Accepting request 1235691 from science:machinelearning

OBS-URL: https://build.opensuse.org/request/show/1235691
OBS-URL: https://build.opensuse.org/package/show/openSUSE:Factory/onednn?expand=0&rev=17
This commit is contained in:
Ana Guerrero 2025-01-09 14:05:59 +00:00 committed by Git OBS Bridge
commit 03ed886f24
5 changed files with 53 additions and 44 deletions

3
_service Normal file
View File

@ -0,0 +1,3 @@
<services>
<service name="download_files" mode="manual" />
</services>

BIN
oneDNN-3.6.2.tar.gz (Stored with Git LFS) Normal file

Binary file not shown.

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:20c4a92cc0ae0dc19d3d2beca0e357b1d13a5a3af9890a2cc3e41a880e4a0302
size 13782760

View File

@ -1,3 +1,9 @@
-------------------------------------------------------------------
Fri Jan 3 23:23:08 UTC 2025 - Eyad Issa <eyadlorenzo@gmail.com>
- Update to 3.6.2:
* https://github.com/oneapi-src/oneDNN/releases/tag/v3.6.2
------------------------------------------------------------------- -------------------------------------------------------------------
Thu Oct 17 11:42:58 UTC 2024 - Guillaume GARDET <guillaume.gardet@opensuse.org> Thu Oct 17 11:42:58 UTC 2024 - Guillaume GARDET <guillaume.gardet@opensuse.org>

View File

@ -1,7 +1,7 @@
# #
# spec file for package onednn # spec file for package onednn
# #
# Copyright (c) 2024 SUSE LLC # Copyright (c) 2025 SUSE LLC
# #
# All modifications and additions to the file contributed by third parties # All modifications and additions to the file contributed by third parties
# remain the property of their copyright owners, unless otherwise agreed # remain the property of their copyright owners, unless otherwise agreed
@ -16,27 +16,25 @@
# #
%define libname libdnnl3
%ifarch x86_64 %ifarch x86_64
%bcond_without opencl %bcond_without opencl
%else %else
# Build broken on non-x86, with openCL # Build broken on non-x86, with openCL
%bcond_with opencl %bcond_with opencl
%endif %endif
%ifarch aarch64 %ifarch aarch64
# Disable ACL until fixed upstream - https://github.com/oneapi-src/oneDNN/issues/2137 # Disable ACL until fixed upstream - https://github.com/oneapi-src/oneDNN/issues/2137
%bcond_with acl %bcond_with acl
%else %else
%bcond_with acl %bcond_with acl
%endif %endif
%define libname libdnnl3
Name: onednn Name: onednn
Version: 3.6 Version: 3.6.2
Release: 0 Release: 0
Summary: Intel Math Kernel Library for Deep Neural Networks Summary: oneAPI Deep Neural Network Library (oneDNN)
License: Apache-2.0 License: Apache-2.0
URL: https://01.org/onednn URL: https://github.com/oneapi-src/oneDNN
Source0: https://github.com/oneapi-src/oneDNN/archive/v%{version}/oneDNN-%{version}.tar.gz Source0: https://github.com/oneapi-src/oneDNN/archive/v%{version}/oneDNN-%{version}.tar.gz
BuildRequires: chrpath BuildRequires: chrpath
BuildRequires: cmake BuildRequires: cmake
@ -44,7 +42,12 @@ BuildRequires: doxygen
BuildRequires: fdupes BuildRequires: fdupes
BuildRequires: gcc-c++ BuildRequires: gcc-c++
BuildRequires: graphviz BuildRequires: graphviz
BuildRequires: ninja
BuildRequires: texlive-dvips-bin BuildRequires: texlive-dvips-bin
Provides: mkl-dnn = %{version}
Obsoletes: mkl-dnn <= %{version}
Provides: oneDNN = %{version}
ExclusiveArch: x86_64 aarch64 ppc64le
%if %{with acl} %if %{with acl}
BuildRequires: ComputeLibrary-devel >= 24.08.1 BuildRequires: ComputeLibrary-devel >= 24.08.1
%endif %endif
@ -53,17 +56,13 @@ BuildRequires: opencl-headers
BuildRequires: pkgconfig BuildRequires: pkgconfig
BuildRequires: pkgconfig(OpenCL) BuildRequires: pkgconfig(OpenCL)
%endif %endif
ExclusiveArch: x86_64 aarch64 ppc64le
Provides: mkl-dnn = %{version}
Obsoletes: mkl-dnn <= %{version}
Provides: oneDNN = %{version}
%description %description
Intel Math Kernel Library for Deep Neural Networks (Intel MKL-DNN) is an oneAPI Deep Neural Network Library (oneDNN) is an open-source cross-platform
open-source performance library for deep-learning applications. The library performance library of basic building blocks for deep learning applications.
accelerates deep-learning applications and frameworks on Intel architecture.
Intel MKL-DNN contains vectorized and threaded building blocks that you can use oneDNN project is part of the UXL Foundation and is an implementation of the
to implement deep neural networks (DNN) with C and C++ interfaces. oneAPI specification for oneDNN component.
%package -n benchdnn %package -n benchdnn
Summary: Header files of Intel Math Kernel Library Summary: Header files of Intel Math Kernel Library
@ -81,13 +80,13 @@ This package only includes the benchmark utility including its input files.
%package devel %package devel
Summary: Header files of Intel Math Kernel Library Summary: Header files of Intel Math Kernel Library
Requires: %{libname} = %{version} Requires: %{libname} = %{version}
Provides: mkl-dnn-devel = %{version}
Obsoletes: mkl-dnn-devel <= %{version}
Provides: oneDNN-devel = %{version}
%if %{with opencl} %if %{with opencl}
Requires: opencl-headers Requires: opencl-headers
Requires: pkgconfig(OpenCL) Requires: pkgconfig(OpenCL)
%endif %endif
Provides: mkl-dnn-devel = %{version}
Obsoletes: mkl-dnn-devel <= %{version}
Provides: oneDNN-devel = %{version}
%description devel %description devel
Intel Math Kernel Library for Deep Neural Networks (Intel MKL-DNN) is an Intel Math Kernel Library for Deep Neural Networks (Intel MKL-DNN) is an
@ -121,6 +120,7 @@ to implement deep neural networks (DNN) with C and C++ interfaces.
%autosetup -p1 -n oneDNN-%{version} %autosetup -p1 -n oneDNN-%{version}
%build %build
%define __builder ninja
%cmake \ %cmake \
-DCMAKE_INSTALL_LIBDIR=%{_lib} \ -DCMAKE_INSTALL_LIBDIR=%{_lib} \
-DMKLDNN_ARCH_OPT_FLAGS="" \ -DMKLDNN_ARCH_OPT_FLAGS="" \
@ -164,7 +164,7 @@ chrpath -d %{buildroot}/%{_bindir}/benchdnn
# do not use macro so we can exclude all gpu and cross (gpu and cpu) tests (they need gpu set up) # do not use macro so we can exclude all gpu and cross (gpu and cpu) tests (they need gpu set up)
pushd build pushd build
export LD_LIBRARY_PATH=%{buildroot}%{_libdir} export LD_LIBRARY_PATH=%{buildroot}%{_libdir}
ctest --output-on-failure --force-new-ctest-process %{_smp_mflags} -E '(gpu|cross)' ctest --output-on-failure --force-new-ctest-process %{?_smp_mflags} -E '(gpu|cross)'
popd popd
%post -n %{libname} -p /sbin/ldconfig %post -n %{libname} -p /sbin/ldconfig