libqt5-qtdeclarative/aarch64-support.patch
2014-02-18 15:17:31 +00:00

844 lines
29 KiB
Diff

From: Simon Hausmann <simon.hausmann@digia.com>
Date: Wed, 22 Jan 2014 11:53:09 +0000
Subject: Update our double conversion code to the latest release from code.google.com
X-Git-Url: http://quickgit.kde.org/?p=qt%2Fqtdeclarative.git&a=commitdiff&h=998860f00ca1c9eb333787595e05e8cb486802c8
---
Update our double conversion code to the latest release from code.google.com
This fixes AArch64 builds and brings us in sync with upstream commit 2fb03de56faa32bbba5e02222528e7b760f71d77
Task-number: QTBUG-35528
Change-Id: Ib356627e06c1fecaa5b3f66d0a98fb5b30dc87e5
Reviewed-by: Liang Qi <liang.qi@digia.com>
Reviewed-by: Lars Knoll <lars.knoll@digia.com>
---
--- a/src/3rdparty/double-conversion/README
+++ b/src/3rdparty/double-conversion/README
@@ -3,4 +3,4 @@ from
http://code.google.com/p/double-conversion/
-commit e5b34421b763f7bf7e4f9081403db417d5a55a36
+commit 2fb03de56faa32bbba5e02222528e7b760f71d77
--- a/src/3rdparty/double-conversion/bignum-dtoa.cc
+++ b/src/3rdparty/double-conversion/bignum-dtoa.cc
@@ -192,13 +192,13 @@
delta_plus = delta_minus;
}
*length = 0;
- while (true) {
+ for (;;) {
uint16_t digit;
digit = numerator->DivideModuloIntBignum(*denominator);
ASSERT(digit <= 9); // digit is a uint16_t and therefore always positive.
// digit = numerator / denominator (integer division).
// numerator = numerator % denominator.
- buffer[(*length)++] = digit + '0';
+ buffer[(*length)++] = static_cast<char>(digit + '0');
// Can we stop already?
// If the remainder of the division is less than the distance to the lower
@@ -282,7 +282,7 @@
// exponent (decimal_point), when rounding upwards.
static void GenerateCountedDigits(int count, int* decimal_point,
Bignum* numerator, Bignum* denominator,
- Vector<char>(buffer), int* length) {
+ Vector<char> buffer, int* length) {
ASSERT(count >= 0);
for (int i = 0; i < count - 1; ++i) {
uint16_t digit;
@@ -290,7 +290,7 @@
ASSERT(digit <= 9); // digit is a uint16_t and therefore always positive.
// digit = numerator / denominator (integer division).
// numerator = numerator % denominator.
- buffer[i] = digit + '0';
+ buffer[i] = static_cast<char>(digit + '0');
// Prepare for next iteration.
numerator->Times10();
}
@@ -300,7 +300,8 @@
if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
digit++;
}
- buffer[count - 1] = digit + '0';
+ ASSERT(digit <= 10);
+ buffer[count - 1] = static_cast<char>(digit + '0');
// Correct bad digits (in case we had a sequence of '9's). Propagate the
// carry until we hat a non-'9' or til we reach the first digit.
for (int i = count - 1; i > 0; --i) {
--- a/src/3rdparty/double-conversion/bignum.cc
+++ b/src/3rdparty/double-conversion/bignum.cc
@@ -40,6 +40,7 @@
template<typename S>
static int BitSize(S value) {
+ (void) value; // Mark variable as used.
return 8 * sizeof(value);
}
@@ -122,9 +123,8 @@
static int HexCharValue(char c) {
if ('0' <= c && c <= '9') return c - '0';
if ('a' <= c && c <= 'f') return 10 + c - 'a';
- if ('A' <= c && c <= 'F') return 10 + c - 'A';
- UNREACHABLE();
- return 0; // To make compiler happy.
