python-http-ece/test_ece.py

504 lines
17 KiB
Python
Raw Normal View History

import base64
import json
import os
import struct
import unittest
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives.asymmetric import ec
from cryptography.hazmat.primitives.serialization import (
Encoding, PublicFormat
)
import http_ece as ece
from http_ece import ECEException
TEST_VECTORS = os.path.join(os.sep, "..", "encrypt_data.json")[1:]
def logmsg(arg):
"""
print(arg)
"""
return
def logbuf(msg, buf):
"""used for debugging test code."""
if buf is None:
buf = b''
logmsg(msg + ': [' + str(len(buf)) + ']')
for i in list(range(0, len(buf), 48)):
logmsg(' ' + repr(buf[i:i+48]))
return
def b64e(arg):
if arg is None:
return None
return base64.urlsafe_b64encode(arg).decode()
def b64d(arg):
if arg is None:
return None
return base64.urlsafe_b64decode(str(arg) + '===='[:len(arg) % 4:])
def make_key():
return ec.generate_private_key(ec.SECP256R1(), default_backend())
class TestEce(unittest.TestCase):
def setUp(self):
self.private_key = make_key()
self.dh = self.private_key.public_key().public_bytes(
Encoding.X962,
PublicFormat.UncompressedPoint
)
self.m_key = os.urandom(16)
self.m_salt = os.urandom(16)
def test_derive_key_invalid_mode(self):
with self.assertRaises(ECEException) as ex:
ece.derive_key('invalid',
version='aes128gcm',
salt=self.m_salt,
key=self.m_key,
private_key=self.private_key,
dh=None,
auth_secret=None,
keyid="valid",
)
self.assertEqual(ex.exception.message, "unknown 'mode' specified: invalid")
def test_derive_key_invalid_salt(self):
with self.assertRaises(ECEException) as ex:
ece.derive_key('encrypt',
version='aes128gcm',
salt=None,
key=self.m_key,
private_key=self.private_key,
dh=None,
auth_secret=None,
keyid="valid",
)
self.assertEqual(ex.exception.message, "'salt' must be a 16 octet value")
def test_derive_key_invalid_version(self):
with self.assertRaises(ECEException) as ex:
ece.derive_key('encrypt',
version='invalid',
salt=self.m_salt,
key=None,
private_key=self.private_key,
dh=None,
auth_secret=None,
keyid="valid",
)
self.assertEqual(ex.exception.message, "Invalid version")
def test_derive_key_no_private_key(self):
with self.assertRaises(ECEException) as ex:
ece.derive_key('encrypt',
version='aes128gcm',
salt=self.m_salt,
key=None,
private_key=None,
dh=self.dh,
auth_secret=None,
keyid="valid",
)
self.assertEqual(ex.exception.message, "DH requires a private_key")
def test_derive_key_no_secret(self):
with self.assertRaises(ECEException) as ex:
ece.derive_key('encrypt',
version='aes128gcm',
salt=self.m_salt,
key=None,
private_key=None,
dh=None,
auth_secret=None,
keyid="valid",
)
self.assertEqual(ex.exception.message, "unable to determine the secret")
def test_iv_bad_counter(self):
with self.assertRaises(ECEException) as ex:
ece.iv(os.urandom(8), pow(2, 64)+1)
self.assertEqual(ex.exception.message, "Counter too big")
class TestEceChecking(unittest.TestCase):
def setUp(self):
self.m_key = os.urandom(16)
self.m_input = os.urandom(5)
# This header is specific to the padding tests, but can be used
# elsewhere
self.m_header = b'\xaa\xd2\x05}3S\xb7\xff7\xbd\xe4*\xe1\xd5\x0f\xda'
self.m_header += struct.pack('!L', 32) + b'\0'
def test_encrypt_small_rs(self):
with self.assertRaises(ECEException) as ex:
ece.encrypt(
self.m_input,
version='aes128gcm',
key=self.m_key,
rs=1,
)
self.assertEqual(ex.exception.message, "Record size too small")
def test_decrypt_small_rs(self):
header = os.urandom(16) + struct.pack('!L', 2) + b'\0'
with self.assertRaises(ECEException) as ex:
ece.decrypt(
header + self.m_input,
version='aes128gcm',
key=self.m_key,
rs=1,
)
self.assertEqual(ex.exception.message, "Record size too small")
def test_encrypt_bad_version(self):
with self.assertRaises(ECEException) as ex:
ece.encrypt(
self.m_input,
version='bogus',
key=self.m_key,
)
self.assertEqual(ex.exception.message, "Invalid version")
def test_decrypt_bad_version(self):
with self.assertRaises(ECEException) as ex:
ece.decrypt(
self.m_input,
version='bogus',
key=self.m_key,
)
