for now
%bcond_with PyArmnn
%define target @BUILD_FLAVOR@%{nil}
%if "%{target}" != ""
%define package_suffix -%{target}
%endif
# Compute library has neon enabled for aarch64 only
%ifarch aarch64
%bcond_without compute_neon
%else
%bcond_with compute_neon
%endif
%if "%{target}" == "opencl"
%bcond_without compute_cl
%else
%bcond_with compute_cl
%endif
# stb-devel is available on Leap 15.1+
%if 0%{?suse_version} > 1500 || ( 0%{?sle_version} > 150000 && 0%{?is_opensuse} )
%bcond_without armnn_tests
%else
%bcond_with armnn_tests
%endif
# Extra tests require opencv(3)-devel, but it is broken for Leap 15.1 - boo#1154091
%if 0%{?suse_version} > 1500 || 0%{?sle_version} >= 150200
# FIXME: disabled for now, as it fails since version 21.05
%bcond_with armnn_extra_tests
%else
%bcond_with armnn_extra_tests
%endif
# flatbuffers-devel is available on Leap 15.2+/SLE15SP2+
# But tensorflow-lite >= 2.10 is only avaialble on Tumbleweed
%if 0%{?suse_version} > 1500
%bcond_without armnn_flatbuffers
%else
%bcond_with armnn_flatbuffers
%endif
# ONNX is available on Leap 15.2+/SLE15SP2+, but there is a compatibility issue
# with ONNX 1.7.0 in Tumbleweed - https://github.com/ARM-software/armnn/issues/419
%if 0%{?sle_version} >= 150200
%bcond_without armnn_onnx
%else
%bcond_with armnn_onnx
%endif
%define version_major 24
%define version_minor 08
%define version_lib 33
%define version_lib_testutils 3
%define version_lib_tfliteparser 24
%define version_lib_onnxparser 24
Name: armnn%{?package_suffix}
Version: %{version_major}.%{version_minor}
Release: 0
Summary: Arm NN SDK enables machine learning workloads on power-efficient devices
License: MIT
Group: Development/Libraries/Other
URL: https://developer.arm.com/products/processors/machine-learning/arm-nn
Source0: https://github.com/ARM-software/armnn/archive/v%{version}.tar.gz#/armnn-%{version}.tar.gz
Source1: armnn-rpmlintrc
# PATCH-FIX-UPSTREAM - https://github.com/ARM-software/armnn/issues/786
Patch1: armnn-fix-armv7.patch
# PATCHES to add downstream ArmnnExamples binary - https://layers.openembedded.org/layerindex/recipe/87610/
Patch200: 0003-add-more-test-command-line-arguments.patch
Patch201: 0005-add-armnn-mobilenet-test-example.patch
Patch202: 0006-armnn-mobilenet-test-example.patch
Patch203: 0009-command-line-options-for-video-port-selection.patch
Patch204: 0010-armnnexamples-update-for-19.08-modifications.patch
Patch205: armnn-fix_find_opencv.patch
BuildRequires: ComputeLibrary-devel >= %{version_major}.%{version_minor}
BuildRequires: cmake >= 3.22
BuildRequires: gcc-c++
BuildRequires: protobuf-devel
BuildRequires: python-rpm-macros
BuildRequires: valgrind-devel
BuildRequires: vim
# Make armnn-opencl pulls lib*-opencl, and armnn pulls non opencl libs
Requires: libarmnn%{version_lib}%{?package_suffix} = %{version}
ExcludeArch: %ix86
%if 0%{?suse_version} < 1330
BuildRequires: boost-devel >= 1.59
%else
BuildRequires: libboost_filesystem-devel >= 1.59
BuildRequires: libboost_program_options-devel >= 1.59
BuildRequires: libboost_system-devel >= 1.59
BuildRequires: libboost_test-devel >= 1.59
%if %{with armnn_extra_tests}
BuildRequires: libboost_log-devel >= 1.59
BuildRequires: libboost_thread-devel >= 1.59
%endif
%endif
%if %{with armnn_flatbuffers}
BuildRequires: flatbuffers-devel
%if 0%{?suse_version} > 1550
BuildRequires: tensorflow-lite-devel >= 2.10
%else
BuildRequires: tensorflow2-lite-devel >= 2.10
%endif
%endif
%if %{with compute_cl}
# Mesa-libOpenCl is required for tests
BuildRequires: Mesa-libOpenCL
BuildRequires: ocl-icd-devel
BuildRequires: opencl-cpp-headers
BuildRequires: opencl-headers
%endif
%if %{with armnn_extra_tests}
%if 0%{?suse_version} > 1500
BuildRequires: opencv3-devel
%else
BuildRequires: opencv-devel
%endif
%endif
%if %{with armnn_onnx}
BuildRequires: python3-onnx
%endif
%if %{with armnn_tests}
BuildRequires: stb-devel
%endif
%if %{with PyArmnn}
BuildRequires: python3-devel
BuildRequires: python3-wheel
BuildRequires: swig >= 4
%endif
%if %{with compute_cl}
Recommends: Mesa-libOpenCL
%endif
%if %{with armnn_flatbuffers}
Requires: libarmnnSerializer%{version_lib}%{?package_suffix} = %{version}
Requires: libarmnnTfLiteParser%{version_lib_tfliteparser}%{?package_suffix} = %{version}
%endif
%if %{with armnn_onnx}
Requires: libarmnnOnnxParser%{version_lib_onnxparser}%{?package_suffix} = %{version}