+ ASSERT('A' <= c && c <= 'F');
+ return 10 + c - 'A';
}
@@ -501,13 +501,14 @@
// Start by removing multiples of 'other' until both numbers have the same
// number of digits.
while (BigitLength() > other.BigitLength()) {
- // This naive approach is extremely inefficient if the this divided other
- // might be big. This function is implemented for doubleToString where
+ // This naive approach is extremely inefficient if `this` divided by other
+ // is big. This function is implemented for doubleToString where
// the result should be small (less than 10).
ASSERT(other.bigits_[other.used_digits_ - 1] >= ((1 << kBigitSize) / 16));
+ ASSERT(bigits_[used_digits_ - 1] < 0x10000);
// Remove the multiples of the first digit.
// Example this = 23 and other equals 9. -> Remove 2 multiples.
- result += bigits_[used_digits_ - 1];
+ result += static_cast<uint16_t>(bigits_[used_digits_ - 1]);
SubtractTimes(other, bigits_[used_digits_ - 1]);
}
@@ -523,13 +524,15 @@
// Shortcut for easy (and common) case.
int quotient = this_bigit / other_bigit;
bigits_[used_digits_ - 1] = this_bigit - other_bigit * quotient;
- result += quotient;
+ ASSERT(quotient < 0x10000);
+ result += static_cast<uint16_t>(quotient);
Clamp();
return result;
}
int division_estimate = this_bigit / (other_bigit + 1);
- result += division_estimate;
+ ASSERT(division_estimate < 0x10000);
+ result += static_cast<uint16_t>(division_estimate);
SubtractTimes(other, division_estimate);
if (other_bigit * (division_estimate + 1) > this_bigit) {
@@ -560,8 +563,8 @@
static char HexCharOfValue(int value) {
ASSERT(0 <= value && value <= 16);
- if (value < 10) return value + '0';
- return value - 10 + 'A';
+ if (value < 10) return static_cast<char>(value + '0');
+ return static_cast<char>(value - 10 + 'A');
}
@@ -755,7 +758,6 @@
Chunk difference = bigits_[i] - borrow;
bigits_[i] = difference & kBigitMask;
borrow = difference >> (kChunkSize - 1);
- ++i;
}
Clamp();
}
--- a/src/3rdparty/double-conversion/cached-powers.cc
+++ b/src/3rdparty/double-conversion/cached-powers.cc
@@ -144,7 +144,6 @@
int max_exponent,
DiyFp* power,
int* decimal_exponent) {
- (void)max_exponent; // Silence unused parameter warning in release builds
int kQ = DiyFp::kSignificandSize;
double k = ceil((min_exponent + kQ - 1) * kD_1_LOG2_10);
int foo = kCachedPowersOffset;
@@ -153,6 +152,7 @@
ASSERT(0 <= index && index < kCachedPowersLength);
CachedPower cached_power = kCachedPowers[index];
ASSERT(min_exponent <= cached_power.binary_exponent);
+ (void) max_exponent; // Mark variable as used.
ASSERT(cached_power.binary_exponent <= max_exponent);
*decimal_exponent = cached_power.decimal_exponent;
*power = DiyFp(cached_power.significand, cached_power.binary_exponent);
--- a/src/3rdparty/double-conversion/double-conversion.cc
+++ b/src/3rdparty/double-conversion/double-conversion.cc
@@ -348,7 +348,6 @@ static BignumDtoaMode DtoaToBignumDtoaMo
case DoubleToStringConverter::PRECISION: return BIGNUM_DTOA_PRECISION;
default:
UNREACHABLE();
- return BIGNUM_DTOA_SHORTEST; // To silence compiler.
}
}
@@ -403,8 +402,8 @@ void DoubleToStringConverter::DoubleToAs
vector, length, point);
break;
default:
- UNREACHABLE();
fast_worked = false;
+ UNREACHABLE();
}
if (fast_worked) return;
@@ -417,8 +416,9 @@ void DoubleToStringConverter::DoubleToAs
// Consumes the given substring from the iterator.
