- Update to 2024.2.0

- More Gen AI coverage and framework integrations to minimize code
  changes
  * Llama 3 optimizations for CPUs, built-in GPUs, and discrete 
    GPUs for improved performance and efficient memory usage.
  * Support for Phi-3-mini, a family of AI models that leverages 
    the power of small language models for faster, more accurate 
    and cost-effective text processing.
  * Python Custom Operation is now enabled in OpenVINO making it
    easier for Python developers to code their custom operations
    instead of using C++ custom operations (also supported). 
    Python Custom Operation empowers users to implement their own
    specialized operations into any model.
  * Notebooks expansion to ensure better coverage for new models.
    Noteworthy notebooks added: DynamiCrafter, YOLOv10, Chatbot
    notebook with Phi-3, and QWEN2.
- Broader Large Language Model (LLM) support and more model
  compression techniques.
  * GPTQ method for 4-bit weight compression added to NNCF for
    more efficient inference and improved performance of 
    compressed LLMs.
  * Significant LLM performance improvements and reduced latency
    for both built-in GPUs and discrete GPUs.
  * Significant improvement in 2nd token latency and memory 
    footprint of FP16 weight LLMs on AVX2 (13th Gen Intel® Core™
    processors) and AVX512 (3rd Gen Intel® Xeon® Scalable 
    Processors) based CPU platforms, particularly for small 
    batch sizes.
- More portability and performance to run AI at the edge, in the
  cloud, or locally.
  * Model Serving Enhancements:
  * Preview: OpenVINO Model Server (OVMS) now supports 
    OpenAI-compatible API along with Continuous Batching and 
    PagedAttention, enabling significantly higher throughput 
    for parallel inferencing, especially on Intel® Xeon® 
    processors, when serving LLMs to many concurrent users.
  * OpenVINO backend for Triton Server now supports built-in 
    GPUs and discrete GPUs, in addition to dynamic 
    shapes support.
  * Integration of TorchServe through torch.compile OpenVINO
    backend for easy model deployment, provisioning to 
    multiple instances, model versioning, and maintenance.
  * Preview: addition of the Generate API, a simplified API 
    for text generation using large language models with only
    a few lines of code. The API is available through the newly
    launched OpenVINO GenAI package.
  * Support for Intel Atom® Processor X Series. For more details,
    see System Requirements.
  * Preview: Support for Intel® Xeon® 6 processor.
- Support Change and Deprecation Notices
  * Using deprecated features and components is not advised. 
    They are available to enable a smooth transition to new 
    solutions and will be discontinued in the future. 
    To keep using discontinued features, you will have to revert
    to the last LTS OpenVINO version supporting them. For more 
    details, refer to the OpenVINO Legacy Features and 
    Components page.
  * Discontinued in 2024.0:
    + Runtime components:
      - Intel® Gaussian & Neural Accelerator (Intel® GNA).
        Consider using the Neural Processing Unit (NPU) for 
        low-powered systems like Intel® Core™ Ultra or 14th
        generation and beyond.
      - OpenVINO C++/C/Python 1.0 APIs (see 2023.3 API 
        transition guide for reference).
      - All ONNX Frontend legacy API (known as ONNX_IMPORTER_API)
      - 'PerfomanceMode.UNDEFINED' property as part of the 
        OpenVINO Python API
    + Tools:
      - Deployment Manager. See installation and deployment 
        guides for current distribution options.
      - Accuracy Checker.
      - Post-Training Optimization Tool (POT). Neural Network 
        Compression Framework (NNCF) should be used instead.
      - A Git patch for NNCF integration with 
        huggingface/transformers. The recommended approach 
        is to use huggingface/optimum-intel for applying NNCF
        optimization on top of models from Hugging Face.
      - Support for Apache MXNet, Caffe, and Kaldi model formats.
        Conversion to ONNX may be used as a solution.
  * Deprecated and to be removed in the future:
    + The OpenVINO™ Development Tools package (pip install
      openvino-dev) will be removed from installation options
      and distribution channels beginning with OpenVINO 2025.0.
    + Model Optimizer will be discontinued with OpenVINO 2025.0. 
      Consider using the new conversion methods instead. For
      more details, see the model conversion transition guide.
    + OpenVINO property Affinity API will be discontinued with
      OpenVINO 2025.0. It will be replaced with CPU binding
      configurations (ov::hint::enable_cpu_pinning).
    + OpenVINO Model Server components:
    + “auto shape” and “auto batch size” (reshaping a model in 
      runtime) will be removed in the future. OpenVINO’s dynamic
      shape models are recommended instead.
    + A number of notebooks have been deprecated. For an 
      up-to-date listing of available notebooks, refer to the 
      OpenVINO™ Notebook index (openvinotoolkit.github.io).

