Accepting request 1227952 from science:machinelearning
OBS-URL: https://build.opensuse.org/request/show/1227952 OBS-URL: https://build.opensuse.org/package/show/openSUSE:Factory/armnn?expand=0&rev=13
This commit is contained in:
commit
c147cab9f8
@ -1,76 +0,0 @@
|
||||
From 964cb82f3b811aec6663255ab0aa589f0a3be0ee Mon Sep 17 00:00:00 2001
|
||||
From: Qin Su <qsu@ti.com>
|
||||
Date: Fri, 22 Feb 2019 14:10:07 -0500
|
||||
Subject: [PATCH] add more test command line arguments
|
||||
|
||||
Updated by Guillaume_G to apply properly (s/BOOST_ASSERT/ARMNN_ASSERT/)
|
||||
|
||||
Upstream-Status: Inappropriate [TI only test code]
|
||||
Signed-off-by: Qin Su <qsu@ti.com>
|
||||
---
|
||||
tests/InferenceTest.inl | 49 +++++++++++++++++++++++++++++++++++++++++++++++++
|
||||
1 file changed, 49 insertions(+)
|
||||
|
||||
diff --git a/tests/InferenceTest.inl b/tests/InferenceTest.inl
|
||||
index 538720b..6fd21b8 100644
|
||||
--- a/tests/InferenceTest.inl
|
||||
+++ b/tests/InferenceTest.inl
|
||||
@@ -326,6 +326,55 @@ int ClassifierInferenceTestMain(int argc,
|
||||
ARMNN_ASSERT(modelFilename);
|
||||
ARMNN_ASSERT(inputBindingName);
|
||||
ARMNN_ASSERT(outputBindingName);
|
||||
+ int count;
|
||||
+ const char *p_input;
|
||||
+ char inmodelname[500];
|
||||
+ char outtensorname[500];
|
||||
+
|
||||
+ /* parse command line */
|
||||
+ for (count = 1; count < argc; count++)
|
||||
+ {
|
||||
+ if (*(argv[count]) == '+')
|
||||
+ {
|
||||
+ p_input = argv[count] + 1;
|
||||
+ switch (*(p_input))
|
||||
+ {
|
||||
+ case 'i':
|
||||
+ case 'I':
|
||||
+ strcpy(inmodelname, p_input + 2);
|
||||
+ modelFilename = &inmodelname[0];
|
||||
+ std::cout << "Input model = " << modelFilename << std::endl;
|
||||
+ break;
|
||||
+ case 'o':
|
||||
+ case 'O':
|
||||
+ strcpy(outtensorname, p_input + 2);
|
||||
+ outputBindingName = &outtensorname[0];
|
||||
+ std::cout << "out tensor name = " << outputBindingName << std::endl;
|
||||
+ break;
|
||||
+ default:
|
||||
+ break;
|
||||
+ }
|
||||
+ }
|
||||
+ else if (*(argv[count]) == '-')
|
||||
+ {
|
||||
+ p_input = argv[count] + 1;
|
||||
+ switch (*(p_input))
|
||||
+ {
|
||||
+ case '-':
|
||||
+ p_input = argv[count] + 2;
|
||||
+ case 'h':
|
||||
+ case 'H':
|
||||
+ std::cout <<"\nAdditional Options: " << std::endl;
|
||||
+ std::cout <<" +i Set user specified inference model name." << std::endl;
|
||||
+ std::cout <<" If not set, default name is used." << std::endl;
|
||||
+ std::cout <<" +o Set user specified output tensor name." << std::endl;
|
||||
+ std::cout <<" If not set, default name is used.\n" << std::endl;
|
||||
+ break;
|
||||
+ default:
|
||||
+ break;
|
||||
+ }
|
||||
+ }
|
||||
+ }
|
||||
|
||||
return InferenceTestMain(argc, argv, defaultTestCaseIds,
|
||||
[=]
|
||||
--
|
||||
1.9.1
|
||||
|
@ -1,71 +0,0 @@
|
||||
From 99a6c339f1828d3cd1b193cf702bada9011d900b Mon Sep 17 00:00:00 2001
|
||||
From: Djordje Senicic <x0157990@ti.com>
|
||||
Date: Mon, 24 Jun 2019 14:29:19 -0400
|
||||
Subject: [PATCH] add armnn mobilenet test example
|
||||
|
||||
Upstream-Status: Inappropriate [TI only test code]
|
||||
Signed-off-by: Qin Su <qsu@ti.com>
|
||||
Signed-off-by: Djordje Senicic <x0157990@ti.com>
|
||||
[Guillaume's update: Add boost_log dep]
|
||||
[Guillaume's update: Update to apply on top of 20.08]
|
||||
---
|
||||
tests/CMakeLists.txt | 41 +++++++++++++++++++++++++++++++++++++++++
|
||||
1 file changed, 41 insertions(+)
|
||||
|
||||
diff --git a/tests/CMakeLists.txt b/tests/CMakeLists.txt
|
||||
index dfcf4b48..5a78d3a6 100644
|
||||
--- a/tests/CMakeLists.txt
|
||||
+++ b/tests/CMakeLists.txt
|
||||
@@ -1,3 +1,6 @@
|
||||
+find_package( OpenCV REQUIRED )
|
||||
+include_directories( ${OpenCV_INCLUDE_DIRS} )
|
||||
+
|
||||
# UnitTests
|
||||
include(CheckIncludeFiles)
|
||||
|
||||
@@ -348,3 +351,42 @@ if(BUILD_ARMNN_QUANTIZER)
|
||||
target_include_directories(ImageCSVFileGenerator PRIVATE ../src/armnnUtils)
|
||||
ImageTensorExecutor(ImageCSVFileGenerator)
|
||||
endif()
|
||||
+
|
||||
+if (BUILD_ARMNN_EXAMPLES)
|
||||
+ set(ArmnnExamples_sources
|
||||
+ ArmnnExamples/ArmnnExamples.cpp)
|
||||
+
|
||||
+ add_executable_ex(ArmnnExamples ${ArmnnExamples_sources})
|
||||
+
|
||||
+ target_include_directories(ArmnnExamples PRIVATE ../src/armnnUtils)
|
||||
+ target_include_directories(ArmnnExamples PRIVATE ../src/armnn)
|
||||
+ target_include_directories(ArmnnExamples PRIVATE ../src/backends)
|
||||
+
|
||||
+ if (BUILD_CAFFE_PARSER)
|
||||
+ target_link_libraries(ArmnnExamples armnnCaffeParser)
|
||||
+ endif()
|
||||
+ if (BUILD_TF_PARSER)
|
||||
+ target_link_libraries(ArmnnExamples armnnTfParser)
|
||||
+ endif()
|
||||
+
|
||||
+ if (BUILD_TF_LITE_PARSER)
|
||||
+ target_link_libraries(ArmnnExamples armnnTfLiteParser)
|
||||
+ endif()
|
||||
+ if (BUILD_ONNX_PARSER)
|
||||
+ target_link_libraries(ArmnnExamples armnnOnnxParser)
|
||||
+ endif()
|
||||
+
|
||||
+ target_link_libraries(ArmnnExamples armnn)
|
||||
+ target_link_libraries(ArmnnExamples ${CMAKE_THREAD_LIBS_INIT})
|
||||
+ if(OPENCL_LIBRARIES)
|
||||
+ target_link_libraries(ArmnnExamples ${OPENCL_LIBRARIES})
|
||||
+ endif()
|
||||
+
|
||||
+ target_link_libraries(ArmnnExamples
|
||||
+ ${Boost_LOG_LIBRARY}
|
||||
+ ${Boost_SYSTEM_LIBRARY}
|
||||
+ ${Boost_FILESYSTEM_LIBRARY}
|
||||
+ ${Boost_PROGRAM_OPTIONS_LIBRARY}
|
||||
+ ${OpenCV_LIBS})
|
||||
+ addDllCopyCommands(ArmnnExamples)
|
||||
+endif()
|
||||
--
|
||||
2.17.1
|
||||
|
@ -1,680 +0,0 @@
|
||||
From 4d5e7db268a4f816e24449e8ad011e35890f0c7e Mon Sep 17 00:00:00 2001
|
||||
From: Qin Su <qsu@ti.com>
|
||||
Date: Fri, 22 Feb 2019 13:39:09 -0500
|
||||
Subject: [PATCH] armnn mobilenet test example
|
||||
|
||||
Upstream-Status: Inappropriate [TI only test code]
|
||||
Signed-off-by: Qin Su <qsu@ti.com>
|
||||
|
||||
[Guillaume's update: s#Logging.hpp#armnn/Logging.hpp#]
|
||||
[Guillaume's update: Add #include <boost/log/trivial.hpp>]
|
||||
[Guillaume's update: Drop armnnUtils::ConfigureLogging(...)]
