Accepting request 946603 from home:bnavigator:branches:devel:languages:python:numeric
- Update to 0.55.0 - Add numba-pr7748-random32bitwidth.patch -- gh#numba/numba#7748 Next try. Let's see if i586 also builds server-side. OBS-URL: https://build.opensuse.org/request/show/946603 OBS-URL: https://build.opensuse.org/package/show/devel:languages:python:numeric/python-numba?expand=0&rev=51
This commit is contained in:
parent
2704467ddf
commit
705a372c7e
@ -1,3 +0,0 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:f9dfc803c864edcc2381219b800abf366793400aea55e26d4d5b7d953e14f43f
|
||||
size 2232957
|
3
numba-0.55.0.tar.gz
Normal file
3
numba-0.55.0.tar.gz
Normal file
@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:b221ebd997662a1dcb77e4f09140e022fbfe7577ad0781fc2e0214135dba6cbd
|
||||
size 2300580
|
@ -1,242 +0,0 @@
|
||||
From 3a2c5042fa85ac9b8fe398d605d6d373d27f42bb Mon Sep 17 00:00:00 2001
|
||||
From: Stuart Archibald <stuartarchibald@users.noreply.github.com>
|
||||
Date: Thu, 14 Oct 2021 09:35:24 +0100
|
||||
Subject: [PATCH 1/7] Update build matrix for NumPy 1.21 as per NEP-029.
|
||||
|
||||
As title.
|
||||
---
|
||||
azure-pipelines.yml | 68 ++++++++++++++--------------
|
||||
buildscripts/azure/azure-windows.yml | 8 ++--
|
||||
2 files changed, 38 insertions(+), 38 deletions(-)
|
||||
|
||||
Index: numba-0.54.1/setup.py
|
||||
===================================================================
|
||||
--- numba-0.54.1.orig/setup.py
|
||||
+++ numba-0.54.1/setup.py
|
||||
@@ -22,8 +22,7 @@ except ImportError:
|
||||
min_python_version = "3.7"
|
||||
max_python_version = "3.10" # exclusive
|
||||
min_numpy_build_version = "1.11"
|
||||
-min_numpy_run_version = "1.17"
|
||||
-max_numpy_run_version = "1.21"
|
||||
+min_numpy_run_version = "1.18"
|
||||
min_llvmlite_version = "0.37.0rc1"
|
||||
max_llvmlite_version = "0.38"
|
||||
|
||||
@@ -360,7 +359,7 @@ packages = find_packages(include=["numba
|
||||
build_requires = ['numpy >={}'.format(min_numpy_build_version)]
|
||||
install_requires = [
|
||||
'llvmlite >={},<{}'.format(min_llvmlite_version, max_llvmlite_version),
|
||||
- 'numpy >={},<{}'.format(min_numpy_run_version, max_numpy_run_version),
|
||||
+ 'numpy >={}'.format(min_numpy_run_version),
|
||||
'setuptools',
|
||||
]
|
||||
|
||||
Index: numba-0.54.1/numba/__init__.py
|
||||
===================================================================
|
||||
--- numba-0.54.1.orig/numba/__init__.py
|
||||
+++ numba-0.54.1/numba/__init__.py
|
||||
@@ -137,10 +137,8 @@ def _ensure_critical_deps():
|
||||
if PYVERSION < (3, 7):
|
||||
raise ImportError("Numba needs Python 3.7 or greater")
|
||||
|
||||
- if numpy_version < (1, 17):
|
||||
- raise ImportError("Numba needs NumPy 1.17 or greater")
|
||||
- elif numpy_version > (1, 20):
|
||||
- raise ImportError("Numba needs NumPy 1.20 or less")
|
||||
+ if numpy_version < (1, 18):
|
||||
+ raise ImportError("Numba needs NumPy 1.18 or greater")
|
||||
|
||||
try:
|
||||
import scipy
|
||||
Index: numba-0.54.1/README.rst
|
||||
===================================================================
|
||||
--- numba-0.54.1.orig/README.rst
|
||||
+++ numba-0.54.1/README.rst
|
||||
@@ -50,7 +50,7 @@ Dependencies
|
||||
|
||||
* Python versions: 3.7-3.9
|
||||
* llvmlite 0.37.*
|
||||
-* NumPy >=1.17,<1.21 (can build with 1.11 for ABI compatibility).
|
||||
+* NumPy >=1.18 (can build with 1.11 for ABI compatibility).
|
||||
|
||||
Optionally:
|
||||
|
||||
Index: numba-0.54.1/docs/source/user/5minguide.rst
|
||||
===================================================================
|
||||
--- numba-0.54.1.orig/docs/source/user/5minguide.rst
|
||||
+++ numba-0.54.1/docs/source/user/5minguide.rst
|
||||
@@ -18,7 +18,7 @@ Out of the box Numba works with the foll
|
||||
support on M1/Arm64.