OBS-URL: https://build.opensuse.org/package/show/science:machinelearning/openvino?expand=0&rev=9
This commit is contained in:
Guillaume GARDET 2024-06-20 13:47:15 +00:00 committed by Git OBS Bridge
parent 2c6278d49c
commit 580d68900e
6 changed files with 147 additions and 27 deletions

View File

@ -2,8 +2,8 @@
<service name="obs_scm" mode="manual">
<param name="url">https://github.com/openvinotoolkit/openvino.git</param>
<param name="scm">git</param>
<param name="revision">2024.1.0</param>
<param name="version">2024.1.0</param>
<param name="revision">2024.2.0</param>
<param name="version">2024.2.0</param>
<param name="submodules">enable</param>
<param name="filename">openvino</param>
<param name="exclude">.git</param>

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:556da89cbc03dd30dad270a1c1796598932c488a696a87056399e74a4d688680
size 865282063

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:50b3efee39ea06430456d49db9b4173b22999d8b3e7547dc658bb37df82b0f1b
size 1036420623

View File

@ -1,3 +1,104 @@
-------------------------------------------------------------------
Wed Jun 19 21:36:01 UTC 2024 - Alessandro de Oliveira Faria <cabelo@opensuse.org>
- Update to 2024.2.0
- More Gen AI coverage and framework integrations to minimize code
changes
* Llama 3 optimizations for CPUs, built-in GPUs, and discrete
GPUs for improved performance and efficient memory usage.
* Support for Phi-3-mini, a family of AI models that leverages
the power of small language models for faster, more accurate
and cost-effective text processing.
* Python Custom Operation is now enabled in OpenVINO making it
easier for Python developers to code their custom operations
instead of using C++ custom operations (also supported).
Python Custom Operation empowers users to implement their own
specialized operations into any model.
* Notebooks expansion to ensure better coverage for new models.
Noteworthy notebooks added: DynamiCrafter, YOLOv10, Chatbot
notebook with Phi-3, and QWEN2.
- Broader Large Language Model (LLM) support and more model
compression techniques.
* GPTQ method for 4-bit weight compression added to NNCF for
more efficient inference and improved performance of
compressed LLMs.
* Significant LLM performance improvements and reduced latency
for both built-in GPUs and discrete GPUs.
* Significant improvement in 2nd token latency and memory
footprint of FP16 weight LLMs on AVX2 (13th Gen Intel® Core™
processors) and AVX512 (3rd Gen Intel® Xeon® Scalable
Processors) based CPU platforms, particularly for small
batch sizes.
- More portability and performance to run AI at the edge, in the
cloud, or locally.
* Model Serving Enhancements:
* Preview: OpenVINO Model Server (OVMS) now supports
OpenAI-compatible API along with Continuous Batching and
PagedAttention, enabling significantly higher throughput
for parallel inferencing, especially on Intel® Xeon®
processors, when serving LLMs to many concurrent users.
* OpenVINO backend for Triton Server now supports built-in
GPUs and discrete GPUs, in addition to dynamic
shapes support.
* Integration of TorchServe through torch.compile OpenVINO