// Returns false, if the substring does not match.
-static bool ConsumeSubString(const char** current,
- const char* end,
+template <class Iterator>
+static bool ConsumeSubString(Iterator* current,
+ Iterator end,
const char* substring) {
ASSERT(**current == *substring);
for (substring++; *substring != '\0'; substring++) {
@@ -440,10 +440,36 @@ static bool ConsumeSubString(const char*
const int kMaxSignificantDigits = 772;
+static const char kWhitespaceTable7[] = { 32, 13, 10, 9, 11, 12 };
+static const int kWhitespaceTable7Length = ARRAY_SIZE(kWhitespaceTable7);
+
+
+static const uc16 kWhitespaceTable16[] = {
+ 160, 8232, 8233, 5760, 6158, 8192, 8193, 8194, 8195,
+ 8196, 8197, 8198, 8199, 8200, 8201, 8202, 8239, 8287, 12288, 65279
+};
+static const int kWhitespaceTable16Length = ARRAY_SIZE(kWhitespaceTable16);
+
+
+static bool isWhitespace(int x) {
+ if (x < 128) {
+ for (int i = 0; i < kWhitespaceTable7Length; i++) {
+ if (kWhitespaceTable7[i] == x) return true;
+ }
+ } else {
+ for (int i = 0; i < kWhitespaceTable16Length; i++) {
+ if (kWhitespaceTable16[i] == x) return true;
+ }
+ }
+ return false;
+}
+
+
// Returns true if a nonspace found and false if the end has reached.
-static inline bool AdvanceToNonspace(const char** current, const char* end) {
+template <class Iterator>
+static inline bool AdvanceToNonspace(Iterator* current, Iterator end) {
while (*current != end) {
- if (**current != ' ') return true;
+ if (!isWhitespace(**current)) return true;
++*current;
}
return false;
@@ -462,26 +488,50 @@ static double SignedZero(bool sign) {
}
+// Returns true if 'c' is a decimal digit that is valid for the given radix.
+//
+// The function is small and could be inlined, but VS2012 emitted a warning
+// because it constant-propagated the radix and concluded that the last
+// condition was always true. By moving it into a separate function the
+// compiler wouldn't warn anymore.
+static bool IsDecimalDigitForRadix(int c, int radix) {
+ return '0' <= c && c <= '9' && (c - '0') < radix;
+}
+
+// Returns true if 'c' is a character digit that is valid for the given radix.
+// The 'a_character' should be 'a' or 'A'.
+//
+// The function is small and could be inlined, but VS2012 emitted a warning
+// because it constant-propagated the radix and concluded that the first
+// condition was always false. By moving it into a separate function the
+// compiler wouldn't warn anymore.
+static bool IsCharacterDigitForRadix(int c, int radix, char a_character) {
+ return radix > 10 && c >= a_character && c < a_character + radix - 10;
+}
+
+
// Parsing integers with radix 2, 4, 8, 16, 32. Assumes current != end.
-template <int radix_log_2>
-static double RadixStringToIeee(const char* current,
- const char* end,
+template <int radix_log_2, class Iterator>
+static double RadixStringToIeee(Iterator* current,
+ Iterator end,
bool sign,
bool allow_trailing_junk,
double junk_string_value,
bool read_as_double,
- const char** trailing_pointer) {
- ASSERT(current != end);
+ bool* result_is_junk) {
+ ASSERT(*current != end);
const int kDoubleSize = Double::kSignificandSize;
const int kSingleSize = Single::kSignificandSize;
const int kSignificandSize = read_as_double? kDoubleSize: kSingleSize;
+ *result_is_junk = true;
+
// Skip leading 0s.