|
||||
* GPUs: Nvidia CUDA.
|
||||
* CPython
|
||||
-* NumPy 1.17 - latest
|
||||
+* NumPy 1.18 - latest
|
||||
|
||||
How do I get it?
|
||||
----------------
|
||||
Index: numba-0.54.1/numba/np/ufunc/_internal.c
|
||||
===================================================================
|
||||
--- numba-0.54.1.orig/numba/np/ufunc/_internal.c
|
||||
+++ numba-0.54.1/numba/np/ufunc/_internal.c
|
||||
@@ -276,6 +276,7 @@ static PyMemberDef dufunc_members[] = {
|
||||
*/
|
||||
|
||||
static struct _ufunc_dispatch {
|
||||
+ /* Note that the following may also hold `_PyCFunctionFastWithKeywords` */
|
||||
PyCFunctionWithKeywords ufunc_reduce;
|
||||
PyCFunctionWithKeywords ufunc_accumulate;
|
||||
PyCFunctionWithKeywords ufunc_reduceat;
|
||||
@@ -286,7 +287,7 @@ static struct _ufunc_dispatch {
|
||||
} ufunc_dispatch;
|
||||
|
||||
static int
|
||||
-init_ufunc_dispatch(void)
|
||||
+init_ufunc_dispatch(int *numpy_uses_fastcall)
|
||||
{
|
||||
int result = 0;
|
||||
PyMethodDef * crnt = PyUFunc_Type.tp_methods;
|
||||
@@ -329,6 +330,16 @@ init_ufunc_dispatch(void)
|
||||
result = -1; /* Unknown method */
|
||||
}
|
||||
if (result < 0) break;
|
||||
+
|
||||
+ /* Check whether NumPy uses fastcall (ufunc.at never uses it) */
|
||||
+ if (strncmp(crnt_name, "at", 3) != 0) {
|
||||
+ if (*numpy_uses_fastcall == -1) {
|
||||
+ *numpy_uses_fastcall = crnt->ml_flags & METH_FASTCALL;
|
||||
+ }
|
||||
+ else if (*numpy_uses_fastcall != (crnt->ml_flags & METH_FASTCALL)) {
|
||||
+ return -1;
|
||||
+ }
|
||||
+ }
|
||||
}
|
||||
if (result == 0) {
|
||||
/* Sanity check. */
|
||||
@@ -344,6 +355,7 @@ init_ufunc_dispatch(void)
|
||||
return result;
|
||||
}
|
||||
|
||||
+
|
||||
static PyObject *
|
||||
dufunc_reduce(PyDUFuncObject * self, PyObject * args, PyObject *kws)
|
||||
{
|
||||
@@ -368,6 +380,47 @@ dufunc_outer(PyDUFuncObject * self, PyOb
|
||||
return ufunc_dispatch.ufunc_outer((PyObject*)self->ufunc, args, kws);
|
||||
}
|
||||
|
||||
+
|
||||
+/*
|
||||
+ * The following are the vectorcall versions of the above, since NumPy
|
||||
+ * uses the FASTCALL/Vectorcall protocol starting with version 1.21.
|
||||
+ * The only NumPy versions supporting vectorcall use Python 3.7 or higher.
|
||||
+ */
|
||||
+static PyObject *
|
||||
+dufunc_reduce_fast(PyDUFuncObject * self,
|
||||
+ PyObject *const *args, Py_ssize_t len_args, PyObject *kwnames)
|
||||
+{
|
||||
+ return ((_PyCFunctionFastWithKeywords)ufunc_dispatch.ufunc_reduce)(
|
||||
+ (PyObject*)self->ufunc, args, len_args, kwnames);
|
||||
+}
|
||||
+
|
||||
+static PyObject *
|
||||
+dufunc_reduceat_fast(PyDUFuncObject * self,
|
||||
+ PyObject *const *args, Py_ssize_t len_args, PyObject *kwnames)
|
||||
+{
|
||||
+ return ((_PyCFunctionFastWithKeywords)ufunc_dispatch.ufunc_reduceat)(
|
||||
+ (PyObject*)self->ufunc, args, len_args, kwnames);
|
||||
+}
|
||||
+
|
||||
+
|
||||
+static PyObject *
|
||||
+dufunc_accumulate_fast(PyDUFuncObject * self,
|
||||
+ PyObject *const *args, Py_ssize_t len_args, PyObject *kwnames)
|
||||
+{
|
||||
+ return ((_PyCFunctionFastWithKeywords)ufunc_dispatch.ufunc_accumulate)(
|
||||
+ (PyObject*)self->ufunc, args, len_args, kwnames);
|
||||
+}
|
||||
+
|
||||
+
|
||||
+static PyObject *
|
||||
+dufunc_outer_fast(PyDUFuncObject * self,
|
||||
+ PyObject *const *args, Py_ssize_t len_args, PyObject *kwnames)
|
||||
+{
|
||||
+ return ((_PyCFunctionFastWithKeywords)ufunc_dispatch.ufunc_outer)(
|
||||
+ (PyObject*)self->ufunc, args, len_args, kwnames);
|
||||
+}
|
||||
+
|
||||
+
|
||||
#if NPY_API_VERSION >= 0x00000008
|
||||
static PyObject *
|
||||
dufunc_at(PyDUFuncObject * self, PyObject * args)
|
||||
@@ -568,6 +621,41 @@ static struct PyMethodDef dufunc_methods
|
||||
{NULL, NULL, 0, NULL} /* sentinel */
|
||||
};
|
||||
|
||||
+
|
||||
+/*
|
||||
+ * If Python is new enough, NumPy may use fastcall. In that case we have to
|
||||
+ * also use fastcall for simplicity and speed.
