diff --git a/fix-max-name-size.patch b/fix-max-name-size.patch index bafe035..b280633 100644 --- a/fix-max-name-size.patch +++ b/fix-max-name-size.patch @@ -8,11 +8,11 @@ Fix for #3876 without needing to patch LLVM. numba/__init__.py | 5 +++++ 1 file changed, 5 insertions(+) -diff --git a/numba/__init__.py b/numba/__init__.py -index c62ad06289..114e9a597e 100644 ---- a/numba/__init__.py -+++ b/numba/__init__.py -@@ -102,6 +102,11 @@ def _ensure_llvm(): +Index: numba-0.54.1/numba/__init__.py +=================================================================== +--- numba-0.54.1.orig/numba/__init__.py ++++ numba-0.54.1/numba/__init__.py +@@ -119,6 +119,11 @@ def _ensure_llvm(): "Please update llvmlite." % (_min_llvm_version + llvm_version_info)) raise ImportError(msg) diff --git a/numba-0.53.0.tar.gz b/numba-0.53.0.tar.gz deleted file mode 100644 index 83c0578..0000000 --- a/numba-0.53.0.tar.gz +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:55c11d7edbba2ba715f2b56f5294cad55cfd87bff98e2627c3047c2d5cc52d16 -size 2212284 diff --git a/numba-0.54.1.tar.gz b/numba-0.54.1.tar.gz new file mode 100644 index 0000000..4fb5e23 --- /dev/null +++ b/numba-0.54.1.tar.gz @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f9dfc803c864edcc2381219b800abf366793400aea55e26d4d5b7d953e14f43f +size 2232957 diff --git a/numba-pr6851-llvm-timings.patch b/numba-pr6851-llvm-timings.patch deleted file mode 100644 index c3f092e..0000000 --- a/numba-pr6851-llvm-timings.patch +++ /dev/null @@ -1,72 +0,0 @@ -diff --git a/numba/misc/llvm_pass_timings.py b/numba/misc/llvm_pass_timings.py -index 205bb3396..b3263dd45 100644 ---- a/numba/misc/llvm_pass_timings.py -+++ b/numba/misc/llvm_pass_timings.py -@@ -239,12 +239,14 @@ class ProcessedPassTimings: - missing[k] = 0.0 - # parse timings - n = r"\s*((?:[0-9]+\.)?[0-9]+)" -- pat = f"\\s+{n}\\s*\\({n}%\\)" * (len(headers) - 1) + r"\s*(.*)" -+ pat = f"\\s+(?:{n}\\s*\\({n}%\\)|-+)" * (len(headers) - 1) -+ pat += r"\s*(.*)" - for ln in line_iter: - m = re.match(pat, ln) - if m is not None: - raw_data = list(m.groups()) -- data = {k: float(v) for k, v in zip(attrs, raw_data)} -+ data = {k: float(v) if v is not None else 0.0 -+ for k, v in zip(attrs, raw_data)} - data.update(missing) - pass_name = raw_data[-1] - rec = PassTimingRecord( -diff --git a/numba/tests/test_llvm_pass_timings.py b/numba/tests/test_llvm_pass_timings.py -index a7e9135cd..25b77e2c5 100644 ---- a/numba/tests/test_llvm_pass_timings.py -+++ b/numba/tests/test_llvm_pass_timings.py -@@ -5,6 +5,30 @@ from numba.tests.support import TestCase, override_config - from numba.misc import llvm_pass_timings as lpt - - -+timings_raw1 = """ -+===-------------------------------------------------------------------------=== -+ ... Pass execution timing report ... -+===-------------------------------------------------------------------------=== -+ Total Execution Time: 0.0001 seconds (0.0001 wall clock) -+ -+ ---User Time--- --System Time-- --User+System-- ---Wall Time--- --- Name --- -+ 0.0001 ( 90.1%) 0.0001 ( 90.1%) 0.0001 ( 90.1%) 0.0001 ( 90.1%) A1 -+ 0.0000 ( 9.9%) 0.0000 ( 9.9%) 0.0000 ( 9.9%) 0.0000 ( 9.9%) A2 -+ 0.0001 (100.0%) 0.0001 (100.0%) 0.0001 (100.0%) 0.0001 (100.0%) Total -+ -+""" # noqa: E501 -+ -+timings_raw2 = """ -+ Total Execution Time: 0.0001 seconds (0.0001 wall clock) -+ -+ ---User Time--- --System Time-- --User+System-- ---Wall Time--- --- Name --- -+ 0.0001 ( 90.1%) ----- 0.0001 ( 90.1%) 0.0001 ( 90.1%) A1 -+ 0.0000 ( 9.9%) ----- 