|
||||
[Guillaume's update: Handle boost::variant to mapbox::util::variant update]
|
||||
---
|
||||
tests/ArmnnExamples/ArmnnExamples.cpp | 654 ++++++++++++++++++++++++++++++++++
|
||||
1 file changed, 654 insertions(+)
|
||||
create mode 100644 tests/ArmnnExamples/ArmnnExamples.cpp
|
||||
|
||||
diff --git a/tests/ArmnnExamples/ArmnnExamples.cpp b/tests/ArmnnExamples/ArmnnExamples.cpp
|
||||
new file mode 100644
|
||||
index 0000000..53a11cc
|
||||
--- /dev/null
|
||||
+++ b/tests/ArmnnExamples/ArmnnExamples.cpp
|
||||
@@ -0,0 +1,654 @@
|
||||
+/******************************************************************************
|
||||
+ * Copyright (c) 2018, Texas Instruments Incorporated - http://www.ti.com/
|
||||
+ * All rights reserved.
|
||||
+ *
|
||||
+ * Redistribution and use in source and binary forms, with or without
|
||||
+ * modification, are permitted provided that the following conditions are met:
|
||||
+ * * Redistributions of source code must retain the above copyright
|
||||
+ * notice, this list of conditions and the following disclaimer.
|
||||
+ * * Redistributions in binary form must reproduce the above copyright
|
||||
+ * notice, this list of conditions and the following disclaimer in the
|
||||
+ * documentation and/or other materials provided with the distribution.
|
||||
+ * * Neither the name of Texas Instruments Incorporated nor the
|
||||
+ * names of its contributors may be used to endorse or promote products
|
||||
+ * derived from this software without specific prior written permission.
|
||||
+ *
|
||||
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||||
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
||||
+ * THE POSSIBILITY OF SUCH DAMAGE.
|
||||
+ *****************************************************************************///
|
||||
+// Copyright © 2017 Arm Ltd. All rights reserved.
|
||||
+// See LICENSE file in the project root for full license information.
|
||||
+//
|
||||
+#include <armnn/ArmNN.hpp>
|
||||
+#include <boost/log/trivial.hpp>
|
||||
+
|
||||
+#include <utility>
|
||||
+#include <armnn/TypesUtils.hpp>
|
||||
+
|
||||
+#if defined(ARMNN_CAFFE_PARSER)
|
||||
+#include "armnnCaffeParser/ICaffeParser.hpp"
|
||||
+#endif
|
||||
+#if defined(ARMNN_TF_PARSER)
|
||||
+#include "armnnTfParser/ITfParser.hpp"
|
||||
+#endif
|
||||
+#if defined(ARMNN_TF_LITE_PARSER)
|
||||
+#include "armnnTfLiteParser/ITfLiteParser.hpp"
|
||||
+#endif
|
||||
+#if defined(ARMNN_ONNX_PARSER)
|
||||
+#include "armnnOnnxParser/IOnnxParser.hpp"
|
||||
+#endif
|
||||
+#include <mapbox/variant.hpp> /*#include "CsvReader.hpp"*/
|
||||
+#include "../InferenceTest.hpp"
|
||||
+#include <armnn/Logging.hpp>
|
||||
+#include <Profiling.hpp>
|
||||
+
|
||||
+#include <boost/algorithm/string/trim.hpp>
|
||||
+#include <boost/algorithm/string/split.hpp>
|
||||
+#include <boost/algorithm/string/classification.hpp>
|
||||
+#include <boost/program_options.hpp>
|
||||
+
|
||||
+#include <iostream>
|
||||
+#include <fstream>
|
||||
+#include <functional>
|
||||
+#include <future>
|
||||
+#include <algorithm>
|
||||
+#include <iterator>
|
||||
+#include<vector>
|
||||
+
|
||||
+#include <signal.h>
|
||||
+#include "opencv2/core.hpp"
|
||||
+#include "opencv2/imgproc.hpp"
|
||||
+#include "opencv2/highgui.hpp"
|
||||
+#include "opencv2/videoio.hpp"
|
||||
+#include <time.h>
|
||||
+
|
||||
+using namespace cv;
|
||||
+
|
||||
+#define INPUT_IMAGE 0
|
||||
+#define INPUT_VIDEO 1
|
||||
+#define INPUT_CAMERA 2
|
||||
+
|
||||
+Mat test_image;
|
||||
+Rect rectCrop;
|
||||
+
|
||||
+time_point<high_resolution_clock> predictStart;
|
||||
+time_point<high_resolution_clock> predictEnd;
|
||||
+
|
||||
+void imagenetCallBackFunc(int event, int x, int y, int flags, void* userdata)
|
||||
+{
|
||||
+ if ( event == EVENT_RBUTTONDOWN )
|
||||
+ {
|
||||
+ std::cout << "Right button of the mouse is clicked - position (" << x << ", " << y << ")" << " ... prepare to exit!" << std::endl;
|
||||
+ exit(0);
|
||||
+ }
|
||||
+}
|
||||
+
|
||||
+inline float Lerpfloat(float a, float b, float w)
|
||||
+{
|
||||
+ return w * b + (1.f - w) * a;
|
||||
+}
|
||||
+
|
||||
+// Load a single image
|
||||
+struct ImageData
|
||||
+{
|
||||
+ unsigned int m_width;
|
||||
+ unsigned int m_height;
|
||||
+ unsigned int m_chnum;
|
||||
+ unsigned int m_size;
|
||||
+ std::vector<uint8_t> m_image;
|
||||
+};
|
||||
+// Load a single image
|
||||
+std::unique_ptr<ImageData> loadImageData(std::string image_path, VideoCapture &cap, cv::Mat img, int input_type)
|
||||
+{
|
||||
+ //cv::Mat img;
|
||||
+ if (input_type == INPUT_IMAGE)
|
||||
+ {
|
||||
+ /* use OpenCV to get the image */
|
||||
+ img = cv::imread(image_path, CV_LOAD_IMAGE_COLOR);
|
||||
+ }
|
||||
+ cv::cvtColor(img, img, CV_BGR2RGB); //convert image format from BGR(openCV format) to RGB (armnn required format).