- while (*current == '0') {
- ++current;
- if (current == end) {
- *trailing_pointer = end;
+ while (**current == '0') {
+ ++(*current);
+ if (*current == end) {
+ *result_is_junk = false;
return SignedZero(sign);
}
}
@@ -492,14 +542,14 @@ static double RadixStringToIeee(const ch
do {
int digit;
- if (*current >= '0' && *current <= '9' && *current < '0' + radix) {
- digit = static_cast<char>(*current) - '0';
- } else if (radix > 10 && *current >= 'a' && *current < 'a' + radix - 10) {
- digit = static_cast<char>(*current) - 'a' + 10;
- } else if (radix > 10 && *current >= 'A' && *current < 'A' + radix - 10) {
- digit = static_cast<char>(*current) - 'A' + 10;
+ if (IsDecimalDigitForRadix(**current, radix)) {
+ digit = static_cast<char>(**current) - '0';
+ } else if (IsCharacterDigitForRadix(**current, radix, 'a')) {
+ digit = static_cast<char>(**current) - 'a' + 10;
+ } else if (IsCharacterDigitForRadix(**current, radix, 'A')) {
+ digit = static_cast<char>(**current) - 'A' + 10;
} else {
- if (allow_trailing_junk || !AdvanceToNonspace(&current, end)) {
+ if (allow_trailing_junk || !AdvanceToNonspace(current, end)) {
break;
} else {
return junk_string_value;
@@ -523,14 +573,14 @@ static double RadixStringToIeee(const ch
exponent = overflow_bits_count;
bool zero_tail = true;
- while (true) {
- ++current;
- if (current == end || !isDigit(*current, radix)) break;
- zero_tail = zero_tail && *current == '0';
+ for (;;) {
+ ++(*current);
+ if (*current == end || !isDigit(**current, radix)) break;
+ zero_tail = zero_tail && **current == '0';
exponent += radix_log_2;
}
- if (!allow_trailing_junk && AdvanceToNonspace(&current, end)) {
+ if (!allow_trailing_junk && AdvanceToNonspace(current, end)) {
return junk_string_value;
}
@@ -552,13 +602,13 @@ static double RadixStringToIeee(const ch
}
break;
}
- ++current;
- } while (current != end);
+ ++(*current);
+ } while (*current != end);
ASSERT(number < ((int64_t)1 << kSignificandSize));
ASSERT(static_cast<int64_t>(static_cast<double>(number)) == number);
- *trailing_pointer = current;
+ *result_is_junk = false;
if (exponent == 0) {
if (sign) {
@@ -573,13 +623,14 @@ static double RadixStringToIeee(const ch
}
+template <class Iterator>
double StringToDoubleConverter::StringToIeee(
- const char* input,
+ Iterator input,
int length,
- int* processed_characters_count,
- bool read_as_double) {
- const char* current = input;
- const char* end = input + length;
+ bool read_as_double,
+ int* processed_characters_count) const {
+ Iterator current = input;
+ Iterator end = input + length;
*processed_characters_count = 0;
@@ -600,7 +651,7 @@ double StringToDoubleConverter::StringTo
if (allow_leading_spaces || allow_trailing_spaces) {
if (!AdvanceToNonspace(&current, end)) {
- *processed_characters_count = current - input;
+ *processed_characters_count = static_cast<int>(current - input);
return empty_string_value_;
}
if (!allow_leading_spaces && (input != current)) {
@@ -626,7 +677,7 @@ double StringToDoubleConverter::StringTo
if (*current == '+' || *current == '-') {
sign = (*current == '-');
++current;
- const char* next_non_space = current;
+ Iterator next_non_space = current;
// Skip following spaces (if allowed).
if (!AdvanceToNonspace(&next_non_space, end)) return junk_string_value_;
if (!allow_spaces_after_sign && (current != next_non_space)) {
@@ -649,7 +700,7 @@ double StringToDoubleConverter::StringTo
}
ASSERT(buffer_pos == 0);
- *processed_characters_count = current - input;
+ *processed_characters_count = static_cast<int>(current - input);
return sign ? -Double::Infinity() : Double::Infinity();
}
}
@@ -668,7 +719,7 @@ double StringToDoubleConverter::StringTo
}
ASSERT(buffer_pos == 0);
- *processed_characters_count = current - input;
+ *processed_characters_count = static_cast<int>(current - input);
return sign ? -Double::NaN() : Double::NaN();
}
}
@@ -677,7 +728,7 @@ double StringToDoubleConverter::StringTo
if (*current == '0') {
++current;
if (current == end) {
- *processed_characters_count = current - input;
+ *processed_characters_count = static_cast<int>(current - input);
return SignedZero(sign);
}
@@ -690,17 +741,17 @@ double StringToDoubleConverter::StringTo
return junk_string_value_; // "0x".