%endif
# Make sure we do not install both openCL and non-openCL (CPU only) versions.
%if "%{target}" == "opencl"
Conflicts: armnn
%else
Conflicts: armnn-opencl
%endif
ExclusiveArch: aarch64 armv7l armv7hl x86_64
%description
Arm NN is an inference engine for CPUs, GPUs and NPUs.
It bridges the gap between existing NN frameworks and the underlying IP.
It enables efficient translation of existing neural network frameworks,
such as TensorFlow Lite, allowing them to run efficiently without
modification across Arm Cortex CPUs and Arm Mali GPUs.
%package devel
Summary: Development headers and libraries for armnn
# Make sure we do not install both openCL and non-openCL (CPU only) versions.
Group: Development/Libraries/C and C++
Requires: %{name} = %{version}
Requires: libarmnn%{version_lib}%{?package_suffix} = %{version}
Requires: libarmnnBasePipeServer%{version_lib}%{?package_suffix} = %{version}
Requires: libarmnnTestUtils%{version_lib_testutils}%{?package_suffix}
Requires: libtimelineDecoder%{version_lib}%{?package_suffix} = %{version}
Requires: libtimelineDecoderJson%{version_lib}%{?package_suffix} = %{version}
# Make sure we do not install both openCL and non-openCL (CPU only) versions.
%if "%{target}" == "opencl"
Conflicts: armnn-devel
%else
Conflicts: armnn-opencl-devel
%endif
%if %{with armnn_flatbuffers}
Requires: libarmnnSerializer%{version_lib}%{?package_suffix} = %{version}
Requires: libarmnnTfLiteParser%{version_lib_tfliteparser}%{?package_suffix} = %{version}
%endif
%if %{with armnn_onnx}
Requires: libarmnnOnnxParser%{version_lib_onnxparser}%{?package_suffix} = %{version}
%endif
%description devel
Arm NN is an inference engine for CPUs, GPUs and NPUs.
It bridges the gap between existing NN frameworks and the underlying IP.
It enables efficient translation of existing neural network frameworks,
such as TensorFlow Lite, allowing them to run efficiently without
modification across Arm Cortex CPUs and Arm Mali GPUs.
This package contains the development libraries and headers for armnn.
%if %{with armnn_extra_tests}
%package -n %{name}-extratests
Summary: Additionnal downstream tests for Arm NN
# Make sure we do not install both openCL and non-openCL (CPU only) versions.
Group: Development/Libraries/C and C++
Requires: %{name}
# Make sure we do not install both openCL and non-openCL (CPU only) versions.
%if "%{target}" == "opencl"
Conflicts: armnn-extratests
%else
Conflicts: armnn-opencl-extratests
%endif
%description -n %{name}-extratests
Arm NN is an inference engine for CPUs, GPUs and NPUs.
It bridges the gap between existing NN frameworks and the underlying IP.
It enables efficient translation of existing neural network frameworks,
such as TensorFlow Lite, allowing them to run efficiently without
modification across Arm Cortex CPUs and Arm Mali GPUs.
This package contains additionnal downstream tests for armnn.