|
||||
+
|
||||
+ // store image and label in output Image
|
||||
+ std::unique_ptr<ImageData> ret(new ImageData);
|
||||
+ ret->m_width = static_cast<unsigned int>(img.cols);
|
||||
+ ret->m_height = static_cast<unsigned int>(img.rows);
|
||||
+ ret->m_chnum = static_cast<unsigned int>(img.channels());
|
||||
+ ret->m_size = static_cast<unsigned int>(img.cols*img.rows*img.channels());
|
||||
+ ret->m_image.resize(ret->m_size);
|
||||
+
|
||||
+ for (unsigned int i = 0; i < ret->m_size; i++)
|
||||
+ {
|
||||
+ ret->m_image[i] = static_cast<uint8_t>(img.data[i]);
|
||||
+ }
|
||||
+ return ret;
|
||||
+}
|
||||
+// to resize input tensor size
|
||||
+std::vector<float> ResizeBilinear(std::vector<uint8_t> input,
|
||||
+ const unsigned int inWidth,
|
||||
+ const unsigned int inHeight,
|
||||
+ const unsigned int inChnum,
|
||||
+ const unsigned int outputWidth,
|
||||
+ const unsigned int outputHeight)
|
||||
+{
|
||||
+ std::vector<float> out;
|
||||
+ out.resize(outputWidth * outputHeight * 3);
|
||||
+
|
||||
+ // We follow the definition of TensorFlow and AndroidNN: the top-left corner of a texel in the output
|
||||
+ // image is projected into the input image to figure out the interpolants and weights. Note that this
|
||||
+ // will yield different results than if projecting the centre of output texels.
|
||||
+
|
||||
+ const unsigned int inputWidth = inWidth;
|
||||
+ const unsigned int inputHeight = inHeight;
|
||||
+
|
||||
+ // How much to scale pixel coordinates in the output image to get the corresponding pixel coordinates
|
||||
+ // in the input image.
|
||||
+ const float scaleY = boost::numeric_cast<float>(inputHeight) / boost::numeric_cast<float>(outputHeight);
|
||||
+ const float scaleX = boost::numeric_cast<float>(inputWidth) / boost::numeric_cast<float>(outputWidth);
|
||||
+
|
||||
+ uint8_t rgb_x0y0[3];
|
||||
+ uint8_t rgb_x1y0[3];
|
||||
+ uint8_t rgb_x0y1[3];
|
||||
+ uint8_t rgb_x1y1[3];
|
||||
+ unsigned int pixelOffset00, pixelOffset10, pixelOffset01, pixelOffset11;
|
||||
+ for (unsigned int y = 0; y < outputHeight; ++y)
|
||||
+ {
|
||||
+ // Corresponding real-valued height coordinate in input image.
|
||||
+ const float iy = boost::numeric_cast<float>(y) * scaleY;
|
||||
+ // Discrete height coordinate of top-left texel (in the 2x2 texel area used for interpolation).
|
||||
+ const float fiy = floorf(iy);
|
||||
+ const unsigned int y0 = boost::numeric_cast<unsigned int>(fiy);
|
||||
+
|
||||
+ // Interpolation weight (range [0,1])
|
||||
+ const float yw = iy - fiy;
|
||||
+
|
||||
+ for (unsigned int x = 0; x < outputWidth; ++x)
|
||||
+ {
|
||||
+ // Real-valued and discrete width coordinates in input image.
|
||||
+ const float ix = boost::numeric_cast<float>(x) * scaleX;
|
||||
+ const float fix = floorf(ix);
|
||||
+ const unsigned int x0 = boost::numeric_cast<unsigned int>(fix);
|
||||
+
|
||||
+ // Interpolation weight (range [0,1]).
|
||||
+ const float xw = ix - fix;
|
||||
+
|
||||
+ // Discrete width/height coordinates of texels below and to the right of (x0, y0).
|
||||
+ const unsigned int x1 = std::min(x0 + 1, inputWidth - 1u);
|
||||
+ const unsigned int y1 = std::min(y0 + 1, inputHeight - 1u);
|
||||
+
|
||||
+ pixelOffset00 = x0 * inChnum + y0 * inputWidth * inChnum;
|
||||
+ pixelOffset10 = x1 * inChnum + y0 * inputWidth * inChnum;
|
||||
+ pixelOffset01 = x0 * inChnum + y1 * inputWidth * inChnum;
|
||||
+ pixelOffset11 = x1 * inChnum + y1 * inputWidth * inChnum;
|
||||
+ for (unsigned int c = 0; c < 3; ++c)
|
||||
+ {
|
||||
+ rgb_x0y0[c] = input[pixelOffset00+c];
|
||||
+ rgb_x1y0[c] = input[pixelOffset10+c];
|
||||
+ rgb_x0y1[c] = input[pixelOffset01+c];
|
||||
+ rgb_x1y1[c] = input[pixelOffset11+c];
|
||||
+ }
|
||||
+
|
||||
+ for (unsigned c=0; c<3; ++c)
|
||||
+ {
|
||||
+ const float ly0 = Lerpfloat(float(rgb_x0y0[c]), float(rgb_x1y0[c]), xw);
|
||||
+ const float ly1 = Lerpfloat(float(rgb_x0y1[c]), float(rgb_x1y1[c]), xw);
|
||||
+ const float l = Lerpfloat(ly0, ly1, yw);
|
||||
+ out[(3*((y*outputWidth)+x)) + c] = static_cast<float>(l)/255.0f;
|
||||
+ }
|
||||
+ }
|
||||
+ }
|
||||
+ return out;
|
||||
+}
|
||||
+
|
||||
+namespace
|
||||
+{
|
||||
+
|
||||
+ // Configure boost::program_options for command-line parsing and validation.
|
||||
+ namespace po = boost::program_options;
|
||||
+
|
||||
+ template<typename T, typename TParseElementFunc>
|
||||
+ std::vector<T> ParseArrayImpl(std::istream& stream, TParseElementFunc parseElementFunc)
|
||||
+ {
|
||||
+ std::vector<T> result;
|
||||
+ // Processes line-by-line.
|
||||
+ std::string line;
|
||||
+ while (std::getline(stream, line))
|
||||
+ {
|
||||
+ std::vector<std::string> tokens;
|
||||
+ try
|
||||
+ {
|
||||
+ // Coverity fix: boost::split() may throw an exception of type boost::bad_function_call.
|
||||
+ boost::split(tokens, line, boost::algorithm::is_any_of("\t ,;:"), boost::token_compress_on);
|
||||
+ }
|
||||
+ catch (const std::exception& e)
|
||||
+ {
|
||||
+ BOOST_LOG_TRIVIAL(error) << "An error occurred when splitting tokens: " << e.what();
|
||||
+ continue;
|
||||
+ }
|
||||
+ for (const std::string& token : tokens)
|
||||
+ {
|
||||
+ if (!token.empty())
|
||||
+ {
|
||||
+ try
|
||||
+ {
|
||||
+ result.push_back(parseElementFunc(token));
|
||||
+ }
|
||||
+ catch (const std::exception&)
|
||||
+ {
|
||||
+ BOOST_LOG_TRIVIAL(error) << "'" << token << "' is not a valid number. It has been ignored.";
|
||||
+ }
|
||||
+ }
|
||||
+ }
|
||||
+ }
|
||||
+
|
||||
+ return result;
|
||||
+ }
|
||||
+
|
||||
+ template<typename T>
|
||||
+ std::vector<T> ParseArray(std::istream& stream);
|
||||
+ template<>
|
||||
+ std::vector<unsigned int> ParseArray(std::istream& stream)
|
||||
+ {
|
||||
+ return ParseArrayImpl<unsigned int>(stream,
|
||||
+ [](const std::string& s) { return boost::numeric_cast<unsigned int>(std::stoi(s)); });
|
||||
+ }
|
||||
+ void RemoveDuplicateDevices(std::vector<armnn::BackendId>& computeDevices)
|
||||
+ {
|
||||
+ // Mark the duplicate devices as 'Undefined'.
|
||||
+ for (auto i = computeDevices.begin(); i != computeDevices.end(); ++i)
|
||||
+ {
|
||||
+ for (auto j = std::next(i); j != computeDevices.end(); ++j)
|
||||
+ {
|
||||
+ if (*j == *i)
|
||||
+ {
|
||||
+ *j = armnn::Compute::Undefined;
|
||||
+ }
|
||||
+ }
|
||||
+ }
|
||||
+
|
||||
+ // Remove 'Undefined' devices.