}
- const char* tail_pointer = NULL;
- double result = RadixStringToIeee<4>(current,
+ bool result_is_junk;
+ double result = RadixStringToIeee<4>(&current,
end,
sign,
allow_trailing_junk,
junk_string_value_,
read_as_double,
- &tail_pointer);
- if (tail_pointer != NULL) {
- if (allow_trailing_spaces) AdvanceToNonspace(&tail_pointer, end);
- *processed_characters_count = tail_pointer - input;
+ &result_is_junk);
+ if (!result_is_junk) {
+ if (allow_trailing_spaces) AdvanceToNonspace(&current, end);
+ *processed_characters_count = static_cast<int>(current - input);
}
return result;
}
@@ -709,7 +760,7 @@ double StringToDoubleConverter::StringTo
while (*current == '0') {
++current;
if (current == end) {
- *processed_characters_count = current - input;
+ *processed_characters_count = static_cast<int>(current - input);
return SignedZero(sign);
}
}
@@ -757,7 +808,7 @@ double StringToDoubleConverter::StringTo
while (*current == '0') {
++current;
if (current == end) {
- *processed_characters_count = current - input;
+ *processed_characters_count = static_cast<int>(current - input);
return SignedZero(sign);
}
exponent--; // Move this 0 into the exponent.
@@ -855,16 +906,17 @@ double StringToDoubleConverter::StringTo
if (octal) {
double result;
- const char* tail_pointer = NULL;
- result = RadixStringToIeee<3>(buffer,
+ bool result_is_junk;
+ char* start = buffer;
+ result = RadixStringToIeee<3>(&start,
buffer + buffer_pos,
sign,
allow_trailing_junk,
junk_string_value_,
read_as_double,
- &tail_pointer);
- ASSERT(tail_pointer != NULL);
- *processed_characters_count = current - input;
+ &result_is_junk);
+ ASSERT(!result_is_junk);
+ *processed_characters_count = static_cast<int>(current - input);
return result;
}
@@ -882,8 +934,42 @@ double StringToDoubleConverter::StringTo
} else {
converted = Strtof(Vector<const char>(buffer, buffer_pos), exponent);
}
- *processed_characters_count = current - input;
+ *processed_characters_count = static_cast<int>(current - input);
return sign? -converted: converted;
}
+
+double StringToDoubleConverter::StringToDouble(
+ const char* buffer,
+ int length,
+ int* processed_characters_count) const {
+ return StringToIeee(buffer, length, true, processed_characters_count);
+}
+
+
+double StringToDoubleConverter::StringToDouble(
+ const uc16* buffer,
+ int length,
+ int* processed_characters_count) const {
+ return StringToIeee(buffer, length, true, processed_characters_count);
+}
+
+
+float StringToDoubleConverter::StringToFloat(
+ const char* buffer,
+ int length,
+ int* processed_characters_count) const {
+ return static_cast<float>(StringToIeee(buffer, length, false,
+ processed_characters_count));
+}
+
+
+float StringToDoubleConverter::StringToFloat(
+ const uc16* buffer,
+ int length,
+ int* processed_characters_count) const {
+ return static_cast<float>(StringToIeee(buffer, length, false,
+ processed_characters_count));
+}
+
} // namespace double_conversion
--- a/src/3rdparty/double-conversion/double-conversion.h
+++ b/src/3rdparty/double-conversion/double-conversion.h
@@ -415,9 +415,10 @@
// junk, too.