%endif
%package -n libarmnn%{version_lib}%{?package_suffix}
Summary: libarmnn from armnn
Group: Development/Libraries/C and C++
%if "%{target}" == "opencl"
Conflicts: libarmnn%{version_lib}
%else
Conflicts: libarmnn%{version_lib}-opencl
%endif
%description -n libarmnn%{version_lib}%{?package_suffix}
Arm NN is an inference engine for CPUs, GPUs and NPUs.
It bridges the gap between existing NN frameworks and the underlying IP.
It enables efficient translation of existing neural network frameworks,
such as TensorFlow Lite, allowing them to run efficiently without
modification across Arm Cortex CPUs and Arm Mali GPUs.
This package contains the libarmnn library from armnn.
%package -n libarmnnBasePipeServer%{version_lib}%{?package_suffix}
Summary: libarmnnBasePipeServer from armnn
Group: Development/Libraries/C and C++
%if "%{target}" == "opencl"
Conflicts: libarmnnBasePipeServer%{version_lib}
%else
Conflicts: libarmnnBasePipeServer%{version_lib}-opencl
%endif
%description -n libarmnnBasePipeServer%{version_lib}%{?package_suffix}
Arm NN is an inference engine for CPUs, GPUs and NPUs.
It bridges the gap between existing NN frameworks and the underlying IP.
It enables efficient translation of existing neural network frameworks,
such as TensorFlow Lite, allowing them to run efficiently without
modification across Arm Cortex CPUs and Arm Mali GPUs.
This package contains the libarmnnBasePipeServer library from armnn.
%package -n libarmnnTestUtils%{version_lib_testutils}%{?package_suffix}
Summary: libarmnnTestUtils from armnn
Group: Development/Libraries/C and C++
%if "%{target}" == "opencl"
Conflicts: libarmnnTestUtils%{version_lib_testutils}
%else
Conflicts: libarmnnTestUtils%{version_lib_testutils}-opencl
%endif
%description -n libarmnnTestUtils%{version_lib_testutils}%{?package_suffix}
Arm NN is an inference engine for CPUs, GPUs and NPUs.
It bridges the gap between existing NN frameworks and the underlying IP.
It enables efficient translation of existing neural network frameworks,
such as TensorFlow Lite, allowing them to run efficiently without
modification across Arm Cortex CPUs and Arm Mali GPUs.
This package contains the libarmnnTestUtils library from armnn.
%package -n libtimelineDecoder%{version_lib}%{?package_suffix}
Summary: libtimelineDecoder from armnn
Group: Development/Libraries/C and C++
%if "%{target}" == "opencl"
Conflicts: libtimelineDecoder%{version_lib}
%else
Conflicts: libtimelineDecoder%{version_lib}-opencl
%endif
%description -n libtimelineDecoder%{version_lib}%{?package_suffix}
Arm NN is an inference engine for CPUs, GPUs and NPUs.
It bridges the gap between existing NN frameworks and the underlying IP.
It enables efficient translation of existing neural network frameworks,
such as TensorFlow Lite, allowing them to run efficiently without
modification across Arm Cortex CPUs and Arm Mali GPUs.
This package contains the libtimelineDecoder library from armnn.
%package -n libtimelineDecoderJson%{version_lib}%{?package_suffix}
Summary: libtimelineDecoderJson from armnn
Group: Development/Libraries/C and C++
%if "%{target}" == "opencl"
Conflicts: libtimelineDecoderJson%{version_lib}
%else
Conflicts: libtimelineDecoderJson%{version_lib}-opencl
%endif
%description -n libtimelineDecoderJson%{version_lib}%{?package_suffix}
Arm NN is an inference engine for CPUs, GPUs and NPUs.
It bridges the gap between existing NN frameworks and the underlying IP.
It enables efficient translation of existing neural network frameworks,
such as TensorFlow Lite, allowing them to run efficiently without
modification across Arm Cortex CPUs and Arm Mali GPUs.
This package contains the libtimelineDecoder library from armnn.
%if %{with armnn_flatbuffers}
%package -n libarmnnSerializer%{version_lib}%{?package_suffix}
Summary: libarmnnSerializer from armnn
Group: Development/Libraries/C and C++
%if "%{target}" == "opencl"
Conflicts: libarmnnSerializer%{version_lib}
%else
Conflicts: libarmnnSerializer%{version_lib}-opencl
%endif
%description -n libarmnnSerializer%{version_lib}%{?package_suffix}
Arm NN is an inference engine for CPUs, GPUs and NPUs.