|
||||
+ computeDevices.erase(std::remove(computeDevices.begin(), computeDevices.end(), armnn::Compute::Undefined),
|
||||
+ computeDevices.end());
|
||||
+ }
|
||||
+} // namespace
|
||||
+
|
||||
+template<typename TParser, typename TDataType>
|
||||
+int MainImpl(const char* modelPath,
|
||||
+ bool isModelBinary,
|
||||
+ const std::vector<armnn::BackendId>& computeDevices,
|
||||
+ const char* inputName,
|
||||
+ const armnn::TensorShape* inputTensorShape,
|
||||
+ const char* inputTensorDataFilePath,
|
||||
+ const char* outputName,
|
||||
+ bool enableProfiling,
|
||||
+ const size_t number_frame,
|
||||
+ const std::shared_ptr<armnn::IRuntime>& runtime = nullptr)
|
||||
+{
|
||||
+ // Loads input tensor.
|
||||
+ std::vector<uint8_t> input;
|
||||
+ std::vector<float> input_resized;
|
||||
+ using TContainer = mapbox::util::variant<std::vector<float>, std::vector<int>, std::vector<unsigned char>>;
|
||||
+
|
||||
+ try
|
||||
+ {
|
||||
+ // Creates an InferenceModel, which will parse the model and load it into an IRuntime.
|
||||
+ typename InferenceModel<TParser, TDataType>::Params params;
|
||||
+ //const armnn::TensorShape inputTensorShape({ 1, 224, 224 3});
|
||||
+
|
||||
+ params.m_ModelPath = modelPath;
|
||||
+ params.m_IsModelBinary = isModelBinary;
|
||||
+ params.m_ComputeDevices = computeDevices;
|
||||
+ params.m_InputBindings = { inputName };
|
||||
+ params.m_InputShapes = { *inputTensorShape };
|
||||
+ params.m_OutputBindings = { outputName };
|
||||
+ //params.m_EnableProfiling = enableProfiling;
|
||||
+ params.m_SubgraphId = 0;
|
||||
+ InferenceModel<TParser, TDataType> model(params, enableProfiling, runtime);
|
||||
+
|
||||
+ VideoCapture cap;
|
||||
+ int input_type = INPUT_IMAGE;
|
||||
+ std::string filename = inputTensorDataFilePath;
|
||||
+
|
||||
+ size_t i = filename.rfind("camera_live_input", filename.length());
|
||||
+ if (i != string::npos)
|
||||
+ {
|
||||
+ cap = VideoCapture(1);
|
||||
+ namedWindow("ARMNN MobileNet Example", WINDOW_AUTOSIZE | CV_GUI_NORMAL);
|
||||
+ input_type = INPUT_CAMERA; //camera input
|
||||
+ }
|
||||
+ else if((filename.substr(filename.find_last_of(".") + 1) == "mp4") ||
|
||||
+ (filename.substr(filename.find_last_of(".") + 1) == "mov") ||
|
||||
+ (filename.substr(filename.find_last_of(".") + 1) == "avi") )
|
||||
+ {
|
||||
+ cap = VideoCapture(inputTensorDataFilePath);
|
||||
+ if (! cap.isOpened())
|
||||
+ {
|
||||
+ std::cout << "Cannot open video input: " << inputTensorDataFilePath << std::endl;
|
||||
+ return (-1);
|
||||
+ }
|
||||
+
|
||||
+ namedWindow("ARMNN MobileNet Example", WINDOW_AUTOSIZE | CV_GUI_NORMAL);
|
||||
+ input_type = INPUT_VIDEO; //video clip input
|
||||
+ }
|
||||
+ if (input_type != INPUT_IMAGE)
|
||||
+ {
|
||||
+ //set the callback function for any mouse event. Used for right click mouse to exit the program.
|
||||
+ setMouseCallback("ARMNN MobileNet Example", imagenetCallBackFunc, NULL);
|
||||
+ }
|
||||
+
|
||||
+ for (unsigned int i=0; i < number_frame; i++)
|
||||
+ {
|
||||
+ if (input_type != INPUT_IMAGE)
|
||||
+ {
|
||||
+ cap.grab();
|
||||
+ cap.retrieve(test_image);
|
||||
+ }
|
||||
+ std::unique_ptr<ImageData> inputData = loadImageData(inputTensorDataFilePath, cap, test_image, input_type);
|
||||
+ input.resize(inputData->m_size);
|
||||
+
|
||||
+ input = std::move(inputData->m_image);
|
||||
+ input_resized = ResizeBilinear(input, inputData->m_width, inputData->m_height, inputData->m_chnum, 224, 224);
|
||||
+
|
||||
+ // Set up input data container
|
||||
+ std::vector<TContainer> inputDataContainer(1, std::move(input_resized));
|
||||
+
|
||||
+ // Set up output data container
|
||||
+ std::vector<TContainer> outputDataContainers;
|
||||
+ outputDataContainers.push_back(std::vector<float>(model.GetOutputSize()));
|
||||
+
|
||||
+ //profile start
|
||||
+ predictStart = high_resolution_clock::now();
|
||||
+ // Execute model
|
||||
+ model.Run(inputDataContainer, outputDataContainers);
|
||||
+ //profile end
|
||||
+ predictEnd = high_resolution_clock::now();
|
||||
+
|
||||
+ double timeTakenS = duration<double>(predictEnd - predictStart).count();
|
||||
+ double preformance_ret = static_cast<double>(1.0/timeTakenS);
|
||||
+
|
||||
+ //retrieve output
|
||||
+ std::vector<float>& outputData = (mapbox::util::get<std::vector<float>>(outputDataContainers[0]));
|
||||
+ //output TOP predictions
|
||||
+ std::string predict_target_name;
|
||||
+ // find the out with the highest confidence
|
||||
+ int label = static_cast<int>(std::distance(outputData.begin(), std::max_element(outputData.begin(), outputData.end())));
|
||||
+ std::fstream file("/usr/share/arm/armnn/models/labels.txt");
|
||||
+ //std::string predict_target_name;
|
||||
+ for (int i=0; i <= label; i++)
|
||||
+ {
|
||||
+ std::getline(file, predict_target_name);
|
||||
+ }
|
||||
+ //get the probability of the top prediction
|
||||
+ float prob = 100*outputData.data()[label];
|
||||
+ //clean the top one so as to find the second top prediction
|
||||
+ outputData.data()[label] = 0;
|
||||
+ std::cout << "Top(1) prediction is " << predict_target_name << " with confidence: " << prob << "%" << std::endl;
|
||||
+ //output next TOP 4 predictions
|
||||
+ for (int ii=1; ii<5; ii++)
|
||||
+ {
|
||||
+ std::string predict_target_name_n;
|
||||
+ // find the out with the highest confidence
|
||||
+ int label = static_cast<int>(std::distance(outputData.begin(), std::max_element(outputData.begin(), outputData.end())));
|
||||
+ std::fstream file("/usr/share/arm/armnn/models/labels.txt");
|
||||
+ //std::string predict_target_name;
|
||||
+ for (int i=0; i <= label; i++)
|
||||
+ {
|
||||
+ std::getline(file, predict_target_name_n);
|
||||
+ }
|
||||
+ //get the probability of the prediction
|
||||
+ float prob = 100*outputData.data()[label];
|
||||
+ //clean the top one so as to find the second top prediction
|
||||
+ outputData.data()[label] = 0;
|
||||
+
|
||||
+ std::cout << "Top(" << (ii+1) << ") prediction is " << predict_target_name_n << " with confidence: " << prob << "%" << std::endl;
|
||||
+ }
|
||||
+ std::cout << "Performance (FPS): " << preformance_ret << std::endl;
|
||||
+
|
||||
+ if (input_type != INPUT_IMAGE)
|
||||
+ {
|
||||
+ //convert image format back to BGR for OpenCV imshow from RGB format required by armnn.