backend for easy model deployment, provisioning to
multiple instances, model versioning, and maintenance.
* Preview: addition of the Generate API, a simplified API
for text generation using large language models with only
a few lines of code. The API is available through the newly
launched OpenVINO GenAI package.
* Support for Intel Atom® Processor X Series. For more details,
see System Requirements.
* Preview: Support for Intel® Xeon® 6 processor.
- Support Change and Deprecation Notices
* Using deprecated features and components is not advised.
They are available to enable a smooth transition to new
solutions and will be discontinued in the future.
To keep using discontinued features, you will have to revert
to the last LTS OpenVINO version supporting them. For more
details, refer to the OpenVINO Legacy Features and
Components page.
* Discontinued in 2024.0:
+ Runtime components:
- Intel® Gaussian & Neural Accelerator (Intel®GNA).
Consider using the Neural Processing Unit (NPU) for
low-powered systems like Intel® Core™ Ultra or 14th
generation and beyond.
- OpenVINO C++/C/Python 1.0 APIs (see 2023.3 API
transition guide for reference).
- All ONNX Frontend legacy API (known as ONNX_IMPORTER_API)
- 'PerfomanceMode.UNDEFINED' property as part of the
OpenVINO Python API
+ Tools:
- Deployment Manager. See installation and deployment
guides for current distribution options.
- Accuracy Checker.
- Post-Training Optimization Tool (POT).Neural Network
Compression Framework (NNCF) should be used instead.
- A Git patchfor NNCF integration with
huggingface/transformers. The recommended approach
is to usehuggingface/optimum-intelfor applying NNCF
optimization on top of models from Hugging Face.
- Support for Apache MXNet, Caffe, and Kaldi model formats.
Conversion to ONNX may be used as a solution.
* Deprecated and to be removed in the future:
+ The OpenVINO™ Development Tools package (pip install
openvino-dev) will be removed from installation options
and distribution channels beginning with OpenVINO 2025.0.
+ Model Optimizer will be discontinued with OpenVINO 2025.0.
Consider using the new conversion methods instead. For
more details, see the model conversion transition guide.
+ OpenVINO property Affinity API will be discontinued with
OpenVINO 2025.0. It will be replaced with CPU binding
configurations (ov::hint::enable_cpu_pinning).
+ OpenVINO Model Server components:
+ “auto shape” and “auto batch size” (reshaping a model in
runtime) will be removed in the future. OpenVINOs dynamic
shape models are recommended instead.
+ A number of notebooks have been deprecated. For an
up-to-date listing of available notebooks, refer to the
OpenVINO™ Notebook index (openvinotoolkit.github.io).
-------------------------------------------------------------------
Thu May 9 22:56:53 UTC 2024 - Alessandro de Oliveira Faria <cabelo@opensuse.org>

View File

@ -1,4 +1,4 @@
name: openvino
version: 2024.1.0
mtime: 1713778234
commit: f4afc983258bcb2592d999ed6700043fdb58ad78
version: 2024.2.0
mtime: 1716981469
commit: 5c0f38f83f62fdabcdc980fa6dc3ed1ea16c8a05