self.assertEqual(ex.exception.message, "Invalid version")
def test_decrypt_bad_header(self):
with self.assertRaises(ECEException) as ex:
ece.decrypt(
os.urandom(4),
version='aes128gcm',
key=self.m_key,
)
self.assertEqual(ex.exception.message, "Could not parse the content header")
def test_encrypt_long_keyid(self):
with self.assertRaises(ECEException) as ex:
ece.encrypt(
self.m_input,
version='aes128gcm',
key=self.m_key,
keyid=b64e(os.urandom(192)), # 256 bytes
)
self.assertEqual(ex.exception.message, "keyid is too long")
def test_overlong_padding(self):
with self.assertRaises(ECEException) as ex:
ece.decrypt(
self.m_header + b'\xbb\xc7\xb9ev\x0b\xf0f+\x93\xf4'
b'\xe5\xd6\x94\xb7e\xf0\xcd\x15\x9b(\x01\xa5',
version='aes128gcm',
key=b'd\xc7\x0ed\xa7%U\x14Q\xf2\x08\xdf\xba\xa0\xb9r',
keyid=b64e(os.urandom(192)), # 256 bytes
)
self.assertEqual(ex.exception.message, "all zero record plaintext")
def test_bad_early_delimiter(self):
with self.assertRaises(ECEException) as ex:
ece.decrypt(
self.m_header + b'\xb9\xc7\xb9ev\x0b\xf0\x9eB\xb1\x08C8u'
b'\xa3\x06\xc9x\x06\n\xfc|}\xe9R\x85\x91'
b'\x8bX\x02`\xf3' +
b'E8z(\xe5%f/H\xc1\xc32\x04\xb1\x95\xb5N\x9ep\xd4\x0e<\xf3'
b'\xef\x0cg\x1b\xe0\x14I~\xdc',
version='aes128gcm',
key=b'd\xc7\x0ed\xa7%U\x14Q\xf2\x08\xdf\xba\xa0\xb9r',
keyid=b64e(os.urandom(192)), # 256 bytes
)
self.assertEqual(ex.exception.message, "record delimiter != 1")
def test_bad_final_delimiter(self):
with self.assertRaises(ECEException) as ex:
ece.decrypt(
self.m_header + b'\xba\xc7\xb9ev\x0b\xf0\x9eB\xb1\x08Ji'
b'\xe4P\x1b\x8dI\xdb\xc6y#MG\xc2W\x16',
version='aes128gcm',
key=b'd\xc7\x0ed\xa7%U\x14Q\xf2\x08\xdf\xba\xa0\xb9r',
keyid=b64e(os.urandom(192)), # 256 bytes
)
self.assertEqual(ex.exception.message, "last record delimiter != 2")
def test_damage(self):
with self.assertRaises(ECEException) as ex:
ece.decrypt(
self.m_header + b'\xbb\xc6\xb1\x1dF:~\x0f\x07+\xbe\xaaD'
b'\xe0\xd6.K\xe5\xf9]%\xe3\x86q\xe0}',
version='aes128gcm',
key=b'd\xc7\x0ed\xa7%U\x14Q\xf2\x08\xdf\xba\xa0\xb9r',
keyid=b64e(os.urandom(192)), # 256 bytes
)
self.assertEqual(ex.exception.message, "Decryption error: InvalidTag()")
class TestEceIntegration(unittest.TestCase):
def setUp(self):
ece.keys = {}
ece.labels = {}
def tearDown(self):
ece.keys = {}
ece.labels = {}
def _rsoverhead(self, version):
if version == 'aesgcm128':
return 1
if version == 'aesgcm':
return 2
return 18
def _generate_input(self, minLen=0):
length = struct.unpack('!B', os.urandom(1))[0] + minLen
return os.urandom(length)
def encrypt_decrypt(self, input, encrypt_params, decrypt_params=None,
version=None):
"""Run and encrypt/decrypt cycle on some test data
:param input: data for input
:type length: bytearray
:param encrypt_params: Dictionary of encryption parameters
:type encrypt_params: dict
:param decrypt_params: Optional dictionary of decryption parameters
:type decrypt_params: dict
:param version: Content-Type of the body, formulating encryption
:type enumerate("aes128gcm", "aesgcm", "aesgcm128"):
"""
if decrypt_params is None:
decrypt_params = encrypt_params
logbuf("Input", input)
if "key" in encrypt_params:
logbuf("Key", encrypt_params["key"])
if version != "aes128gcm":
salt = os.urandom(16)
decrypt_rs_default = 4096
else:
salt = None
decrypt_rs_default = None
logbuf("Salt", salt)
if "auth_secret" in encrypt_params:
logbuf("Auth Secret", encrypt_params["auth_secret"])
encrypted = ece.encrypt(input,
salt=salt,
key=encrypt_params.get("key"),
keyid=encrypt_params.get("keyid"),
dh=encrypt_params.get("dh"),
private_key=encrypt_params.get("private_key"),
auth_secret=encrypt_params.get("auth_secret"),
rs=encrypt_params.get("rs", 4096),
version=version)
logbuf("Encrypted", encrypted)
decrypted = ece.decrypt(encrypted,
salt=salt,
key=decrypt_params.get("key"),
keyid=decrypt_params.get("keyid"),
dh=decrypt_params.get("dh"),
private_key=decrypt_params.get("private_key"),
auth_secret=decrypt_params.get("auth_secret"),
rs=decrypt_params.get("rs",
decrypt_rs_default),
version=version)
logbuf("Decrypted", decrypted)
self.assertEqual(input, decrypted)