|
||||
+ cv::cvtColor(test_image, test_image, CV_RGB2BGR);
|
||||
+ // output identified object name on top of input image
|
||||
+ cv::putText(test_image, predict_target_name,
|
||||
+ cv::Point(rectCrop.x + 5,rectCrop.y + 20), // Coordinates
|
||||
+ cv::FONT_HERSHEY_COMPLEX_SMALL, // Font
|
||||
+ 1.0, // Scale. 2.0 = 2x bigger
|
||||
+ cv::Scalar(0,0,255), // Color
|
||||
+ 1, // Thickness
|
||||
+ 8); // Line type
|
||||
+
|
||||
+ // output preformance in FPS on top of input image
|
||||
+ std::string preformance_ret_string = "Performance (FPS): " + boost::lexical_cast<std::string>(preformance_ret);
|
||||
+ cv::putText(test_image, preformance_ret_string,
|
||||
+ cv::Point(rectCrop.x + 5,rectCrop.y + 40), // Coordinates
|
||||
+ cv::FONT_HERSHEY_COMPLEX_SMALL, // Font
|
||||
+ 1.0, // Scale. 2.0 = 2x bigger
|
||||
+ cv::Scalar(0,0,255), // Color
|
||||
+ 1, // Thickness
|
||||
+ 8); // Line type
|
||||
+
|
||||
+ cv::imshow("ARMNN MobileNet Example", test_image);
|
||||
+ waitKey(2);
|
||||
+ }
|
||||
+ }
|
||||
+ }
|
||||
+ catch (armnn::Exception const& e)
|
||||
+ {
|
||||
+ BOOST_LOG_TRIVIAL(fatal) << "Armnn Error: " << e.what();
|
||||
+ return EXIT_FAILURE;
|
||||
+ }
|
||||
+ return EXIT_SUCCESS;
|
||||
+}
|
||||
+
|
||||
+// This will run a test
|
||||
+int RunTest(const std::string& modelFormat,
|
||||
+ const std::string& inputTensorShapeStr,
|
||||
+ const vector<armnn::BackendId>& computeDevice,
|
||||
+ const std::string& modelPath,
|
||||
+ const std::string& inputName,
|
||||
+ const std::string& inputTensorDataFilePath,
|
||||
+ const std::string& outputName,
|
||||
+ bool enableProfiling,
|
||||
+ const size_t subgraphId,
|
||||
+ const std::shared_ptr<armnn::IRuntime>& runtime = nullptr)
|
||||
+{
|
||||
+ // Parse model binary flag from the model-format string we got from the command-line
|
||||
+ bool isModelBinary;
|
||||
+ if (modelFormat.find("bin") != std::string::npos)
|
||||
+ {
|
||||
+ isModelBinary = true;
|
||||
+ }
|
||||
+ else if (modelFormat.find("txt") != std::string::npos || modelFormat.find("text") != std::string::npos)
|
||||
+ {
|
||||
+ isModelBinary = false;
|
||||
+ }
|
||||
+ else
|
||||
+ {
|
||||
+ BOOST_LOG_TRIVIAL(fatal) << "Unknown model format: '" << modelFormat << "'. Please include 'binary' or 'text'";
|
||||
+ return EXIT_FAILURE;
|
||||
+ }
|
||||
+
|
||||
+ // Parse input tensor shape from the string we got from the command-line.
|
||||
+ std::unique_ptr<armnn::TensorShape> inputTensorShape;
|
||||
+ if (!inputTensorShapeStr.empty())
|
||||
+ {
|
||||
+ std::stringstream ss(inputTensorShapeStr);
|
||||
+ std::vector<unsigned int> dims = ParseArray<unsigned int>(ss);
|
||||
+ try
|
||||
+ {
|
||||
+ // Coverity fix: An exception of type armnn::InvalidArgumentException is thrown and never caught.
|
||||
+ inputTensorShape = std::make_unique<armnn::TensorShape>(dims.size(), dims.data());
|
||||
+ }
|
||||
+ catch (const armnn::InvalidArgumentException& e)
|
||||
+ {
|
||||
+ BOOST_LOG_TRIVIAL(fatal) << "Cannot create tensor shape: " << e.what();
|
||||
+ return EXIT_FAILURE;
|
||||
+ }
|
||||
+ }
|
||||
+ // Forward to implementation based on the parser type
|
||||
+ if (modelFormat.find("caffe") != std::string::npos)
|
||||
+ {
|
||||
+#if defined(ARMNN_CAFFE_PARSER)
|
||||
+ return MainImpl<armnnCaffeParser::ICaffeParser, float>(modelPath.c_str(), isModelBinary, computeDevice,
|
||||
+ inputName.c_str(), inputTensorShape.get(),
|
||||
+ inputTensorDataFilePath.c_str(), outputName.c_str(),
|
||||
+ enableProfiling, subgraphId, runtime);
|
||||
+#else
|
||||
+ BOOST_LOG_TRIVIAL(fatal) << "Not built with Caffe parser support.";
|
||||
+ return EXIT_FAILURE;
|
||||
+#endif
|
||||
+ }
|
||||
+ else if (modelFormat.find("onnx") != std::string::npos)
|
||||
+ {
|
||||
+#if defined(ARMNN_ONNX_PARSER)
|
||||
+ return MainImpl<armnnOnnxParser::IOnnxParser, float>(modelPath.c_str(), isModelBinary, computeDevice,
|
||||
+ inputName.c_str(), inputTensorShape.get(),
|
||||
+ inputTensorDataFilePath.c_str(), outputName.c_str(),
|
||||
+ enableProfiling, subgraphId, runtime);
|
||||
+#else
|
||||
+ BOOST_LOG_TRIVIAL(fatal) << "Not built with Onnx parser support.";
|
||||
+ return EXIT_FAILURE;
|
||||
+#endif
|
||||
+ }
|
||||
+ else if (modelFormat.find("tensorflow") != std::string::npos)
|
||||
+ {
|
||||
+#if defined(ARMNN_TF_PARSER)
|
||||
+ return MainImpl<armnnTfParser::ITfParser, float>(modelPath.c_str(), isModelBinary, computeDevice,
|
||||
+ inputName.c_str(), inputTensorShape.get(),
|
||||
+ inputTensorDataFilePath.c_str(), outputName.c_str(),
|
||||
+ enableProfiling, subgraphId, runtime);
|
||||
+#else
|
||||
+ BOOST_LOG_TRIVIAL(fatal) << "Not built with Tensorflow parser support.";
|
||||
+ return EXIT_FAILURE;
|
||||
+#endif
|
||||
+ }
|
||||
+ else if(modelFormat.find("tflite") != std::string::npos)
|
||||
+ {
|
||||
+#if defined(ARMNN_TF_LITE_PARSER)
|
||||
+ if (! isModelBinary)
|
||||
+ {
|
||||
+ BOOST_LOG_TRIVIAL(fatal) << "Unknown model format: '" << modelFormat << "'. Only 'binary' format supported \
|
||||
+ for tflite files";
|
||||
+ return EXIT_FAILURE;
|
||||
+ }
|
||||
+ return MainImpl<armnnTfLiteParser::ITfLiteParser, float>(modelPath.c_str(), isModelBinary, computeDevice,
|
||||
+ inputName.c_str(), inputTensorShape.get(),
|
||||
+ inputTensorDataFilePath.c_str(), outputName.c_str(),
|
||||
+ enableProfiling, subgraphId, runtime);
|
||||
+#else
|
||||
+ BOOST_LOG_TRIVIAL(fatal) << "Unknown model format: '" << modelFormat <<
|
||||
+ "'. Please include 'caffe', 'tensorflow', 'tflite' or 'onnx'";
|
||||
+ return EXIT_FAILURE;
|
||||
+#endif
|
||||
+ }
|
||||
+ else
|
||||
+ {
|
||||
+ BOOST_LOG_TRIVIAL(fatal) << "Unknown model format: '" << modelFormat <<
|
||||
+ "'. Please include 'caffe', 'tensorflow', 'tflite' or 'onnx'";
|
||||
+ return EXIT_FAILURE;
|
||||
+ }
|
||||
+}
|
||||
+
|
||||
+int main(int argc, const char* argv[])
|
||||
+{
|
||||
+ // Configures logging for both the ARMNN library and this test program.