// - ALLOW_TRAILING_JUNK: ignore trailing characters that are not part of
// a double literal.
- // - ALLOW_LEADING_SPACES: skip over leading spaces.
- // - ALLOW_TRAILING_SPACES: ignore trailing spaces.
- // - ALLOW_SPACES_AFTER_SIGN: ignore spaces after the sign.
+ // - ALLOW_LEADING_SPACES: skip over leading whitespace, including spaces,
+ // new-lines, and tabs.
+ // - ALLOW_TRAILING_SPACES: ignore trailing whitespace.
+ // - ALLOW_SPACES_AFTER_SIGN: ignore whitespace after the sign.
// Ex: StringToDouble("- 123.2") -> -123.2.
// StringToDouble("+ 123.2") -> 123.2
//
@@ -502,19 +503,24 @@
// in the 'processed_characters_count'. Trailing junk is never included.
double StringToDouble(const char* buffer,
int length,
- int* processed_characters_count) {
- return StringToIeee(buffer, length, processed_characters_count, true);
- }
+ int* processed_characters_count) const;
+
+ // Same as StringToDouble above but for 16 bit characters.
+ double StringToDouble(const uc16* buffer,
+ int length,
+ int* processed_characters_count) const;
// Same as StringToDouble but reads a float.
// Note that this is not equivalent to static_cast<float>(StringToDouble(...))
// due to potential double-rounding.
float StringToFloat(const char* buffer,
int length,
- int* processed_characters_count) {
- return static_cast<float>(StringToIeee(buffer, length,
- processed_characters_count, false));
- }
+ int* processed_characters_count) const;
+
+ // Same as StringToFloat above but for 16 bit characters.
+ float StringToFloat(const uc16* buffer,
+ int length,
+ int* processed_characters_count) const;
private:
const int flags_;
@@ -523,10 +529,11 @@
const char* const infinity_symbol_;
const char* const nan_symbol_;
- double StringToIeee(const char* buffer,
+ template <class Iterator>
+ double StringToIeee(Iterator start_pointer,
int length,
- int* processed_characters_count,
- bool read_as_double);
+ bool read_as_double,
+ int* processed_characters_count) const;
DISALLOW_IMPLICIT_CONSTRUCTORS(StringToDoubleConverter);
};
--- a/src/3rdparty/double-conversion/fast-dtoa.cc
+++ b/src/3rdparty/double-conversion/fast-dtoa.cc
@@ -248,10 +248,7 @@
// Note: kPowersOf10[i] == 10^(i-1).
exponent_plus_one_guess++;
// We don't have any guarantees that 2^number_bits <= number.
- // TODO(floitsch): can we change the 'while' into an 'if'? We definitely see
- // number < (2^number_bits - 1), but I haven't encountered
- // number < (2^number_bits - 2) yet.
- while (number < kSmallPowersOfTen[exponent_plus_one_guess]) {
+ if (number < kSmallPowersOfTen[exponent_plus_one_guess]) {
exponent_plus_one_guess--;
}
*power = kSmallPowersOfTen[exponent_plus_one_guess];
@@ -350,7 +347,8 @@
// that is smaller than integrals.
while (*kappa > 0) {
int digit = integrals / divisor;
- buffer[*length] = '0' + digit;
+ ASSERT(digit <= 9);
+ buffer[*length] = static_cast<char>('0' + digit);
(*length)++;
integrals %= divisor;
(*kappa)--;
@@ -379,13 +377,14 @@
ASSERT(one.e() >= -60);
ASSERT(fractionals < one.f());
ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
- while (true) {
+ for (;;) {
fractionals *= 10;
unit *= 10;
unsafe_interval.set_f(unsafe_interval.f() * 10);
// Integer division by one.
int digit = static_cast<int>(fractionals >> -one.e());
- buffer[*length] = '0' + digit;
+ ASSERT(digit <= 9);
+ buffer[*length] = static_cast<char>('0' + digit);
(*length)++;
fractionals &= one.f() - 1; // Modulo by one.
