# # spec file for package armnn # # Copyright (c) 2024 SUSE LLC # # All modifications and additions to the file contributed by third parties # remain the property of their copyright owners, unless otherwise agreed # upon. The license for this file, and modifications and additions to the # file, is the same license as for the pristine package itself (unless the # license for the pristine package is not an Open Source License, in which # case the license is the MIT License). An "Open Source License" is a # license that conforms to the Open Source Definition (Version 1.9) # published by the Open Source Initiative. # Please submit bugfixes or comments via https://bugs.opensuse.org/ # # Disable LTO until UnitTests passes with LTO enabled - https://github.com/ARM-software/armnn/issues/623 %define _lto_cflags %{nil} # Disable Python binding for now %bcond_with PyArmnn %define target @BUILD_FLAVOR@%{nil} %if "%{target}" != "" %define package_suffix -%{target} %endif # Compute library has neon enabled for aarch64 only %ifarch aarch64 %bcond_without compute_neon %else %bcond_with compute_neon %endif %if "%{target}" == "opencl" %bcond_without compute_cl %else %bcond_with compute_cl %endif # stb-devel is available on Leap 15.1+ %if 0%{?suse_version} > 1500 || ( 0%{?sle_version} > 150000 && 0%{?is_opensuse} ) %bcond_without armnn_tests %else %bcond_with armnn_tests %endif # flatbuffers-devel is available on Leap 15.2+/SLE15SP2+ # But tensorflow-lite >= 2.10 is only avaialble on Tumbleweed %if 0%{?suse_version} > 1500 %bcond_without armnn_flatbuffers %else %bcond_with armnn_flatbuffers %endif # ONNX is available on Leap 15.2+/SLE15SP2+, but there is a compatibility issue # with ONNX 1.7.0 in Tumbleweed - https://github.com/ARM-software/armnn/issues/419 %if 0%{?sle_version} >= 150200 %bcond_without armnn_onnx %else %bcond_with armnn_onnx %endif %define version_major 24 %define version_minor 11 %define version_lib 34 %define version_lib_testutils 3 %define version_lib_tfliteparser 24 %define version_lib_onnxparser 24 Name: armnn%{?package_suffix} Version: %{version_major}.%{version_minor} Release: 0 Summary: Arm NN SDK enables machine learning workloads on power-efficient devices License: MIT Group: Development/Libraries/Other URL: https://developer.arm.com/products/processors/machine-learning/arm-nn Source0: https://github.com/ARM-software/armnn/archive/v%{version}.tar.gz#/armnn-%{version}.tar.gz Source1: armnn-rpmlintrc BuildRequires: ComputeLibrary-devel >= %{version_major}.%{version_minor} BuildRequires: cmake >= 3.22 BuildRequires: gcc-c++ BuildRequires: protobuf-devel BuildRequires: python-rpm-macros BuildRequires: valgrind-devel BuildRequires: vim # Make armnn-opencl pulls lib*-opencl, and armnn pulls non opencl libs Requires: libarmnn%{version_lib}%{?package_suffix} = %{version} ExcludeArch: %ix86 %if 0%{?suse_version} < 1330 BuildRequires: boost-devel >= 1.59 %else BuildRequires: libboost_filesystem-devel >= 1.59 BuildRequires: libboost_program_options-devel >= 1.59 BuildRequires: libboost_system-devel >= 1.59 BuildRequires: libboost_test-devel >= 1.59 %endif %if %{with armnn_flatbuffers} BuildRequires: flatbuffers-devel %if 0%{?suse_version} > 1550 BuildRequires: tensorflow-lite-devel >= 2.10 %else BuildRequires: tensorflow2-lite-devel >= 2.10 %endif %endif %if %{with compute_cl} # Mesa-libOpenCl is required for tests BuildRequires: Mesa-libOpenCL BuildRequires: ocl-icd-devel BuildRequires: opencl-cpp-headers BuildRequires: opencl-headers %endif %if %{with armnn_onnx} BuildRequires: python3-onnx %endif %if %{with armnn_tests} BuildRequires: stb-devel %endif %if %{with PyArmnn} BuildRequires: python3-devel BuildRequires: python3-wheel BuildRequires: swig >= 4 %endif %if %{with compute_cl} Recommends: Mesa-libOpenCL %endif %if %{with