|
||||
+#ifdef NDEBUG
|
||||
+ armnn::LogSeverity level = armnn::LogSeverity::Info;
|
||||
+#else
|
||||
+ armnn::LogSeverity level = armnn::LogSeverity::Debug;
|
||||
+#endif
|
||||
+ armnn::ConfigureLogging(true, true, level);
|
||||
+
|
||||
+ std::string testCasesFile;
|
||||
+
|
||||
+ std::string modelFormat = "tensorflow-binary";
|
||||
+ std::string modelPath = "/usr/share/arm/armnn/models/mobilenet_v1_1.0_224_frozen.pb";
|
||||
+ std::string inputName = "input";
|
||||
+ std::string inputTensorShapeStr = "1 224 224 3";
|
||||
+ std::string inputTensorDataFilePath = "/usr/share/arm/armnn/testvecs/test2.mp4";
|
||||
+ std::string outputName = "MobilenetV1/Predictions/Reshape_1";
|
||||
+ std::vector<armnn::BackendId> computeDevices = {armnn::Compute::CpuAcc};
|
||||
+ // Catch ctrl-c to ensure a clean exit
|
||||
+ signal(SIGABRT, exit);
|
||||
+ signal(SIGTERM, exit);
|
||||
+
|
||||
+ if (argc == 1)
|
||||
+ {
|
||||
+ return RunTest(modelFormat, inputTensorShapeStr, computeDevices,
|
||||
+ modelPath, inputName, inputTensorDataFilePath, outputName, false, 1000);
|
||||
+ }
|
||||
+ else
|
||||
+ {
|
||||
+ size_t subgraphId = 0;
|
||||
+ po::options_description desc("Options");
|
||||
+ try
|
||||
+ {
|
||||
+ desc.add_options()
|
||||
+ ("help", "Display usage information")
|
||||
+ ("test-cases,t", po::value(&testCasesFile), "Path to a CSV file containing test cases to run. "
|
||||
+ "If set, further parameters -- with the exception of compute device and concurrency -- will be ignored, "
|
||||
+ "as they are expected to be defined in the file for each test in particular.")
|
||||
+ ("concurrent,n", po::bool_switch()->default_value(false),
|
||||
+ "Whether or not the test cases should be executed in parallel")
|
||||
+ ("model-format,f", po::value(&modelFormat),
|
||||
+ "caffe-binary, caffe-text, onnx-binary, onnx-text, tflite-binary, tensorflow-binary or tensorflow-text.")
|
||||
+ ("model-path,m", po::value(&modelPath), "Path to model file, e.g. .caffemodel, .prototxt,"
|
||||
+ " .tflite, .onnx")
|
||||
+ ("compute,c", po::value<std::vector<armnn::BackendId>>()->multitoken(),
|
||||
+ "The preferred order of devices to run layers on by default. Possible choices: CpuAcc, CpuRef, GpuAcc")
|
||||
+ ("input-name,i", po::value(&inputName), "Identifier of the input tensor in the network.")
|
||||
+ ("input-tensor-shape,s", po::value(&inputTensorShapeStr),
|
||||
+ "The shape of the input tensor in the network as a flat array of integers separated by whitespace. "
|
||||
+ "This parameter is optional, depending on the network.")
|
||||
+ ("input-tensor-data,d", po::value(&inputTensorDataFilePath),
|
||||
+ "Input test file name. It can be image/video clip file name or use 'camera_live_input' to select camera input.")
|
||||
+ ("output-name,o", po::value(&outputName), "Identifier of the output tensor in the network.")
|
||||
+ ("event-based-profiling,e", po::bool_switch()->default_value(false),
|
||||
+ "Enables built in profiler. If unset, defaults to off.")
|
||||
+ ("number_frame", po::value<size_t>(&subgraphId)->default_value(1), "Number of frames to process.");
|
||||
+ }
|
||||
+ catch (const std::exception& e)
|
||||
+ {
|
||||
+ // Coverity points out that default_value(...) can throw a bad_lexical_cast,
|
||||
+ // and that desc.add_options() can throw boost::io::too_few_args.
|
||||
+ // They really won't in any of these cases.
|
||||
+ BOOST_ASSERT_MSG(false, "Caught unexpected exception");
|
||||
+ BOOST_LOG_TRIVIAL(fatal) << "Fatal internal error: " << e.what();
|
||||
+ return EXIT_FAILURE;
|
||||
+ }
|
||||
+
|
||||
+ // Parses the command-line.
|
||||
+ po::variables_map vm;
|
||||
+ try
|
||||
+ {
|
||||
+ po::store(po::parse_command_line(argc, argv, desc), vm);
|
||||
+ po::notify(vm);
|
||||
+ }
|
||||
+ catch (const po::error& e)
|
||||
+ {
|
||||
+ std::cerr << e.what() << std::endl << std::endl;
|
||||
+ std::cerr << desc << std::endl;
|
||||
+ return EXIT_FAILURE;
|
||||
+ }
|
||||
+
|
||||
+ // Run single test
|
||||
+ // Get the preferred order of compute devices.
|
||||
+ std::vector<armnn::BackendId> computeDevices = vm["compute"].as<std::vector<armnn::BackendId>>();
|
||||
+ bool enableProfiling = vm["event-based-profiling"].as<bool>();
|
||||
+
|
||||
+ // Remove duplicates from the list of compute devices.
|
||||
+ RemoveDuplicateDevices(computeDevices);
|
||||
+
|
||||
+ return RunTest(modelFormat, inputTensorShapeStr, computeDevices,
|
||||
+ modelPath, inputName, inputTensorDataFilePath, outputName, enableProfiling, subgraphId);
|
||||
+ }
|
||||
+}
|
||||
+
|
||||
--
|
||||
1.9.1
|
||||
|
@ -1,60 +0,0 @@
|
||||
From ee152f3b68f91c5fff336306d011becdcf3a6b17 Mon Sep 17 00:00:00 2001
|
||||
From: Djordje Senicic <x0157990@ti.com>
|
||||
Date: Sat, 24 Aug 2019 17:58:38 -0400
|
||||
Subject: [PATCH] command line options for video port selection
|
||||
|
||||
- Add command line selection <0|1|2|3> of video port used for live camera input
|
||||
|
||||
Upstream-Status: Inappropriate [TI only test code]
|
||||
|
||||
Signed-off-by: Djordje Senicic <x0157990@ti.com>
|
||||
---
|
||||
tests/ArmnnExamples/ArmnnExamples.cpp | 23 ++++++++++++++++++++---
|
||||
1 file changed, 20 insertions(+), 3 deletions(-)
|
||||
|
||||
diff --git a/tests/ArmnnExamples/ArmnnExamples.cpp b/tests/ArmnnExamples/ArmnnExamples.cpp
|
||||
index 638fc145..d1526539 100644
|
||||
--- a/tests/ArmnnExamples/ArmnnExamples.cpp
|
||||
+++ b/tests/ArmnnExamples/ArmnnExamples.cpp
|
||||
@@ -316,10 +316,27 @@ int MainImpl(const char* modelPath,
|
||||
int input_type = INPUT_IMAGE;
|
||||
std::string filename = inputTensorDataFilePath;
|
||||
|
||||
- size_t i = filename.rfind("camera_live_input", filename.length());
|
||||
+ size_t i = filename.rfind("camera_live_input", filename.length());
|
||||
if (i != string::npos)
|
||||
{
|
||||
- cap = VideoCapture(1);
|
||||
+ int vport = 1;
|
||||
+ size_t loc_i = filename.rfind("camera_live_input0", filename.length());
|
||||
+ if(loc_i != string::npos) vport = 0;
|
||||
+ else {
|
||||
+ loc_i = filename.rfind("camera_live_input1", filename.length());
|
||||
+ if(loc_i != string::npos) vport = 1;
|
||||
+ else {
|
||||
+ loc_i = filename.rfind("camera_live_input2", filename.length());
|
||||
+ if(loc_i != string::npos) vport = 2;
|
||||
+ else {
|
||||
+ loc_i = filename.rfind("camera_live_input3", filename.length());
|
||||
+ if(loc_i != string::npos) vport = 3;
|
||||
+ else std::cout << "Setting ports beyond 3 not supported - using default!" << std::endl;
|
||||
+ }
|
||||
+ }
|
||||
+ }
|
||||
+ std::cout << "Using video" << vport << std::endl;
|
||||
+ cap = VideoCapture(vport);
|
||||
namedWindow("ARMNN MobileNet Example", WINDOW_AUTOSIZE | CV_GUI_NORMAL);
|
||||
input_type = INPUT_CAMERA; //camera input
|
||||
}
|
||||
@@ -609,7 +626,7 @@ int main(int argc, const char* argv[])
|
||||
"The shape of the input tensor in the network as a flat array of integers separated by whitespace. "
|
||||
"This parameter is optional, depending on the network.")