It bridges the gap between existing NN frameworks and the underlying IP.
It enables efficient translation of existing neural network frameworks,
such as TensorFlow Lite, allowing them to run efficiently without
modification across Arm Cortex CPUs and Arm Mali GPUs.
This package contains the libarmnnSerializer library from armnn.
%package -n libarmnnTfLiteParser%{version_lib_tfliteparser}%{?package_suffix}
Summary: libarmnnTfLiteParser from armnn
Group: Development/Libraries/C and C++
%if "%{target}" == "opencl"
Conflicts: libarmnnTfLiteParser%{version_lib_tfliteparser}
%else
Conflicts: libarmnnTfLiteParser%{version_lib_tfliteparser}-opencl
%endif
%description -n libarmnnTfLiteParser%{version_lib_tfliteparser}%{?package_suffix}
Arm NN is an inference engine for CPUs, GPUs and NPUs.
It bridges the gap between existing NN frameworks and the underlying IP.
It enables efficient translation of existing neural network frameworks,
such as TensorFlow Lite, allowing them to run efficiently without
modification across Arm Cortex CPUs and Arm Mali GPUs.
This package contains the libarmnnTfLiteParser library from armnn.
%endif
%if %{with armnn_onnx}
%package -n libarmnnOnnxParser%{version_lib_onnxparser}%{?package_suffix}
Summary: libarmnnOnnxParser from armnn
Group: Development/Libraries/C and C++
%if "%{target}" == "opencl"
Conflicts: libarmnnOnnxParser%{version_lib_onnxparser}
%else
Conflicts: libarmnnOnnxParser%{version_lib_onnxparser}-opencl
%endif
%description -n libarmnnOnnxParser%{version_lib_onnxparser}%{?package_suffix}
Arm NN is an inference engine for CPUs, GPUs and NPUs.
It bridges the gap between existing NN frameworks and the underlying IP.
It enables efficient translation of existing neural network frameworks,
such as TensorFlow Lite, allowing them to run efficiently without
modification across Arm Cortex CPUs and Arm Mali GPUs.
This package contains the libarmnnOnnxParser library from armnn.
%endif
%prep
%setup -q -n armnn-%{version}
%patch -P 1 -p1
%if %{with armnn_extra_tests}
%patch -P 200 -p1
%patch -P 201 -p1
%patch -P 202 -p1
%patch -P 203 -p1
%patch -P 204 -p1
%patch -P 205 -p1
# Add Boost log as downstream extra test requires it
sed -i 's/ find_package(Boost 1.59 REQUIRED COMPONENTS unit_test_framework)/find_package(Boost 1.59 REQUIRED COMPONENTS unit_test_framework filesystem system log program_options)/' ./cmake/GlobalConfig.cmake
%endif
%build
%if %{with armnn_onnx}
mkdir onnx_deps
PROTO=$(find %{_libdir} -name onnx.proto)
protoc $PROTO --proto_path=. --proto_path=%{_includedir} --proto_path=$(dirname $(find %{_libdir} -name onnx)) --cpp_out=./onnx_deps
%endif
%cmake \
-DCMAKE_SKIP_RPATH=True \
-DSHARED_BOOST=1 \
-DCMAKE_CXX_FLAGS:STRING="%{optflags} -pthread -Wno-error=unused-result" \
-DBOOST_LIBRARYDIR=%{_libdir} \
%if %{with armnn_onnx}
-DBUILD_ONNX_PARSER=ON \
-DONNX_GENERATED_SOURCES=../onnx_deps/ \
%else
-DBUILD_ONNX_PARSER=OFF \
%endif
%if %{with armnn_flatbuffers}
-DBUILD_ARMNN_SERIALIZER=ON \
-DFLATC_DIR=%{_bindir} \
-DFLATBUFFERS_INCLUDE_PATH=%{_includedir} \
-DBUILD_TF_LITE_PARSER=ON \
-DTfLite_Schema_INCLUDE_PATH=%{_includedir}/tensorflow/lite/schema/ \