|
||||
+ */
|
||||
+static struct PyMethodDef dufunc_methods_fast[] = {
|
||||
+ {"reduce",
|
||||
+ (PyCFunction)dufunc_reduce_fast,
|
||||
+ METH_FASTCALL | METH_KEYWORDS, NULL },
|
||||
+ {"accumulate",
|
||||
+ (PyCFunction)dufunc_accumulate_fast,
|
||||
+ METH_FASTCALL | METH_KEYWORDS, NULL },
|
||||
+ {"reduceat",
|
||||
+ (PyCFunction)dufunc_reduceat_fast,
|
||||
+ METH_FASTCALL | METH_KEYWORDS, NULL },
|
||||
+ {"outer",
|
||||
+ (PyCFunction)dufunc_outer_fast,
|
||||
+ METH_FASTCALL | METH_KEYWORDS, NULL},
|
||||
+#if NPY_API_VERSION >= 0x00000008
|
||||
+ {"at",
|
||||
+ (PyCFunction)dufunc_at,
|
||||
+ METH_VARARGS, NULL},
|
||||
+#endif
|
||||
+ {"_compile_for_args",
|
||||
+ (PyCFunction)dufunc__compile_for_args,
|
||||
+ METH_VARARGS | METH_KEYWORDS,
|
||||
+ "Abstract method: subclasses should overload _compile_for_args() to compile the ufunc at the given arguments' types."},
|
||||
+ {"_add_loop",
|
||||
+ (PyCFunction)dufunc__add_loop,
|
||||
+ METH_VARARGS,
|
||||
+ NULL},
|
||||
+ {NULL, NULL, 0, NULL} /* sentinel */
|
||||
+};
|
||||
+
|
||||
+
|
||||
static PyObject *
|
||||
dufunc_getfrozen(PyDUFuncObject * self, void * closure)
|
||||
{
|
||||
@@ -681,8 +769,15 @@ MOD_INIT(_internal)
|
||||
return MOD_ERROR_VAL;
|
||||
|
||||
PyDUFunc_Type.tp_new = PyType_GenericNew;
|
||||
- if (init_ufunc_dispatch() <= 0)
|
||||
+
|
||||
+ int numpy_uses_fastcall = -1;
|
||||
+ if (init_ufunc_dispatch(&numpy_uses_fastcall) <= 0)
|
||||
return MOD_ERROR_VAL;
|
||||
+
|
||||
+ if (numpy_uses_fastcall) {
|
||||
+ PyDUFunc_Type.tp_methods = dufunc_methods_fast;
|
||||
+ }
|
||||
+
|
||||
if (PyType_Ready(&PyDUFunc_Type) < 0)
|
||||
return MOD_ERROR_VAL;
|
||||
Py_INCREF(&PyDUFunc_Type);
|
||||
Index: numba-0.54.1/numba/tests/test_array_reductions.py
|
||||
===================================================================
|
||||
--- numba-0.54.1.orig/numba/tests/test_array_reductions.py
|
||||
+++ numba-0.54.1/numba/tests/test_array_reductions.py
|
||||
@@ -725,6 +725,7 @@ class TestArrayReductions(MemoryLeakMixi
|
||||
self.check_npdatetime(array_argmax)
|
||||
self.check_nptimedelta(array_argmax)
|
||||
|
||||
+ @unittest.skip("https://github.com/numpy/numpy/issues/20376")
|
||||
def test_median_npdatetime(self):
|
||||
self.check_nptimedelta(array_median_global)
|
||||
|
58
numba-pr7748-random32bitwidth.patch
Normal file
58
numba-pr7748-random32bitwidth.patch
Normal file
@ -0,0 +1,58 @@
|
||||
From e6df66d52152156ba8bcda64b37f4995bda72d2f Mon Sep 17 00:00:00 2001
|
||||
From: Graham Markall <gmarkall@nvidia.com>
|
||||
Date: Fri, 14 Jan 2022 21:24:40 +0000
|
||||
Subject: [PATCH] Fix #7713: Ensure _prng_random_hash return has correct
|
||||
bitwidth
|
||||
|
||||
When the hash width is 32 bits, get_next_int32 needs to be used because
|
||||
that returns a 32-bit integer, as opposed to get_next_int, which returns
|
||||
a 64-bit integer regardless of the supplied bitwidth.