armnn_flatbuffers} Requires: libarmnnSerializer%{version_lib}%{?package_suffix} = %{version} Requires: libarmnnTfLiteParser%{version_lib_tfliteparser}%{?package_suffix} = %{version} %endif %if %{with armnn_onnx} Requires: libarmnnOnnxParser%{version_lib_onnxparser}%{?package_suffix} = %{version} %endif # Make sure we do not install both openCL and non-openCL (CPU only) versions. %if "%{target}" == "opencl" Conflicts: armnn %else Conflicts: armnn-opencl %endif ExclusiveArch: aarch64 armv7l armv7hl x86_64 %description Arm NN is an inference engine for CPUs, GPUs and NPUs. It bridges the gap between existing NN frameworks and the underlying IP. It enables efficient translation of existing neural network frameworks, such as TensorFlow Lite, allowing them to run efficiently – without modification – across Arm Cortex CPUs and Arm Mali GPUs. %package devel Summary: Development headers and libraries for armnn # Make sure we do not install both openCL and non-openCL (CPU only) versions. Group: Development/Libraries/C and C++ Requires: %{name} = %{version} Requires: libarmnn%{version_lib}%{?package_suffix} = %{version} Requires: libarmnnBasePipeServer%{version_lib}%{?package_suffix} = %{version} Requires: libarmnnTestUtils%{version_lib_testutils}%{?package_suffix} Requires: libtimelineDecoder%{version_lib}%{?package_suffix} = %{version} Requires: libtimelineDecoderJson%{version_lib}%{?package_suffix} = %{version} # Make sure we do not install both openCL and non-openCL (CPU only) versions. %if "%{target}" == "opencl" Conflicts: armnn-devel %else Conflicts: armnn-opencl-devel %endif %if %{with armnn_flatbuffers} Requires: libarmnnSerializer%{version_lib}%{?package_suffix} = %{version} Requires: libarmnnTfLiteParser%{version_lib_tfliteparser}%{?package_suffix} = %{version} %endif %if %{with armnn_onnx} Requires: libarmnnOnnxParser%{version_lib_onnxparser}%{?package_suffix} = %{version} %endif %description devel Arm NN is an inference engine for CPUs, GPUs and NPUs. It bridges the gap between existing NN frameworks and the underlying IP. It enables efficient translation of existing neural network frameworks, such as TensorFlow Lite, allowing them to run efficiently – without modification – across Arm Cortex CPUs and Arm Mali GPUs. This package contains the development libraries and headers for armnn. %package -n libarmnn%{version_lib}%{?package_suffix} Summary: libarmnn from armnn Group: Development/Libraries/C and C++ %if "%{target}" == "opencl" Conflicts: libarmnn%{version_lib} %else Conflicts: libarmnn%{version_lib}-opencl %endif %description -n libarmnn%{version_lib}%{?package_suffix} Arm NN is an inference engine for CPUs, GPUs and NPUs. It bridges the gap between existing NN frameworks and the underlying IP. It enables efficient translation of existing neural network frameworks, such as TensorFlow Lite, allowing them to run efficiently – without modification – across Arm Cortex CPUs and Arm Mali GPUs. This package contains the libarmnn library from armnn. %package -n libarmnnBasePipeServer%{version_lib}%{?package_suffix} Summary: libarmnnBasePipeServer from armnn Group: Development/Libraries/C and C++ %if "%{target}" == "opencl" Conflicts: libarmnnBasePipeServer%{version_lib} %else Conflicts: libarmnnBasePipeServer%{version_lib}-opencl %endif %description -n libarmnnBasePipeServer%{version_lib}%{?package_suffix} Arm NN is an inference engine for CPUs, GPUs and NPUs. It bridges the gap between existing NN frameworks and the underlying IP. It enables efficient translation of existing neural network frameworks, such as TensorFlow Lite, allowing them to run efficiently – without modification – across Arm Cortex CPUs and Arm Mali GPUs. This package contains the libarmnnBasePipeServer library from armnn. %package -n