0.0000 ( 9.9%) 0.0000 ( 9.9%) A2 -+ 0.0001 (100.0%) ----- 0.0001 (100.0%) 0.0001 (100.0%) Total -+ -+""" # noqa: E501 -+ -+ - class TestLLVMPassTimings(TestCase): - - def test_usage(self): -@@ -61,6 +85,15 @@ class TestLLVMPassTimings(TestCase): - self.assertGreaterEqual(last, cur) - cur = last - -+ def test_parse_raw(self): -+ timings1 = lpt.ProcessedPassTimings(timings_raw1) -+ self.assertAlmostEqual(timings1.get_total_time(), 0.0001) -+ self.assertIsInstance(timings1.summary(), str) -+ -+ timings2 = lpt.ProcessedPassTimings(timings_raw2) -+ self.assertAlmostEqual(timings2.get_total_time(), 0.0001) -+ self.assertIsInstance(timings2.summary(), str) -+ - - class TestLLVMPassTimingsDisabled(TestCase): - def test_disabled_behavior(self): diff --git a/numba-pr7483-numpy1_21.patch b/numba-pr7483-numpy1_21.patch new file mode 100644 index 0000000..a4eca7d --- /dev/null +++ b/numba-pr7483-numpy1_21.patch @@ -0,0 +1,230 @@ +From 3a2c5042fa85ac9b8fe398d605d6d373d27f42bb Mon Sep 17 00:00:00 2001 +From: Stuart Archibald +Date: Thu, 14 Oct 2021 09:35:24 +0100 +Subject: [PATCH 1/7] Update build matrix for NumPy 1.21 as per NEP-029. + +As title. +--- + azure-pipelines.yml | 68 ++++++++++++++-------------- + buildscripts/azure/azure-windows.yml | 8 ++-- + 2 files changed, 38 insertions(+), 38 deletions(-) + +Index: numba-0.54.1/setup.py +=================================================================== +--- numba-0.54.1.orig/setup.py ++++ numba-0.54.1/setup.py +@@ -22,8 +22,7 @@ except ImportError: + min_python_version = "3.7" + max_python_version = "3.10" # exclusive + min_numpy_build_version = "1.11" +-min_numpy_run_version = "1.17" +-max_numpy_run_version = "1.21" ++min_numpy_run_version = "1.18" + min_llvmlite_version = "0.37.0rc1" + max_llvmlite_version = "0.38" + +@@ -360,7 +359,7 @@ packages = find_packages(include=["numba + build_requires = ['numpy >={}'.format(min_numpy_build_version)] + install_requires = [ + 'llvmlite >={},<{}'.format(min_llvmlite_version, max_llvmlite_version), +- 'numpy >={},<{}'.format(min_numpy_run_version, max_numpy_run_version), ++ 'numpy >={}'.format(min_numpy_run_version), + 'setuptools', + ] + +Index: numba-0.54.1/numba/__init__.py +=================================================================== +--- numba-0.54.1.orig/numba/__init__.py ++++ numba-0.54.1/numba/__init__.py +@@ -137,10 +137,8 @@ def _ensure_critical_deps(): + if PYVERSION < (3, 7): + raise ImportError("Numba needs Python 3.7 or greater") + +- if numpy_version < (1, 17): +- raise ImportError("Numba needs NumPy 1.17 or greater") +- elif numpy_version > (1, 20): +- raise ImportError("Numba needs NumPy 1.20 or less") ++ if numpy_version < (1, 18): ++ raise ImportError("Numba needs NumPy 1.18 or greater") + + try: + import scipy +Index: numba-0.54.1/README.rst +=================================================================== +--- numba-0.54.1.orig/README.rst ++++ numba-0.54.1/README.rst +@@ -50,7 +50,7 @@ Dependencies + + * Python versions: 3.7-3.9 + * llvmlite 0.37.