def use_explicit_key(self, version=None):
params = {
"key": os.urandom(16),
}
self.encrypt_decrypt(self._generate_input(), params, version=version)
def auth_secret(self, version):
params = {
"key": os.urandom(16),
"auth_secret": os.urandom(16)
}
self.encrypt_decrypt(self._generate_input(), params, version=version)
def exactly_one_record(self, version=None):
input = self._generate_input(1)
params = {
"key": os.urandom(16),
"rs": len(input) + self._rsoverhead(version)
}
self.encrypt_decrypt(input, params, version=version)
def detect_truncation(self, version):
if version == "aes128gcm":
return
input = self._generate_input(2)
key = os.urandom(16)
salt = os.urandom(16)
rs = len(input) + self._rsoverhead(version) - 1
encrypted = ece.encrypt(input, salt=salt, key=key, rs=rs,
version=version)
if version == 'aes128gcm':
chunk = encrypted[0:21+rs]
else:
chunk = encrypted[0:rs+16]
with self.assertRaises(ECEException) as ex:
ece.decrypt(chunk, salt=salt, key=key, rs=rs, version=version)
self.assertEqual(ex.exception.message, "Message truncated")
def use_dh(self, version):
def pubbytes(k):
return k.public_key().public_bytes(
Encoding.X962,
PublicFormat.UncompressedPoint
)
def privbytes(k):
d = k.private_numbers().private_value
b = b''
for i in range(0,
k.private_numbers().public_numbers.curve.key_size,
32):
b = struct.pack("!L", (d >> i) & 0xffffffff) + b
return b
def logec(s, k):
logbuf(s + " private", privbytes(k))
logbuf(s + " public", pubbytes(k))
def is_uncompressed(k):
b1 = pubbytes(k)[0:1]
assert struct.unpack("B", b1)[0] == 4, "is an uncompressed point"
# the static key is used by the receiver
static_key = make_key()
is_uncompressed(static_key)
logec("receiver", static_key)
# the ephemeral key is used by the sender
ephemeral_key = make_key()
is_uncompressed(ephemeral_key)
logec("sender", ephemeral_key)
auth_secret = os.urandom(16)
if version != "aes128gcm":
decrypt_dh = pubbytes(ephemeral_key)
else:
decrypt_dh = None
encrypt_params = {
"private_key": ephemeral_key,
"dh": static_key.public_key(),
"auth_secret": auth_secret,
}
decrypt_params = {
"private_key": static_key,
"dh": decrypt_dh,
"auth_secret": auth_secret,
}
self.encrypt_decrypt(self._generate_input(), encrypt_params,
decrypt_params, version)
def test_types(self):
for ver in ["aes128gcm", "aesgcm", "aesgcm128"]:
for f in (
self.use_dh,
self.use_explicit_key,
self.auth_secret,
self.exactly_one_record,
self.detect_truncation,
):
ece.keys = {}
ece.labels = {}
f(version=ver)
class TestNode(unittest.TestCase):
"""Testing using data from the node.js version.
"""
def setUp(self):
if not os.path.exists(TEST_VECTORS):
self.skipTest("No %s file found" % TEST_VECTORS)
f = open(TEST_VECTORS, 'r')
self.legacy_data = json.loads(f.read())
f.close()
def _run(self, mode):
if mode == 'encrypt':
func = ece.encrypt
local = 'sender'
inp = 'input'
outp = 'encrypted'
else:
func = ece.decrypt
local = 'receiver'
inp = 'encrypted'
outp = 'input'
for data in self.legacy_data:
logmsg('%s: %s' % (mode, data['test']))
p = data['params'][mode]
if 'pad' in p and mode == 'encrypt':
# This library doesn't pad in exactly the same way.
continue
if 'keys' in data:
key = None
decode_pub = ec.EllipticCurvePublicNumbers.from_encoded_point
pubnum = decode_pub(ec.SECP256R1(),
b64d(data['keys'][local]['public']))
d = 0
dbin = b64d(data['keys'][local]['private'])
for i in range(0, len(dbin), 4):
d = (d << 32) + struct.unpack('!L', dbin[i:i + 4])[0]
privnum = ec.EllipticCurvePrivateNumbers(d, pubnum)
private_key = privnum.private_key(default_backend())
else:
key = b64d(p['key'])
private_key = None
if 'authSecret' in p:
auth_secret = b64d(p['authSecret'])
else:
auth_secret = None
if 'dh' in p:
dh = b64d(p['dh'])
else:
dh = None
result = func(
b64d(data[inp]),
salt=b64d(p['salt']),
key=key,
dh=dh,
auth_secret=auth_secret,
keyid=p.get('keyid'),
private_key=private_key,
rs=p.get('rs', 4096),
version=p['version'],
)
self.assertEqual(b64d(data[outp]), result)
def test_decrypt(self):
self._run('decrypt')
def test_encrypt(self):
self._run('encrypt')