|
||||
("input-tensor-data,d", po::value(&inputTensorDataFilePath),
|
||||
- "Input test file name. It can be image/video clip file name or use 'camera_live_input' to select camera input.")
|
||||
+ "Input test file name. It can be image/video clip file name or 'camera_live_input or camera_live_input<0|1|2|3>' to select camera input.")
|
||||
("output-name,o", po::value(&outputName), "Identifier of the output tensor in the network.")
|
||||
("event-based-profiling,e", po::bool_switch()->default_value(false),
|
||||
"Enables built in profiler. If unset, defaults to off.")
|
||||
--
|
||||
2.17.1
|
||||
|
@ -1,28 +0,0 @@
|
||||
From a3e266a2de7c45116428f4e21645a2657534191b Mon Sep 17 00:00:00 2001
|
||||
From: Djordje Senicic <x0157990@ti.com>
|
||||
Date: Mon, 26 Aug 2019 03:51:39 -0400
|
||||
Subject: [PATCH] armnnexamples: update for 19.08 modifications
|
||||
|
||||
Upstream-Status: Inappropriate [TI only test code]
|
||||
|
||||
Signed-off-by: Djordje Senicic <x0157990@ti.com>
|
||||
---
|
||||
tests/ArmnnExamples/ArmnnExamples.cpp | 2 +-
|
||||
1 file changed, 1 insertion(+), 1 deletion(-)
|
||||
|
||||
diff --git a/tests/ArmnnExamples/ArmnnExamples.cpp b/tests/ArmnnExamples/ArmnnExamples.cpp
|
||||
index d1526539..c10a4fc0 100644
|
||||
--- a/tests/ArmnnExamples/ArmnnExamples.cpp
|
||||
+++ b/tests/ArmnnExamples/ArmnnExamples.cpp
|
||||
@@ -310,7 +310,7 @@ int MainImpl(const char* modelPath,
|
||||
params.m_OutputBindings = { outputName };
|
||||
//params.m_EnableProfiling = enableProfiling;
|
||||
params.m_SubgraphId = 0;
|
||||
- InferenceModel<TParser, TDataType> model(params, enableProfiling, runtime);
|
||||
+ InferenceModel<TParser, TDataType> model(params, enableProfiling, "", runtime);
|
||||
|
||||
VideoCapture cap;
|
||||
int input_type = INPUT_IMAGE;
|
||||
--
|
||||
2.17.1
|
||||
|
@ -1,3 +0,0 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:6af3453b6a0238f9734bbeb13e006f07f7a7a459a978a21423555819415fa328
|
||||
size 28695424
|
3
armnn-24.11.tar.gz
Normal file
3
armnn-24.11.tar.gz
Normal file
@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:ca85052373c19d6816e9842b732b5b3433fefddc302621adac897b1f5b64487a
|
||||
size 29099331
|
@ -1,18 +0,0 @@
|
||||
--- armnn-24.08/include/armnn/Numpy.hpp.orig 2024-09-06 11:05:16.800066800 +0200
|
||||
+++ armnn-24.08/include/armnn/Numpy.hpp 2024-09-06 11:05:58.717592900 +0200
|
||||
@@ -157,7 +157,7 @@ namespace armnnNumpy
|
||||
inline void CreateHeader(std::ifstream& ifStream, HeaderInfo& headerInfo, Header& header)
|
||||
{
|
||||
char stringBuffer[headerInfo.m_HeaderLen];
|
||||
- ifStream.read(stringBuffer, headerInfo.m_HeaderLen);
|
||||
+ ifStream.read(stringBuffer, static_cast<std::streamsize>(headerInfo.m_HeaderLen));
|
||||
|
||||
header.m_HeaderString = std::string(stringBuffer, headerInfo.m_HeaderLen);
|
||||
// Remove new line character at the end of the string
|
||||
@@ -403,4 +403,4 @@ namespace armnnNumpy
|
||||
}
|
||||
}
|
||||
|
||||
-#endif // NUMPY_HPP
|
||||
\ No newline at end of file
|
||||
+#endif // NUMPY_HPP
|
@ -1,19 +0,0 @@
|
||||
--- armnn-19.08.orig/tests/CMakeLists.txt 2019-10-17 09:11:02.836949176 +0200
|
||||
+++ armnn-19.08/tests/CMakeLists.txt 2019-10-17 09:10:50.384869262 +0200
|
||||
@@ -1,6 +1,3 @@
|
||||
-find_package( OpenCV REQUIRED )
|
||||
-include_directories( ${OpenCV_INCLUDE_DIRS} )
|
||||
-
|
||||
# UnitTests
|
||||
include(CheckIncludeFiles)
|
||||
|
||||
@@ -368,6 +365,9 @@ if(BUILD_ARMNN_QUANTIZER)
|
||||
endif()
|
||||
|
||||
if (BUILD_ARMNN_EXAMPLES)
|
||||
+ find_package( OpenCV REQUIRED )
|
||||
+ include_directories( ${OpenCV_INCLUDE_DIRS} )
|
||||
+
|
||||
set(ArmnnExamples_sources
|
||||
ArmnnExamples/ArmnnExamples.cpp)
|
||||
|
@ -1,3 +1,22 @@
|
||||
-------------------------------------------------------------------
|
||||
Tue Dec 3 08:53:30 UTC 2024 - Guillaume GARDET <guillaume.gardet@opensuse.org>
|
||||
|
||||
- Remove downstream patches:
|
||||
* 0003-add-more-test-command-line-arguments.patch
|
||||
* 0005-add-armnn-mobilenet-test-example.patch
|
||||
* 0006-armnn-mobilenet-test-example.patch
|
||||
* 0009-command-line-options-for-video-port-selection.patch
|
||||
* 0010-armnnexamples-update-for-19.08-modifications.patch
|
||||
* armnn-fix_find_opencv.patch
|
||||
|
||||
-------------------------------------------------------------------
|
||||
Mon Dec 2 12:59:30 UTC 2024 - Guillaume GARDET <guillaume.gardet@opensuse.org>
|
||||
|
||||
- Update to 24.11:
|
||||
* Changelog: https://github.com/ARM-software/armnn/releases/tag/v24.11
|
||||
- Drop upstream patch:
|
||||
* armnn-fix-armv7.patch
|
||||
|
||||
-------------------------------------------------------------------
|
||||
Fri Sep 6 13:29:47 UTC 2024 - Guillaume GARDET <guillaume.gardet@opensuse.org>
|
||||
|
||||
|
77
armnn.spec
77
armnn.spec
@ -43,13 +43,6 @@
|
||||
%else
|
||||
%bcond_with armnn_tests
|
||||
%endif
|
||||
# Extra tests require opencv(3)-devel, but it is broken for Leap 15.1 - boo#1154091
|
||||
%if 0%{?suse_version} > 1500 || 0%{?sle_version} >= 150200
|
||||
# FIXME: disabled for now, as it fails since version 21.05
|
||||
%bcond_with armnn_extra_tests
|
||||
%else
|
||||
%bcond_with armnn_extra_tests
|
||||
%endif
|
||||
# flatbuffers-devel is available on Leap 15.2+/SLE15SP2+
|
||||
# But tensorflow-lite >= 2.10 is only avaialble on Tumbleweed
|
||||