-DTF_LITE_SCHEMA_INCLUDE_PATH=%{_includedir}/tensorflow/lite/schema/ \
%else
-DBUILD_ARMNN_SERIALIZER=OFF \
-DBUILD_TF_LITE_PARSER=OFF \
%endif
%if %{with compute_neon} || %{with compute_cl}
-DARMCOMPUTE_INCLUDE=%{_includedir} \
-DHALF_INCLUDE=%{_includedir}/half \
-DARMCOMPUTE_BUILD_DIR=%{_libdir} \
-DARMCOMPUTE_ROOT=%{_prefix} \
%endif
%if %{with compute_neon}
-DARMCOMPUTENEON=ON \
%else
-DARMCOMPUTENEON=OFF \
%endif
%if %{with compute_cl}
-DARMCOMPUTECL=ON \
-DOPENCL_INCLUDE=%{_includedir} \
%else
-DARMCOMPUTECL=OFF \
%endif
-DTHIRD_PARTY_INCLUDE_DIRS=%{_includedir} \
%if %{with armnn_flatbuffers}
-DBUILD_SAMPLE_APP=ON \
%else
-DBUILD_SAMPLE_APP=OFF \
%endif
%if %{with armnn_tests}
-DBUILD_UNIT_TESTS=ON \
-DBUILD_TESTS=ON \
%else
-DBUILD_UNIT_TESTS=OFF \
-DBUILD_TESTS=OFF \
%endif
%if %{with PyArmnn}
-DBUILD_PYTHON_WHL=ON \
-DBUILD_PYTHON_SRC=ON \
%else
-DBUILD_PYTHON_WHL=OFF \
-DBUILD_PYTHON_SRC=OFF \
%endif
%if %{with armnn_extra_tests}
-DBUILD_ARMNN_EXAMPLES=ON
%else
-DBUILD_ARMNN_EXAMPLES=OFF
%endif
%if 0%{?suse_version} > 1500
%cmake_build
%else
%make_jobs
%endif
%if %{with armnn_tests}
pushd tests/
%if 0%{?suse_version} > 1500
%cmake_build
%else
%make_jobs
%endif
popd
%endif
%install
%cmake_install
%if %{with armnn_tests}
# Install tests manually
install -d %{buildroot}%{_bindir}
CP_ARGS="-Prf --preserve=mode,timestamps --no-preserve=ownership" \
find ./build/tests -maxdepth 1 -type f -executable -exec cp $CP_ARGS {} %{buildroot}%{_bindir} \;
%endif
%if %{with armnn_flatbuffers}
# Install Sample app
cp $CP_ARGS ./build/samples/SimpleSample %{buildroot}%{_bindir}
%endif
# Drop static libs - https://github.com/ARM-software/armnn/issues/514
rm -f %{buildroot}%{_libdir}/*.a
# openCL UnitTests are failing in OBS due to the lack of openCL device
%if %{without compute_cl} && %{with armnn_tests}
%check
# Run tests
LD_LIBRARY_PATH="$(pwd)/build/" \
./build/UnitTests $UnitTestFlags
%endif
%post -n libarmnn%{version_lib}%{?package_suffix} -p /sbin/ldconfig
%postun -n libarmnn%{version_lib}%{?package_suffix} -p /sbin/ldconfig
%post -n libarmnnBasePipeServer%{version_lib}%{?package_suffix} -p /sbin/ldconfig
%postun -n libarmnnBasePipeServer%{version_lib}%{?package_suffix} -p /sbin/ldconfig
%post -n libarmnnTestUtils%{version_lib_testutils}%{?package_suffix} -p /sbin/ldconfig
%postun -n libarmnnTestUtils%{version_lib_testutils}%{?package_suffix} -p /sbin/ldconfig
%post -n libtimelineDecoderJson%{version_lib}%{?package_suffix} -p /sbin/ldconfig
%postun -n libtimelineDecoderJson%{version_lib}%{?package_suffix} -p /sbin/ldconfig
%post -n libtimelineDecoder%{version_lib}%{?package_suffix} -p /sbin/ldconfig
%postun -n libtimelineDecoder%{version_lib}%{?package_suffix} -p /sbin/ldconfig
%if %{with armnn_flatbuffers}
%post -n libarmnnSerializer%{version_lib}%{?package_suffix} -p /sbin/ldconfig
%postun -n libarmnnSerializer%{version_lib}%{?package_suffix} -p /sbin/ldconfig
%post -n libarmnnTfLiteParser%{version_lib_tfliteparser}%{?package_suffix} -p /sbin/ldconfig
%postun -n libarmnnTfLiteParser%{version_lib_tfliteparser}%{?package_suffix} -p /sbin/ldconfig