libarmnnTestUtils%{version_lib_testutils}%{?package_suffix} Summary: libarmnnTestUtils from armnn Group: Development/Libraries/C and C++ %if "%{target}" == "opencl" Conflicts: libarmnnTestUtils%{version_lib_testutils} %else Conflicts: libarmnnTestUtils%{version_lib_testutils}-opencl %endif %description -n libarmnnTestUtils%{version_lib_testutils}%{?package_suffix} Arm NN is an inference engine for CPUs, GPUs and NPUs. It bridges the gap between existing NN frameworks and the underlying IP. It enables efficient translation of existing neural network frameworks, such as TensorFlow Lite, allowing them to run efficiently – without modification – across Arm Cortex CPUs and Arm Mali GPUs. This package contains the libarmnnTestUtils library from armnn. %package -n libtimelineDecoder%{version_lib}%{?package_suffix} Summary: libtimelineDecoder from armnn Group: Development/Libraries/C and C++ %if "%{target}" == "opencl" Conflicts: libtimelineDecoder%{version_lib} %else Conflicts: libtimelineDecoder%{version_lib}-opencl %endif %description -n libtimelineDecoder%{version_lib}%{?package_suffix} Arm NN is an inference engine for CPUs, GPUs and NPUs. It bridges the gap between existing NN frameworks and the underlying IP. It enables efficient translation of existing neural network frameworks, such as TensorFlow Lite, allowing them to run efficiently – without modification – across Arm Cortex CPUs and Arm Mali GPUs. This package contains the libtimelineDecoder library from armnn. %package -n libtimelineDecoderJson%{version_lib}%{?package_suffix} Summary: libtimelineDecoderJson from armnn Group: Development/Libraries/C and C++ %if "%{target}" == "opencl" Conflicts: libtimelineDecoderJson%{version_lib} %else Conflicts: libtimelineDecoderJson%{version_lib}-opencl %endif %description -n libtimelineDecoderJson%{version_lib}%{?package_suffix} Arm NN is an inference engine for CPUs, GPUs and NPUs. It bridges the gap between existing NN frameworks and the underlying IP. It enables efficient translation of existing neural network frameworks, such as TensorFlow Lite, allowing them to run efficiently – without modification – across Arm Cortex CPUs and Arm Mali GPUs. This package contains the libtimelineDecoder library from armnn. %if %{with armnn_flatbuffers} %package -n libarmnnSerializer%{version_lib}%{?package_suffix} Summary: libarmnnSerializer from armnn Group: Development/Libraries/C and C++ %if "%{target}" == "opencl" Conflicts: libarmnnSerializer%{version_lib} %else Conflicts: libarmnnSerializer%{version_lib}-opencl %endif %description -n libarmnnSerializer%{version_lib}%{?package_suffix} Arm NN is an inference engine for CPUs, GPUs and NPUs. It bridges the gap between existing NN frameworks and the underlying IP. It enables efficient translation of existing neural network frameworks, such as TensorFlow Lite, allowing them to run efficiently – without modification – across Arm Cortex CPUs and Arm Mali GPUs. This package contains the libarmnnSerializer library from armnn. %package -n libarmnnTfLiteParser%{version_lib_tfliteparser}%{?package_suffix} Summary: libarmnnTfLiteParser from armnn Group: Development/Libraries/C and C++ %if "%{target}" == "opencl" Conflicts: libarmnnTfLiteParser%{version_lib_tfliteparser} %else Conflicts: libarmnnTfLiteParser%{version_lib_tfliteparser}-opencl %endif %description -n libarmnnTfLiteParser%{version_lib_tfliteparser}%{?package_suffix} Arm NN is an inference engine for CPUs, GPUs and NPUs. It bridges the gap between existing NN frameworks and the underlying IP. It enables efficient translation of existing neural network frameworks, such as TensorFlow Lite, allowing them to run efficiently – without modification – across Arm Cortex CPUs and Arm Mali GPUs. This package contains the libarmnnTfLiteParser library from armnn. %endif %if %{with armnn_onnx} %package -n libarmnnOnnxParser%{version_lib_onnxparser}%{?package_suffix} Summary: libarmnnOnnxParser from armnn Group: Development/Libraries/C and C++ %if "%{target}" == "opencl" Conflicts: libarmnnOnnxParser%{version_lib_onnxparser} %else Conflicts: libarmnnOnnxParser%{version_lib_onnxparser}-opencl %endif %description -n libarmnnOnnxParser%{version_lib_onnxparser}%{?package_suffix} Arm NN is an inference engine for CPUs, GPUs and NPUs. It bridges the gap between existing NN frameworks and the underlying IP. It enables efficient translation of existing neural network frameworks, such as TensorFlow Lite, allowing them to run efficiently – without modification – across Arm Cortex CPUs and Arm Mali GPUs. This package contains the libarmnnOnnxParser library from armnn. %endif %prep %setup -q -n armnn-%{version} %build %if %{with armnn_onnx} mkdir onnx_deps PROTO=$(find %{_libdir} -name onnx.proto) protoc $PROTO --proto_path=. --proto_path=%{_includedir} --proto_path=$(dirname $(find %{_libdir} -name onnx)) --cpp_out=./onnx_deps %endif %cmake \ -DCMAKE_SKIP_RPATH=True \ -DSHARED_BOOST=1 \ -DCMAKE_CXX_FLAGS:STRING="%{optflags} -pthread -Wno-error=unused-result" \ -DBOOST_LIBRARYDIR=%{_libdir} \ %if %{with armnn_onnx} -DBUILD_ONNX_PARSER=ON \ -DONNX_GENERATED_SOURCES=../onnx_deps/ \ %else -DBUILD_ONNX_PARSER=OFF \ %endif %if %{with armnn_flatbuffers} -DBUILD_ARMNN_SERIALIZER=ON \ -DFLATC_DIR=%{_bindir} \ -DFLATBUFFERS_INCLUDE_PATH=%{_includedir} \ -DBUILD_TF_LITE_PARSER=ON \ -DTfLite_Schema_INCLUDE_PATH=%{_includedir}/tensorflow/lite/schema/ \ -DTF_LITE_SCHEMA_INCLUDE_PATH=%{_includedir}/tensorflow/lite/schema/ \ %else -DBUILD_ARMNN_SERIALIZER=OFF \ -DBUILD_TF_LITE_PARSER=OFF \ %endif %if %{with compute_neon} || %{with compute_cl} -DARMCOMPUTE_INCLUDE=%{_includedir} \ -DHALF_INCLUDE=%{_includedir}/half \ -DARMCOMPUTE_BUILD_DIR=%{_libdir} \ -DARMCOMPUTE_ROOT=%{_prefix} \ %endif %if %{with compute_neon} -DARMCOMPUTENEON=ON \ %else -DARMCOMPUTENEON=OFF \ %endif %if %{with compute_cl} -DARMCOMPUTECL=ON \ -DOPENCL_INCLUDE=%{_includedir} \ %else -DARMCOMPUTECL=OFF \ %endif -DTHIRD_PARTY_INCLUDE_DIRS=%{_includedir} \ %if %{with armnn_flatbuffers} -DBUILD_SAMPLE_APP=ON \ %else -DBUILD_SAMPLE_APP=OFF \ %endif %if %{with armnn_tests} -DBUILD_UNIT_TESTS=ON \ -DBUILD_TESTS=ON \ %else -DBUILD_UNIT_TESTS=OFF \ -DBUILD_TESTS=OFF \ %endif %if %{with PyArmnn} -DBUILD_PYTHON_WHL=ON \ -DBUILD_PYTHON_SRC=ON \ %else -DBUILD_PYTHON_WHL=OFF \ -DBUILD_PYTHON_SRC=OFF \ %endif %if 0%{?suse_version} > 1500 %cmake_build %else %make_jobs %endif %if %{with armnn_tests} pushd tests/ %if 0%{?suse_version} > 1500 %cmake_build %else %make_jobs %endif popd %endif %install %cmake_install %if %{with armnn_tests} # Install tests manually install -d %{buildroot}%{_bindir} CP_ARGS="-Prf --preserve=mode,timestamps --no-preserve=ownership" \ find ./build/tests -maxdepth 1 -type f -executable -exec cp $CP_ARGS {} %{buildroot}%{_bindir} \; %endif %if %{with armnn_flatbuffers} # Install Sample app cp $CP_ARGS ./build/samples/SimpleSample %{buildroot}%{_bindir} %endif # Drop static libs - https://github.com/ARM-software/armnn/issues/514 rm -f %{buildroot}%{_libdir}/*.a # openCL UnitTests are failing in OBS due to the lack of openCL device %if %{without compute_cl} && %{with armnn_tests} %check # Run tests LD_LIBRARY_PATH="$(pwd)/build/" \ ./build/UnitTests $UnitTestFlags %endif %post -n libarmnn%{version_lib}%{?package_suffix} -p /sbin/ldconfig %postun -n libarmnn%{version_lib}%{?package_suffix} -p /sbin/ldconfig %post -n libarmnnBasePipeServer%{version_lib}%{?package_suffix} -p /sbin/ldconfig %postun -n libarmnnBasePipeServer%{version_lib}%{?package_suffix} -p /sbin/ldconfig %post -n libarmnnTestUtils%{version_lib_testutils}%{?package_suffix} -p /sbin/ldconfig %postun -n libarmnnTestUtils%{version_lib_testutils}%{?package_suffix} -p /sbin/ldconfig %post -n libtimelineDecoderJson%{version_lib}%{?package_suffix} -p /sbin/ldconfig %postun -n libtimelineDecoderJson%{version_lib}%{?package_suffix} -p /sbin/ldconfig %post -n libtimelineDecoder%{version_lib}%{?package_suffix} -p /sbin/ldconfig %postun -n libtimelineDecoder%{version_lib}%{?package_suffix} -p /sbin/ldconfig %if %{with armnn_flatbuffers} %post -n libarmnnSerializer%{version_lib}%{?package_suffix} -p /sbin/ldconfig %postun -n libarmnnSerializer%{version_lib}%{?package_suffix} -p /sbin/ldconfig %post -n libarmnnTfLiteParser%{version_lib_tfliteparser}%{?package_suffix} -p /sbin/ldconfig %postun -n libarmnnTfLiteParser%{version_lib_tfliteparser}%{?package_suffix} -p /sbin/ldconfig %endif %if %{with armnn_onnx} %post -n libarmnnOnnxParser%{version_lib_onnxparser}%{?package_suffix} -p /sbin/ldconfig %postun -n libarmnnOnnxParser%{version_lib_onnxparser}%{?package_suffix} -p /sbin/ldconfig %endif %files %defattr(-,root,root) %doc README.md %license LICENSE %if %{with armnn_tests} %{_bindir}/ExecuteNetwork %if %{with armnn_flatbuffers} %{_bindir}/TfLite*-Armnn %endif %if %{with armnn_onnx} %{_bindir}/Onnx*-Armnn %endif %if %{with armnn_flatbuffers} %{_bindir}/SimpleSample %endif %endif %files -n libarmnn%{version_lib}%{?package_suffix} %{_libdir}/libarmnn.so.* %files -n libarmnnBasePipeServer%{version_lib}%{?package_suffix} %{_libdir}/libarmnnBasePipeServer.so.* %files -n libarmnnTestUtils%{version_lib_testutils}%{?package_suffix} %{_libdir}/libarmnnTestUtils.so.* %files -n libtimelineDecoder%{version_lib}%{?package_suffix} %{_libdir}/libtimelineDecoder.so.* %files -n libtimelineDecoderJson%{version_lib}%{?package_suffix} %{_libdir}/libtimelineDecoderJson.so.* %if %{with armnn_flatbuffers} %files -n libarmnnSerializer%{version_lib}%{?package_suffix} %{_libdir}/libarmnnSerializer.so.* %files -n libarmnnTfLiteParser%{version_lib_tfliteparser}%{?package_suffix} %{_libdir}/libarmnnTfLiteParser.so.* %endif %if %{with armnn_onnx} %files -n libarmnnOnnxParser%{version_lib_onnxparser}%{?package_suffix} %{_libdir}/libarmnnOnnxParser.so.* %endif %files devel %defattr(-,root,root) %dir %{_includedir}/armnn/ %{_includedir}/armnn/*.hpp %dir %{_includedir}/armnn/backends %{_includedir}/armnn/backends/CMakeLists.txt %{_includedir}/armnn/backends/*.hpp %dir %{_includedir}/armnn/profiling %{_includedir}/armnn/profiling/*.hpp %dir %{_includedir}/armnn/profiling/client/ %dir %{_includedir}/armnn/profiling/client/include/ %{_includedir}/armnn/profiling/client/include/*.hpp %dir %{_includedir}/armnn/profiling/client/include/backends/ %{_includedir}/armnn/profiling/client/include/backends/*.hpp %dir %{_includedir}/armnn/profiling/common/ %dir %{_includedir}/armnn/profiling/common/include/ %{_includedir}/armnn/profiling/common/include/*.hpp %dir %{_includedir}/armnn/utility %{_includedir}/armnn/utility/*.hpp %dir %{_includedir}/armnnUtils %{_includedir}/armnnUtils/*.hpp %dir %{_includedir}/armnnOnnxParser/ %{_includedir}/armnnOnnxParser/*.hpp %dir %{_includedir}/armnnTfLiteParser/ %{_includedir}/armnnTfLiteParser/*.hpp %dir %{_includedir}/armnnDeserializer/ %{_includedir}/armnnDeserializer/IDeserializer.hpp %dir %{_includedir}/armnnSerializer/ %{_includedir}/armnnSerializer/ISerializer.hpp %dir %{_includedir}/armnnTestUtils/ %{_includedir}/armnnTestUtils/*.hpp %dir %{_libdir}/cmake/armnn %{_libdir}/cmake/armnn/* %{_libdir}/libarmnn.so %{_libdir}/libarmnnBasePipeServer.so %{_libdir}/libtimelineDecoder.so %{_libdir}/libtimelineDecoderJson.so %if %{with armnn_flatbuffers} %{_libdir}/libarmnnSerializer.so %{_libdir}/libarmnnTfLiteParser.so %endif %{_libdir}/libarmnnTestUtils.so %if %{with armnn_onnx} %{_libdir}/libarmnnOnnxParser.so %endif %changelog