%if 0%{?suse_version} > 1500
|
||||
@ -65,8 +58,8 @@
|
||||
%bcond_with armnn_onnx
|
||||
%endif
|
||||
%define version_major 24
|
||||
%define version_minor 08
|
||||
%define version_lib 33
|
||||
%define version_minor 11
|
||||
%define version_lib 34
|
||||
%define version_lib_testutils 3
|
||||
%define version_lib_tfliteparser 24
|
||||
%define version_lib_onnxparser 24
|
||||
@ -79,15 +72,6 @@ Group: Development/Libraries/Other
|
||||
URL: https://developer.arm.com/products/processors/machine-learning/arm-nn
|
||||
Source0: https://github.com/ARM-software/armnn/archive/v%{version}.tar.gz#/armnn-%{version}.tar.gz
|
||||
Source1: armnn-rpmlintrc
|
||||
# PATCH-FIX-UPSTREAM - https://github.com/ARM-software/armnn/issues/786
|
||||
Patch1: armnn-fix-armv7.patch
|
||||
# PATCHES to add downstream ArmnnExamples binary - https://layers.openembedded.org/layerindex/recipe/87610/
|
||||
Patch200: 0003-add-more-test-command-line-arguments.patch
|
||||
Patch201: 0005-add-armnn-mobilenet-test-example.patch
|
||||
Patch202: 0006-armnn-mobilenet-test-example.patch
|
||||
Patch203: 0009-command-line-options-for-video-port-selection.patch
|
||||
Patch204: 0010-armnnexamples-update-for-19.08-modifications.patch
|
||||
Patch205: armnn-fix_find_opencv.patch
|
||||
BuildRequires: ComputeLibrary-devel >= %{version_major}.%{version_minor}
|
||||
BuildRequires: cmake >= 3.22
|
||||
BuildRequires: gcc-c++
|
||||
@ -105,10 +89,6 @@ BuildRequires: libboost_filesystem-devel >= 1.59
|
||||
BuildRequires: libboost_program_options-devel >= 1.59
|
||||
BuildRequires: libboost_system-devel >= 1.59
|
||||
BuildRequires: libboost_test-devel >= 1.59
|
||||
%if %{with armnn_extra_tests}
|
||||
BuildRequires: libboost_log-devel >= 1.59
|
||||
BuildRequires: libboost_thread-devel >= 1.59
|
||||
%endif
|
||||
%endif
|
||||
%if %{with armnn_flatbuffers}
|
||||
BuildRequires: flatbuffers-devel
|
||||
@ -125,13 +105,6 @@ BuildRequires: ocl-icd-devel
|
||||
BuildRequires: opencl-cpp-headers
|
||||
BuildRequires: opencl-headers
|
||||
%endif
|
||||
%if %{with armnn_extra_tests}
|
||||
%if 0%{?suse_version} > 1500
|
||||
BuildRequires: opencv3-devel
|
||||
%else
|
||||
BuildRequires: opencv-devel
|
||||
%endif
|
||||
%endif
|
||||
%if %{with armnn_onnx}
|
||||
BuildRequires: python3-onnx
|
||||
%endif
|
||||
@ -201,29 +174,6 @@ modification – across Arm Cortex CPUs and Arm Mali GPUs.
|
||||
|
||||
This package contains the development libraries and headers for armnn.
|
||||
|
||||
%if %{with armnn_extra_tests}
|
||||
%package -n %{name}-extratests
|
||||
Summary: Additionnal downstream tests for Arm NN
|
||||
# Make sure we do not install both openCL and non-openCL (CPU only) versions.
|
||||
Group: Development/Libraries/C and C++
|
||||
Requires: %{name}
|
||||
# Make sure we do not install both openCL and non-openCL (CPU only) versions.
|
||||
%if "%{target}" == "opencl"
|
||||
Conflicts: armnn-extratests
|
||||
%else
|
||||
Conflicts: armnn-opencl-extratests
|
||||
%endif
|
||||
|
||||
%description -n %{name}-extratests
|
||||
Arm NN is an inference engine for CPUs, GPUs and NPUs.
|
||||
It bridges the gap between existing NN frameworks and the underlying IP.
|
||||
It enables efficient translation of existing neural network frameworks,
|
||||
such as TensorFlow Lite, allowing them to run efficiently – without
|
||||
modification – across Arm Cortex CPUs and Arm Mali GPUs.
|
||||
|
||||
This package contains additionnal downstream tests for armnn.
|
||||
%endif
|
||||
|
||||
%package -n libarmnn%{version_lib}%{?package_suffix}
|
||||
Summary: libarmnn from armnn
|
||||
Group: Development/Libraries/C and C++
|
||||
@ -374,17 +324,6 @@ This package contains the libarmnnOnnxParser library from armnn.
|
||||
|
||||
%prep
|
||||
%setup -q -n armnn-%{version}
|
||||
%patch -P 1 -p1
|
||||
%if %{with armnn_extra_tests}
|
||||
%patch -P 200 -p1
|
||||
%patch -P 201 -p1
|
||||
%patch -P 202 -p1
|
||||
%patch -P 203 -p1
|
||||
%patch -P 204 -p1
|
||||
%patch -P 205 -p1
|
||||
# Add Boost log as downstream extra test requires it
|
||||
sed -i 's/ find_package(Boost 1.59 REQUIRED COMPONENTS unit_test_framework)/find_package(Boost 1.59 REQUIRED COMPONENTS unit_test_framework filesystem system log program_options)/' ./cmake/GlobalConfig.cmake
|
||||
%endif
|
||||
|
||||
%build
|
||||
%if %{with armnn_onnx}
|
||||
@ -451,11 +390,7 @@ protoc $PROTO --proto_path=. --proto_path=%{_includedir} --proto_path=$(dirname
|
||||
-DBUILD_PYTHON_WHL=OFF \
|
||||
-DBUILD_PYTHON_SRC=OFF \
|
||||
%endif
|
||||
%if %{with armnn_extra_tests}
|
||||
-DBUILD_ARMNN_EXAMPLES=ON
|
||||
%else
|
||||
-DBUILD_ARMNN_EXAMPLES=OFF
|
||||
%endif
|
||||
|
||||
|
||||
%if 0%{?suse_version} > 1500
|
||||
%cmake_build
|
||||
@ -530,7 +465,6 @@ LD_LIBRARY_PATH="$(pwd)/build/" \
|
||||
%if %{with armnn_tests}
|
||||
%{_bindir}/ExecuteNetwork
|
||||
%if %{with armnn_flatbuffers}
|
||||
%{_bindir}/ArmnnConverter
|
||||
%{_bindir}/TfLite*-Armnn
|
||||
%endif
|
||||
%if %{with armnn_onnx}
|
||||
@ -541,11 +475,6 @@ LD_LIBRARY_PATH="$(pwd)/build/" \
|
||||
%endif
|
||||
%endif
|
||||
|
||||
%if %{with armnn_extra_tests}
|
||||
%files -n %{name}-extratests
|
||||
%{_bindir}/ArmnnExamples
|
||||
%endif
|
||||
|
||||
%files -n libarmnn%{version_lib}%{?package_suffix}
|
||||
%{_libdir}/libarmnn.so.*
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user