* +-* NumPy >=1.17,<1.21 (can build with 1.11 for ABI compatibility). ++* NumPy >=1.18 (can build with 1.11 for ABI compatibility). + + Optionally: + +Index: numba-0.54.1/docs/source/user/5minguide.rst +=================================================================== +--- numba-0.54.1.orig/docs/source/user/5minguide.rst ++++ numba-0.54.1/docs/source/user/5minguide.rst +@@ -18,7 +18,7 @@ Out of the box Numba works with the foll + support on M1/Arm64. + * GPUs: Nvidia CUDA. + * CPython +-* NumPy 1.17 - latest ++* NumPy 1.18 - latest + + How do I get it? + ---------------- +Index: numba-0.54.1/numba/np/ufunc/_internal.c +=================================================================== +--- numba-0.54.1.orig/numba/np/ufunc/_internal.c ++++ numba-0.54.1/numba/np/ufunc/_internal.c +@@ -275,6 +275,7 @@ static PyMemberDef dufunc_members[] = { + */ + + static struct _ufunc_dispatch { ++ /* Note that the following may also hold `_PyCFunctionFastWithKeywords` */ + PyCFunctionWithKeywords ufunc_reduce; + PyCFunctionWithKeywords ufunc_accumulate; + PyCFunctionWithKeywords ufunc_reduceat; +@@ -285,7 +286,7 @@ static struct _ufunc_dispatch { + } ufunc_dispatch; + + static int +-init_ufunc_dispatch(void) ++init_ufunc_dispatch(int *numpy_uses_fastcall) + { + int result = 0; + PyMethodDef * crnt = PyUFunc_Type.tp_methods; +@@ -328,6 +329,16 @@ init_ufunc_dispatch(void) + result = -1; /* Unknown method */ + } + if (result < 0) break; ++ ++ /* Check whether NumPy uses fastcall (ufunc.at never uses it) */ ++ if (strncmp(crnt_name, "at", 3) != 0) { ++ if (*numpy_uses_fastcall == -1) { ++ *numpy_uses_fastcall = crnt->ml_flags & METH_FASTCALL; ++ } ++ else if (*numpy_uses_fastcall != (crnt->ml_flags & METH_FASTCALL)) { ++ return -1; ++ } ++ } + } + if (result == 0) { + /* Sanity check. */ +@@ -343,6 +354,7 @@ init_ufunc_dispatch(void) + return result; + } + ++ + static PyObject * + dufunc_reduce(PyDUFuncObject * self, PyObject * args, PyObject *kws) + { +@@ -367,6 +379,47 @@ dufunc_outer(PyDUFuncObject * self, PyOb + return ufunc_dispatch.ufunc_outer((PyObject*)self->ufunc, args, kws); + } + ++ ++/* ++ * The following are the vectorcall versions of the above, since NumPy ++ * uses the FASTCALL/Vectorcall protocol starting with version 1.21. ++ * The only NumPy versions supporting vectorcall use Python 3.7 or higher. ++ */ ++static PyObject * ++dufunc_reduce_fast(PyDUFuncObject * self, ++ PyObject *const *args, Py_ssize_t len_args, PyObject *kwnames) ++{ ++ return ((_PyCFunctionFastWithKeywords)ufunc_dispatch.ufunc_reduce)( ++ (PyObject*)self->ufunc, args, len_args, kwnames); ++} ++ ++static PyObject * ++dufunc_reduceat_fast(PyDUFuncObject * self, ++ PyObject *const *args, Py_ssize_t len_args, PyObject *kwnames) ++{ ++ return ((_PyCFunctionFastWithKeywords)ufunc_dispatch.ufunc_reduceat)( ++ (PyObject*)self->ufunc, args, len_args, kwnames); ++} ++ ++ ++static PyObject * ++dufunc_accumulate_fast(PyDUFuncObject * self, ++ PyObject *const *args, Py_ssize_t len_args, PyObject *kwnames) ++{ ++ return ((_PyCFunctionFastWithKeywords)ufunc_dispatch.ufunc_accumulate)( ++ (PyObject*)self->ufunc, args, len_args, kwnames); ++} ++ ++ ++static PyObject * ++dufunc_outer_fast(PyDUFuncObject * self, ++ PyObject *const *args, Py_ssize_t len_args, PyObject *kwnames) ++{ ++ return ((_PyCFunctionFastWithKeywords)ufunc_dispatch.ufunc_outer)( ++ (PyObject*)self->ufunc, args, len_args, kwnames); ++} ++ ++ + #if NPY_API_VERSION >= 0x00000008 + static PyObject * + dufunc_at(PyDUFuncObject * self, PyObject * args) +@@ -567,6 +620,41 @@ static struct PyMethodDef dufunc_methods + {NULL, NULL, 0, NULL} /* sentinel */ + }; + ++ ++/* ++ * If Python is new enough, NumPy may use fastcall. In that case we have to ++ * also use fastcall for simplicity and speed. ++ */ ++static struct PyMethodDef dufunc_methods_fast[] = { ++ {"reduce", ++ (PyCFunction)dufunc_reduce_fast, ++ METH_FASTCALL | METH_KEYWORDS, NULL }, ++ {"accumulate", ++ (PyCFunction)dufunc_accumulate_fast, ++ METH_FASTCALL | METH_KEYWORDS, NULL }, ++ {"reduceat", ++ (PyCFunction)dufunc_reduceat_fast, ++ METH_FASTCALL | METH_KEYWORDS, NULL }, ++ {"outer", ++ (PyCFunction)dufunc_outer_fast, ++ METH_FASTCALL | METH_KEYWORDS, NULL}, ++#if NPY_API_VERSION >= 0x00000008 ++ {"at", ++ (PyCFunction)dufunc_at, ++ METH_VARARGS, NULL}, ++#endif ++ {"_compile_for_args", ++ (PyCFunction)dufunc__compile_for_args, ++ METH_VARARGS | METH_KEYWORDS, ++ "Abstract method: subclasses should overload _compile_for_args() to compile the ufunc at the given arguments' types."}, ++ {"_add_loop", ++ (PyCFunction)dufunc__add_loop, ++ METH_VARARGS, ++ NULL}, ++ {NULL, NULL, 0, NULL} /* sentinel */ ++}; ++ ++ + static PyObject * + dufunc_getfrozen(PyDUFuncObject * self, void * closure) + { +@@ -680,8 +768,15 @@ MOD_INIT(_internal) + return MOD_ERROR_VAL; + + PyDUFunc_Type.tp_new = PyType_GenericNew; +- if (init_ufunc_dispatch() <= 0) ++ ++ int numpy_uses_fastcall = -1; ++ if (init_ufunc_dispatch(&numpy_uses_fastcall) <= 0) + return MOD_ERROR_VAL; ++ ++ if (numpy_uses_fastcall) { ++ PyDUFunc_Type.tp_methods = dufunc_methods_fast; ++ } ++ + if (PyType_Ready(&PyDUFunc_Type) < 0) + return MOD_ERROR_VAL; + Py_INCREF(&PyDUFunc_Type); diff --git a/packaging-ignore-setuptools-deprecation.patch b/packaging-ignore-setuptools-deprecation.patch deleted file mode 100644 index ecda389..0000000 --- a/packaging-ignore-setuptools-deprecation.patch +++ /dev/null @@ -1,52 +0,0 @@ -From 4811aeceb2dde05124697909b87cf4ad2ae07c65 Mon Sep 17 00:00:00 2001 -From: Stuart Archibald -Date: Wed, 17 Mar 2021 12:29:16 +0000 -Subject: [PATCH 1/2] Ignore warnings from packaging module when testing import - behaviour. - -As title. - -Fixes #6831 ---- - numba/tests/test_import.py | 4 +++- - 1 file changed, 3 insertions(+), 1 deletion(-) - -diff --git a/numba/tests/test_import.py b/numba/tests/test_import.py -index 7cc9082046..a46ad2df6c 100644 ---- a/numba/tests/test_import.py -+++ b/numba/tests/test_import.py -@@ -58,7 +58,9 @@ def test_no_accidental_warnings(self): - # checks that importing Numba isn't accidentally triggering warnings due - # to e.g. deprecated use of import locations from Python's stdlib - code = "import numba" -- flags = ["-Werror",] -+ # See: https://github.com/numba/numba/issues/6831 -+ # bug in setuptools/packaging causing a deprecation warning -+ flags = ["-Werror", "-Wignore::DeprecationWarning:packaging:"] - self.run_in_subproc(code, flags) - - def test_import_star(self): - -From 94fc06e77b648b1cb5021cd6d460aa42808a0393 Mon Sep 17 00:00:00 2001 -From: Stuart Archibald -Date: Wed, 17 Mar 2021 16:42:14 +0000 -Subject: [PATCH 2/2] Respond to feedback - -As title] ---- - numba/tests/test_import.py | 2 +- - 1 file changed, 1 insertion(+), 1 deletion(-) - -diff --git a/numba/tests/test_import.py b/numba/tests/test_import.py -index a46ad2df6c..a0ca5725eb 100644 ---- a/numba/tests/test_import.py -+++ b/numba/tests/test_import.py -@@ -60,7 +60,7 @@ def test_no_accidental_warnings(self): - code = "import numba" - # See: https://github.com/numba/numba/issues/6831 - # bug in setuptools/packaging causing a deprecation warning -- flags = ["-Werror", "-Wignore::DeprecationWarning:packaging:"] -+ flags = ["-Werror", "-Wignore::DeprecationWarning:packaging.version:"] - self.run_in_subproc(code, flags) - - def test_import_star(self): diff --git a/python-numba.changes b/python-numba.changes index 8716c61..9f59813 100644 --- a/python-numba.changes +++ b/python-numba.changes @@ -1,3 +1,109 @@ +------------------------------------------------------------------- +Thu Nov 18 18:42:21 UTC 2021 - Ben Greiner + +- Update to 0.54.1 + * This is a bugfix release for 0.54.0. It fixes a regression in + structured array type handling, a potential leak on + initialization failure in the CUDA target, a regression caused + by Numba’s vendored cloudpickle module resetting dynamic + classes and a few minor testing/infrastructure related + problems. +- Release summary for 0.54.0 + * This release includes a significant number of new features, + important refactoring, critical bug fixes and a number of + dependency upgrades. + * Python language support enhancements: + - Basic support for f-strings. + - dict comprehensions are now supported. + - The sum built-in function is implemented. + * NumPy features/enhancements, The following functions are now + supported: + - np.clip + - np.iscomplex + - np.iscomplexobj + - np.isneginf + - np.isposinf + - np.isreal + - np.isrealobj + - np.isscalar + - np.random.dirichlet + - np.rot90 + - np.swapaxes + * Also np.argmax has gained support for the axis keyword argument + and it’s now possible to use 0d NumPy arrays as scalars in + __setitem__ calls. + + Internal changes: + * Debugging support through DWARF has been fixed and enhanced. + * Numba now optimises the way in which locals are emitted to help + reduce time spend in LLVM’s SROA passes. + + CUDA target changes: + * Support for emitting lineinfo to be consumed by profiling tools + such as Nsight Compute + * Improved fastmath code generation for various trig, division, + and other functions + * Faster compilation using lazy addition of libdevice to compiled + units + * Support for IPC on Windows + * Support for passing tuples to CUDA ufuncs + * Performance warnings: + - When making implicit copies by calling a kernel on arrays in + host memory + - When occupancy is poor due to kernel or ufunc/gufunc + configuration + * Support for implementing warp-aggregated intrinsics: + - Using support for more CUDA functions: activemask(), + lanemask_lt() + - The ffs() function now works correctly! + * Support for @overload in the CUDA target + + Intel kindly sponsored research and development that lead to a + number of new features and internal support changes: + * Dispatchers can now be retargetted to a new target via a user + defined context manager. + * Support for custom NumPy array subclasses has been added + (including an overloadable memory allocator). + * An inheritance based model for targets that permits targets to + share @overload implementations. + * Per function compiler flags with inheritance behaviours. + * The extension API now has support for overloading class methods + via the @overload_classmethod decorator. + + Deprecations: + * The ROCm target (for AMD ROC GPUs) has been moved to an + “unmaintained” status and a seperate repository stub has been + created for it at: https://github.com/numba/numba-rocm + + CUDA target deprecations and breaking changes: + * Relaxed strides checking is now the default when computing the + contiguity of device arrays. + * The inspect_ptx() method is deprecated. For use cases that + obtain PTX for further compilation outside of Numba, use + compile_ptx() instead. + * Eager compilation of device functions (the case when + device=True and a signature is provided) is deprecated. + + Version support/dependency changes: + * LLVM 11 is now supported on all platforms via llvmlite. + * The