(*kappa)--;
@@ -459,7 +458,8 @@
// that is smaller than 'integrals'.
while (*kappa > 0) {
int digit = integrals / divisor;
- buffer[*length] = '0' + digit;
+ ASSERT(digit <= 9);
+ buffer[*length] = static_cast<char>('0' + digit);
(*length)++;
requested_digits--;
integrals %= divisor;
@@ -492,7 +492,8 @@
w_error *= 10;
// Integer division by one.
int digit = static_cast<int>(fractionals >> -one.e());
- buffer[*length] = '0' + digit;
+ ASSERT(digit <= 9);
+ buffer[*length] = static_cast<char>('0' + digit);
(*length)++;
requested_digits--;
fractionals &= one.f() - 1; // Modulo by one.
--- a/src/3rdparty/double-conversion/fixed-dtoa.cc
+++ b/src/3rdparty/double-conversion/fixed-dtoa.cc
@@ -133,7 +133,7 @@
while (number != 0) {
int digit = number % 10;
number /= 10;
- buffer[(*length) + number_length] = '0' + digit;
+ buffer[(*length) + number_length] = static_cast<char>('0' + digit);
number_length++;
}
// Exchange the digits.
@@ -150,10 +150,8 @@
}
-static void FillDigits64FixedLength(uint64_t number, int requested_length,
+static void FillDigits64FixedLength(uint64_t number,
Vector<char> buffer, int* length) {
- (void) requested_length;
-
const uint32_t kTen7 = 10000000;
// For efficiency cut the number into 3 uint32_t parts, and print those.
uint32_t part2 = static_cast<uint32_t>(number % kTen7);
@@ -255,7 +253,8 @@
fractionals *= 5;
point--;
int digit = static_cast<int>(fractionals >> point);
- buffer[*length] = '0' + digit;
+ ASSERT(digit <= 9);
+ buffer[*length] = static_cast<char>('0' + digit);
(*length)++;
fractionals -= static_cast<uint64_t>(digit) << point;
}
@@ -276,7 +275,8 @@
fractionals128.Multiply(5);
point--;
int digit = fractionals128.DivModPowerOf2(point);
- buffer[*length] = '0' + digit;
+ ASSERT(digit <= 9);
+ buffer[*length] = static_cast<char>('0' + digit);
(*length)++;
}
if (fractionals128.BitAt(point - 1) == 1) {
@@ -360,7 +360,7 @@
remainder = (dividend % divisor) << exponent;
}
FillDigits32(quotient, buffer, length);
- FillDigits64FixedLength(remainder, divisor_power, buffer, length);
+ FillDigits64FixedLength(remainder, buffer, length);
*decimal_point = *length;
} else if (exponent >= 0) {
// 0 <= exponent <= 11
--- a/src/3rdparty/double-conversion/ieee.h
+++ b/src/3rdparty/double-conversion/ieee.h
@@ -256,6 +256,8 @@
return (significand & kSignificandMask) |
(biased_exponent << kPhysicalSignificandSize);
}
+
+ DISALLOW_COPY_AND_ASSIGN(Double);
};
class Single {
@@ -391,6 +393,8 @@
static const uint32_t kNaN = 0x7FC00000;
const uint32_t d32_;
+
+ DISALLOW_COPY_AND_ASSIGN(Single);
};
} // namespace double_conversion
--- a/src/3rdparty/double-conversion/strtod.cc
+++ b/src/3rdparty/double-conversion/strtod.cc
@@ -137,7 +137,7 @@
Vector<const char> right_trimmed = TrimTrailingZeros(left_trimmed);
exponent += left_trimmed.length() - right_trimmed.length();
if (right_trimmed.length() > kMaxSignificantDecimalDigits) {
- (void)space_size; // Silence unused parameter warning in release build
+ (void) space_size; // Mark variable as used.
