python-Bottleneck/python-Bottleneck.changes

129 lines
5.1 KiB
Plaintext

-------------------------------------------------------------------
Wed Sep 27 22:20:10 UTC 2017 - arun@gmx.de
- update to version 1.2.1:
* #156 Installing bottleneck when two versions of NumPy are present
* #157 Compiling on Ubuntu 14.04 inside a Windows 7 WMware
* #159 Occasional segmentation fault in nanargmin, nanargmax,
median, and nanmedian when all of the following conditions are
met: axis is None, input array is 2d or greater, and input array
is not C contiguous.
* #163 Reducing np.array([2**31], dtype=np.int64) overflows on
Windows
-------------------------------------------------------------------
Wed Apr 19 18:37:17 UTC 2017 - toddrme2178@gmail.com
- Implement single-spec version.
-------------------------------------------------------------------
Mon Nov 14 14:24:23 UTC 2016 - dmueller@suse.com
- update to 1.2.0:
This release is a complete rewrite of Bottleneck.
- Bottleneck is now written in C
- Cython is no longer a dependency
- Source tarball size reduced by 80%
- Build time reduced by 66%
- Install size reduced by 45%
-------------------------------------------------------------------
Mon Apr 27 19:23:55 UTC 2015 - benoit.monin@gmx.fr
- update to version 1.0.0:
* "python setup.py build" is 18.7 times faster
* Function-call overhead cut in half---a big speed up for small
input arrays
* Arbitrary ndim input arrays accelerated; previously only 1d,
2d, and 3d
* bn.nanrankdata is twice as fast for float input arrays
* bn.move_max, bn.move_min are faster for int input arrays
* No speed penalty for reducing along all axes when input is
Fortran ordered
* Compiled binaries 14.1 times smaller
* Source tarball 4.7 times smaller
* 9.8 times less C code
* 4.3 times less Cython code
* 3.7 times less Python code
* Requires numpy 1.9.1
* Single API, e.g.: bn.nansum instead of bn.nansum and
nansum_2d_float64_axis0
* On 64-bit systems bn.nansum(int32) returns int32 instead of
int64
* bn.nansum now returns 0 for all NaN slices (as does numpy
1.9.1)
* Reducing over all axes returns, e.g., 6.0; previously
np.float64(6.0)
* bn.ss() now has default axis=None instead of axis=0
* bn.nn() is no longer in bottleneck
* Previous releases had moving window function pairs: move_sum,
move_nansum
* This release only has half of the pairs: move_sum
* Instead a new input parameter, min_count, has been added
* min_count=None same as old move_sum; min_count=1 same as old
move_nansum
* If # non-NaN values in window < min_count, then NaN assigned
to the window
* Exception: move_median does not take min_count as input
* Can now install bottleneck with pip even if numpy is not
already installed
* bn.move_max, bn.move_min now return float32 for float32 input
- increase required numpy version to 1.9.1
-------------------------------------------------------------------
Thu May 8 10:58:17 UTC 2014 - toddrme2178@gmail.com
- Update to version 0.8.0
- This version of Bottleneck requires NumPy 1.8
- nanargmin and nanargmax behave like the corresponding functions in NumPy 1.8
- nanargmax/nanargmin wrong for redundant max/min values in 1d int arrays
-------------------------------------------------------------------
Tue Oct 22 12:07:46 UTC 2013 - toddrme2178@gmail.com
- Update to version 0.7.0
+ bn.rankdata() is twice as fast (with input a = np.random.rand(1000000))
+ C files now included in github repo; cython not needed to try latest
+ C files are now generated with Cython 0.19.1 instead of 0.16
+ Test bottleneck across multiple python/numpy versions using tox
+ Source tarball size cut in half
-------------------------------------------------------------------
Fri Jun 22 13:11:43 UTC 2012 - saschpe@suse.de
- %py_requires is only needed for SLE_11_SP2 (and older), newer Python
package releases generate the RPM requires for the Python ABI automatically
-------------------------------------------------------------------
Fri Jun 22 12:25:12 UTC 2012 - saschpe@suse.de
- Update to version 0.6.0:
+ replace(arr, old, new), e.g, replace(arr, np.nan, 0)
+ nn(arr, arr0, axis) nearest neighbor and its index of 1d arr0 in 2d arr
+ anynan(arr, axis) faster alternative to np.isnan(arr).any(axis)
+ allnan(arr, axis) faster alternative to np.isnan(arr).all(axis)
+ Python 3.2 support (may work on earlier verions of Python 3)
+ C files are now generated with Cython 0.16 instead of 0.14.1
+ Upgrade numpydoc from 0.3.1 to 0.4 to support Sphinx 1.0.1
+ Support for Python 2.5 dropped
+ Default axis for benchmark suite is now axis=1 (was 0)
+ #31 Confusing error message in partsort and argpartsort
+ #32 Update path in MANIFEST.in
+ #35 Wrong output for very large (2**31) input arrays
-------------------------------------------------------------------
Fri Jun 1 09:05:36 UTC 2012 - toddrme2178@gmail.com
- spec file cleanups
- fix license tag
-------------------------------------------------------------------
Mon Feb 27 21:55:40 UTC 2012 - scorot@free.fr
- version 0.5.0
-------------------------------------------------------------------
Fri Jan 22 00:00:00 UTC 2011 - scorot@gtt.fr
- Initial release