minimum supported Python version is raised to 3.7. + * NumPy version 1.20 is supported. + * The minimum supported NumPy version is raised to 1.17 for + runtime (compilation however remains compatible with NumPy + 1.11). + * Vendor cloudpickle v1.6.0 – now used for all pickle operations. + * TBB >= 2021 is now supported and all prior versions are + unsupported (not easily possible to maintain the ABI breaking + changes). +- Full release notes; + https://numba.readthedocs.io/en/0.54.1/release-notes.html +- Drop patches merged upstream: + * packaging-ignore-setuptools-deprecation.patch + * numba-pr6851-llvm-timings.patch +- Refresh skip-failing-tests.patch, fix-max-name-size.patch +- Add numba-pr7483-numpy1_21.patch gh#numba/numba#7176, + gh#numba/numba#7483 + ------------------------------------------------------------------- Wed Mar 17 16:51:46 UTC 2021 - Ben Greiner diff --git a/python-numba.spec b/python-numba.spec index 8c158fb..8c279d0 100644 --- a/python-numba.spec +++ b/python-numba.spec @@ -1,5 +1,5 @@ # -# spec file for package python-numba-test +# spec file # # Copyright (c) 2021 SUSE LLC # @@ -18,7 +18,6 @@ %{?!python_module:%define python_module() python-%{**} python3-%{**}} %define skip_python2 1 -# NEP 29: python36-numpy and -scipy no longer in TW %define skip_python36 1 %global flavor @BUILD_FLAVOR@%{nil} %if "%{flavor}" == "test" @@ -29,7 +28,7 @@ %bcond_with test %endif Name: python-numba%{psuffix} -Version: 0.53.0 +Version: 0.54.1 Release: 0 Summary: NumPy-aware optimizing compiler for Python using LLVM License: BSD-2-Clause @@ -37,22 +36,20 @@ URL: https://numba.pydata.org/ Source: https://files.pythonhosted.org/packages/source/n/numba/numba-%{version}.tar.gz # PATCH-FIX-UPSTREAM fix-max-name-size.patch -- fix for gh#numba/numba#3876 -- from gh#numba/numba#4373 Patch0: fix-max-name-size.patch -# PATCH-FIX-UPSTREAM packaging-ignore-setuptools-deprecation.patch -- gh#numba/numba#6837 -Patch1: https://github.com/numba/numba/pull/6837.patch#/packaging-ignore-setuptools-deprecation.patch -# PATCH-FIX-USPTREAM ignore empty system time column on llvm timings -- gh#numba/numba#6851 -Patch2: numba-pr6851-llvm-timings.patch +# PATCH-FIX-UPSTREAM support numpy 1.21 -- gh#numba/numba#7176, gh#numba/numba#7483 +Patch1: numba-pr7483-numpy1_21.patch # PATCH-FIX-OPENSUSE skip tests failing due to OBS specifics Patch3: skip-failing-tests.patch -BuildRequires: %{python_module devel} -BuildRequires: %{python_module numpy-devel >= 1.15} +BuildRequires: %{python_module devel >= 3.7} +BuildRequires: %{python_module numpy-devel >= 1.18} BuildRequires: %{python_module setuptools} BuildRequires: fdupes BuildRequires: gcc-c++ BuildRequires: python-rpm-macros -BuildRequires: tbb-devel -Requires: python-llvmlite < 0.37 -Requires: python-llvmlite >= 0.36 -Requires: python-numpy >= 1.15 +BuildRequires: tbb-devel >= 2021 +Requires: python-llvmlite < 0.38 +Requires: python-llvmlite >= 0.37 +Requires: python-numpy >= 1.18 Requires: python-scipy >= 0.16 Requires(post): update-alternatives Requires(preun):update-alternatives @@ -106,24 +103,20 @@ This package contains files for developing applications using numba. %setup -q -n numba-%{version} %autopatch -p1 -# Incompatilbe numpy versions (?) -# Check these with every version update! (Last check 0.53) -# https://github.com/numba/numba/issues/5251 -# https://numba.discourse.group/t/helping-test-numba-0-53-0-rc/519/34 -rm numba/tests/test_np_functions.py -rm numba/tests/test_array_reductions.py # timeouts randomly in OBS rm numba/tests/test_typedlist.py # if we reduced the amount of tests too much: -#sed -i -e '/check_testsuite_size/ s/5000/3000/' numba/tests/test_runtests.py +# sed -i -e '/check_testsuite_size/ s/5000/3000/' numba/tests/test_runtests.py # our setup imports distutils. Not sure why, but should not be a problem. sed -i -e "/def test_laziness/,/def/ {/'distutils',/ d}" numba/tests/test_import.py sed -i -e '1{/env python/ d}' numba/misc/appdirs.py %build +%if !