ASSERT(space_size >= kMaxSignificantDecimalDigits);
CutToMaxSignificantDigits(right_trimmed, exponent,
buffer_copy_space, updated_exponent);
@@ -264,7 +264,6 @@
case 7: return DiyFp(UINT64_2PART_C(0x98968000, 00000000), -40);
default:
UNREACHABLE();
- return DiyFp(0, 0);
}
}
@@ -516,7 +515,7 @@
double double_next2 = Double(double_next).NextDouble();
f4 = static_cast<float>(double_next2);
}
- (void)f2; // Silence unused parameter warning in release builds
+ (void) f2; // Mark variable as used.
ASSERT(f1 <= f2 && f2 <= f3 && f3 <= f4);
// If the guess doesn't lie near a single-precision boundary we can simply
--- a/src/3rdparty/double-conversion/utils.h
+++ b/src/3rdparty/double-conversion/utils.h
@@ -33,17 +33,14 @@
#include <assert.h>
#ifndef ASSERT
-# if defined(WINCE) || defined(_WIN32_WCE)
-# define ASSERT(condition)
-# else
-# define ASSERT(condition) (assert(condition))
-# endif
+#define ASSERT(condition) \
+ assert(condition);
#endif
#ifndef UNIMPLEMENTED
-# define UNIMPLEMENTED() (exit(-1))
+#define UNIMPLEMENTED() (abort())
#endif
#ifndef UNREACHABLE
-# define UNREACHABLE() (exit(-1))
+#define UNREACHABLE() (abort())
#endif
// Double operations detection based on target architecture.
@@ -57,12 +54,14 @@
// disabled.)
// On Linux,x86 89255e-22 != Div_double(89255.0/1e22)
#if defined(_M_X64) || defined(__x86_64__) || \
- defined(__ARMEL__) || defined(__avr32__) || _M_ARM_FP || \
+ defined(__ARMEL__) || defined(__avr32__) || \
defined(__hppa__) || defined(__ia64__) || \
- defined(__mips__) || defined(__powerpc__) || \
+ defined(__mips__) || \
+ defined(__powerpc__) || defined(__ppc__) || defined(__ppc64__) || \
defined(__sparc__) || defined(__sparc) || defined(__s390__) || \
defined(__SH4__) || defined(__alpha__) || \
- defined(_MIPS_ARCH_MIPS32R2)
+ defined(_MIPS_ARCH_MIPS32R2) || \
+ defined(__AARCH64EL__)
#define DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS 1
#elif defined(_M_IX86) || defined(__i386__) || defined(__i386)
#if defined(_WIN32)
@@ -71,12 +70,15 @@
#else
#undef DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS
#endif // _WIN32
-#elif defined(WINCE) || defined(_WIN32_WCE)
-#define DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS 1
#else
#error Target architecture was not detected as supported by Double-Conversion.
#endif
+#if defined(__GNUC__)
+#define DOUBLE_CONVERSION_UNUSED __attribute__((unused))
+#else
+#define DOUBLE_CONVERSION_UNUSED
+#endif
#if defined(_WIN32) && !defined(__MINGW32__)
@@ -95,6 +97,8 @@
#include <stdint.h>
#endif
+
+typedef uint16_t uc16;
// The following macro works on both 32 and 64-bit platforms.
// Usage: instead of writing 0x1234567890123456
@@ -302,8 +306,8 @@
inline Dest BitCast(const Source& source) {
// Compile time assertion: sizeof(Dest) == sizeof(Source)
// A compile error here means your Dest and Source have different sizes.
- char VerifySizesAreEqual[sizeof(Dest) == sizeof(Source) ? 1 : -1];
- (void) VerifySizesAreEqual;
+ DOUBLE_CONVERSION_UNUSED
+ typedef char VerifySizesAreEqual[sizeof(Dest) == sizeof(Source) ? 1 : -1];
Dest dest;
memmove(&dest, &source, sizeof(dest));