View File

@ -21,12 +21,12 @@
# Compilation takes ~1 hr on OBS for a single python, don't try all supported flavours
%define pythons python3
%define __builder ninja
%define so_ver 2410
%define so_ver 2420
%define shlib lib%{name}%{so_ver}
%define shlib_c lib%{name}_c%{so_ver}
%define prj_name OpenVINO
Name: openvino
Version: 2024.1.0
Version: 2024.2.0
Release: 0
Summary: A toolkit for optimizing and deploying AI inference
# Let's be safe and put all third party licenses here, no matter that we use specific thirdparty libs or not
@ -83,9 +83,10 @@ OpenVINO is an open-source toolkit for optimizing and deploying AI inference.
## Main shared libs and devel pkg ##
#
%package -n %{shlib}
Summary: Shared library for OpenVINO toolkit
@ -96,8 +97,9 @@ This package provides the shared library for OpenVINO.
#
#
%package -n %{shlib_c}
Summary: Shared C library for OpenVINO toolkit
@ -106,8 +108,9 @@ This package provides the C library for OpenVINO.
#
#
%package -n %{name}-devel
Summary: Headers and sources for OpenVINO toolkit
Requires: %{shlib_c} = %{version}
@ -140,9 +143,10 @@ OpenVINO.
## Plugins ##
#
%package -n %{name}-arm-cpu-plugin
Summary: Intel CPU plugin for OpenVINO toolkit
@ -153,8 +157,9 @@ This package provides the ARM CPU plugin for OpenVINO on %{arm64} archs.
#
#
%package -n %{name}-auto-plugin
Summary: Auto / Multi software plugin for OpenVINO toolkit
@ -165,8 +170,9 @@ This package provides the Auto / Multi software plugin for OpenVINO.
#
#
%package -n %{name}-auto-batch-plugin
Summary: Automatic batch software plugin for OpenVINO toolkit
@ -177,8 +183,9 @@ This package provides the automatic batch software plugin for OpenVINO.
#
#
%package -n %{name}-hetero-plugin
Summary: Hetero frontend for Intel OpenVINO toolkit
@ -189,8 +196,9 @@ This package provides the hetero frontend for OpenVINO.
#
#
%package -n %{name}-intel-cpu-plugin
Summary: Intel CPU plugin for OpenVINO toolkit
@ -201,8 +209,9 @@ This package provides the intel CPU plugin for OpenVINO for %{x86_64} archs.
#
#
%package -n %{name}-intel-npu-plugin
Summary: Intel NPU plugin for OpenVINO toolkit
@ -213,9 +222,10 @@ This package provides the intel NPU plugin for OpenVINO for %{x86_64} archs.
## Frontend shared libs ##
#
%package -n lib%{name}_ir_frontend%{so_ver}
Summary: Paddle frontend for Intel OpenVINO toolkit
@ -226,8 +236,9 @@ This package provides the ir frontend for OpenVINO.
#
#
%package -n lib%{name}_onnx_frontend%{so_ver}
Summary: Onnx frontend for OpenVINO toolkit
@ -238,8 +249,9 @@ This package provides the onnx frontend for OpenVINO.
#
#
%package -n lib%{name}_paddle_frontend%{so_ver}
Summary: Paddle frontend for Intel OpenVINO toolkit
@ -250,8 +262,9 @@ This package provides the paddle frontend for OpenVINO.
#
#
%package -n lib%{name}_pytorch_frontend%{so_ver}
Summary: PyTorch frontend for OpenVINO toolkit
@ -262,8 +275,9 @@ This package provides the pytorch frontend for OpenVINO.
#
#
%package -n lib%{name}_tensorflow_frontend%{so_ver}
Summary: TensorFlow frontend for OpenVINO toolkit
@ -274,8 +288,9 @@ This package provides the tensorflow frontend for OpenVINO.
#
#
%package -n lib%{name}_tensorflow_lite_frontend%{so_ver}
Summary: TensorFlow Lite frontend for OpenVINO toolkit
@ -286,9 +301,10 @@ This package provides the tensorflow-lite frontend for OpenVINO.
## Python module ##
#
%package -n python-openvino
Summary: Python module for openVINO toolkit
Requires: python-numpy < 2
@ -302,9 +318,10 @@ This package provides a Python module for interfacing with openVINO toolkit.
## Samples/examples ##
#
%package -n %{name}-sample
Summary: Samples for use with OpenVINO toolkit
BuildArch: noarch
@ -316,7 +333,9 @@ This package provides some samples for use with openVINO.
#
%prep
%autosetup -p1