%{with test} export CFLAGS="%{optflags} -fPIC" %python_build +%endif %install %if !%{with test} @@ -154,7 +147,7 @@ mv numba_temp numba %post %{python_install_alternative numba pycc} -%preun +%postun %python_uninstall_alternative numba %files %{python_files} -f devel-files-exclude-%{python_bin_suffix}.files diff --git a/skip-failing-tests.patch b/skip-failing-tests.patch index d831d66..c22ed9e 100644 --- a/skip-failing-tests.patch +++ b/skip-failing-tests.patch @@ -1,39 +1,38 @@ -Index: numba-0.53.0/numba/tests/test_parfors.py +Index: numba-0.54.0/numba/tests/test_parfors.py =================================================================== ---- numba-0.53.0.orig/numba/tests/test_parfors.py -+++ numba-0.53.0/numba/tests/test_parfors.py -@@ -1649,7 +1649,7 @@ class TestParfors(TestParforsBase): - msg = ("The reshape API may only include one negative argument.") - self.assertIn(msg, str(raised.exception)) +--- numba-0.54.0.orig/numba/tests/test_parfors.py ++++ numba-0.54.0/numba/tests/test_parfors.py +@@ -1146,6 +1146,7 @@ class TestParforNumPy(TestParforsBase): + self.check_variants(test_impl2, data_gen) + self.count_parfors_variants(test_impl2, data_gen) -- @skip_parfors_unsupported + @unittest.skip("Fails on type check in OBS") def test_ndarray_fill(self): def test_impl(x): x.fill(7.0) -@@ -2842,7 +2842,7 @@ class TestParforsVectorizer(TestPrangeBa +@@ -3890,7 +3891,7 @@ class TestParforsVectorizer(TestPrangeBa # to check vsqrtpd operates on zmm match_vsqrtpd_on_zmm = re.compile('\n\s+vsqrtpd\s+.*zmm.*\n') - @linux_only -+ @unittest.skip("Our x86_64 asm is most probably different from the Travis one.") ++ @unittest.skip("Our x86_64 asm is most probably different from the upstream one.") def test_vectorizer_fastmath_asm(self): """ This checks that if fastmath is set and the underlying hardware is suitable, and the function supplied is amenable to fastmath based -@@ -2885,7 +2885,7 @@ class TestParforsVectorizer(TestPrangeBa +@@ -3933,7 +3934,7 @@ class TestParforsVectorizer(TestPrangeBa # check no zmm addressing is present self.assertTrue('zmm' not in v) - @linux_only -+ @unittest.skip("Our x86_64 asm is most probably different from the Travis one.") ++ @unittest.skip("Our x86_64 asm is most probably different from the upstream one.") def test_unsigned_refusal_to_vectorize(self): """ This checks that if fastmath is set and the underlying hardware is suitable, and the function supplied is amenable to fastmath based -Index: numba-0.53.0/numba/tests/test_parfors_passes.py +Index: numba-0.54.0/numba/tests/test_parfors_passes.py =================================================================== ---- numba-0.53.0.orig/numba/tests/test_parfors_passes.py -+++ numba-0.53.0/numba/tests/test_parfors_passes.py -@@ -512,6 +512,7 @@ class TestConvertLoopPass(BaseTest): +--- numba-0.54.0.orig/numba/tests/test_parfors_passes.py ++++ numba-0.54.0/numba/tests/test_parfors_passes.py +@@ -516,6 +516,7 @@ class TestConvertLoopPass(BaseTest): str(raises.exception), )