%endif
%if %{with armnn_onnx}
%post -n libarmnnOnnxParser%{version_lib_onnxparser}%{?package_suffix} -p /sbin/ldconfig
%postun -n libarmnnOnnxParser%{version_lib_onnxparser}%{?package_suffix} -p /sbin/ldconfig
%endif
%files
%defattr(-,root,root)
%doc README.md
%license LICENSE
%if %{with armnn_tests}
%{_bindir}/ExecuteNetwork
%if %{with armnn_flatbuffers}
%{_bindir}/ArmnnConverter
%{_bindir}/TfLite*-Armnn
%endif
%if %{with armnn_onnx}
%{_bindir}/Onnx*-Armnn
%endif
%if %{with armnn_flatbuffers}
%{_bindir}/SimpleSample
%endif
%endif
%if %{with armnn_extra_tests}
%files -n %{name}-extratests
%{_bindir}/ArmnnExamples
%endif
%files -n libarmnn%{version_lib}%{?package_suffix}
%{_libdir}/libarmnn.so.*
%files -n libarmnnBasePipeServer%{version_lib}%{?package_suffix}
%{_libdir}/libarmnnBasePipeServer.so.*
%files -n libarmnnTestUtils%{version_lib_testutils}%{?package_suffix}
%{_libdir}/libarmnnTestUtils.so.*
%files -n libtimelineDecoder%{version_lib}%{?package_suffix}
%{_libdir}/libtimelineDecoder.so.*
%files -n libtimelineDecoderJson%{version_lib}%{?package_suffix}
%{_libdir}/libtimelineDecoderJson.so.*
%if %{with armnn_flatbuffers}
%files -n libarmnnSerializer%{version_lib}%{?package_suffix}
%{_libdir}/libarmnnSerializer.so.*
%files -n libarmnnTfLiteParser%{version_lib_tfliteparser}%{?package_suffix}
%{_libdir}/libarmnnTfLiteParser.so.*
%endif
%if %{with armnn_onnx}
%files -n libarmnnOnnxParser%{version_lib_onnxparser}%{?package_suffix}
%{_libdir}/libarmnnOnnxParser.so.*
%endif
%files devel
%defattr(-,root,root)
%dir %{_includedir}/armnn/
%{_includedir}/armnn/*.hpp
%dir %{_includedir}/armnn/backends
%{_includedir}/armnn/backends/CMakeLists.txt
%{_includedir}/armnn/backends/*.hpp
%dir %{_includedir}/armnn/profiling
%{_includedir}/armnn/profiling/*.hpp
%dir %{_includedir}/armnn/profiling/client/
%dir %{_includedir}/armnn/profiling/client/include/
%{_includedir}/armnn/profiling/client/include/*.hpp
%dir %{_includedir}/armnn/profiling/client/include/backends/
%{_includedir}/armnn/profiling/client/include/backends/*.hpp
%dir %{_includedir}/armnn/profiling/common/
%dir %{_includedir}/armnn/profiling/common/include/
%{_includedir}/armnn/profiling/common/include/*.hpp
%dir %{_includedir}/armnn/utility
%{_includedir}/armnn/utility/*.hpp
%dir %{_includedir}/armnnUtils
%{_includedir}/armnnUtils/*.hpp
%dir %{_includedir}/armnnOnnxParser/
%{_includedir}/armnnOnnxParser/*.hpp
%dir %{_includedir}/armnnTfLiteParser/
%{_includedir}/armnnTfLiteParser/*.hpp
%dir %{_includedir}/armnnDeserializer/
%{_includedir}/armnnDeserializer/IDeserializer.hpp
%dir %{_includedir}/armnnSerializer/
%{_includedir}/armnnSerializer/ISerializer.hpp
%dir %{_includedir}/armnnTestUtils/
%{_includedir}/armnnTestUtils/*.hpp
%dir %{_libdir}/cmake/armnn
%{_libdir}/cmake/armnn/*
%{_libdir}/libarmnn.so
%{_libdir}/libarmnnBasePipeServer.so
%{_libdir}/libtimelineDecoder.so
%{_libdir}/libtimelineDecoderJson.so
%if %{with armnn_flatbuffers}
%{_libdir}/libarmnnSerializer.so
%{_libdir}/libarmnnTfLiteParser.so
%endif
%{_libdir}/libarmnnTestUtils.so
%if %{with armnn_onnx}
%{_libdir}/libarmnnOnnxParser.so
%endif
%changelog