|
||||
|
||||
This commit also alters the signature of _prng_random_hash to use
|
||||
_Py_hash_t as the return type - it will be equal to types.intp, but the
|
||||
intent should be clearer.
|
||||
---
|
||||
numba/cpython/hashing.py | 21 +++++++++++++++++----
|
||||
1 file changed, 17 insertions(+), 4 deletions(-)
|
||||
|
||||
diff --git a/numba/cpython/hashing.py b/numba/cpython/hashing.py
|
||||
index 5a8673b04b..227fc4e1c5 100644
|
||||
--- a/numba/cpython/hashing.py
|
||||
+++ b/numba/cpython/hashing.py
|
||||
@@ -18,7 +18,8 @@
|
||||
from numba.core import errors
|
||||
from numba.core import types, utils
|
||||
from numba.core.unsafe.bytes import grab_byte, grab_uint64_t
|
||||
-from numba.cpython.randomimpl import get_state_ptr, get_next_int, const_int
|
||||
+from numba.cpython.randomimpl import (const_int, get_next_int, get_next_int32,
|
||||
+ get_state_ptr)
|
||||
|
||||
_py38_or_later = utils.PYVERSION >= (3, 8)
|
||||
_py310_or_later = utils.PYVERSION >= (3, 10)
|
||||
@@ -137,11 +138,23 @@ def _prng_random_hash(tyctx):
|
||||
|
||||
def impl(cgctx, builder, signature, args):
|
||||
state_ptr = get_state_ptr(cgctx, builder, "internal")
|
||||
- bits = const_int(types.intp.bitwidth)
|
||||
- value = get_next_int(cgctx, builder, state_ptr, bits, False)
|
||||
+ bits = const_int(_hash_width)
|
||||
+
|
||||
+ # Why not just use get_next_int() with the correct bitwidth?
|
||||
+ # get_next_int() always returns an i64, because the bitwidth it is
|
||||
+ # passed may not be a compile-time constant, so it needs to allocate
|
||||
+ # the largest unit of storage that may be required. Therefore, if the
|
||||
+ # hash width is 32, then we need to use get_next_int32() to ensure we
|
||||
+ # don't return a wider-than-expected hash, even if everything above
|
||||
+ # the low 32 bits would have been zero.
|
||||
+ if _hash_width == 32:
|
||||
+ value = get_next_int32(cgctx, builder, state_ptr)
|
||||
+ else:
|
||||
+ value = get_next_int(cgctx, builder, state_ptr, bits, False)
|
||||
+
|
||||
return value
|
||||
|
||||
- sig = types.intp()
|
||||
+ sig = _Py_hash_t()
|
||||
return sig, impl
|
||||
|
||||
|
@ -1,3 +1,73 @@
|
||||
-------------------------------------------------------------------
|
||||
Fri Jan 14 16:55:37 UTC 2022 - Ben Greiner <code@bnavigator.de>
|
||||
|
||||
- Update to 0.55.0
|
||||
* This release includes a significant number important dependency
|
||||
upgrades along with a number of new features and bug fixes.
|
||||
* NOTE: Due to NumPy CVE-2021-33430 this release has bypassed the
|
||||
usual release process so as to promptly provide a Numba release
|
||||
that supports NumPy 1.21. A single release candidate (RC1) was
|
||||
made and a few issues were reported, these are summarised as
|
||||
follows and will be fixed in a subsequent 0.55.1 release.
|
||||
* Known issues with this release:
|
||||
- Incorrect result copying array-typed field of structured
|
||||
array (#7693)
|
||||
- Two issues in DebugInfo generation (#7726, #7730)
|
||||
- Compilation failure for hash of floating point values on 32
|
||||
bit Windows when using Python 3.10 (#7713).
|
||||
* Support for Python 3.10
|
||||
* Support for NumPy 1.21
|
||||
* The minimum supported NumPy version is raised to 1.18 for
|
||||
runtime (compilation however remains compatible with NumPy
|
||||
1.11).
|
||||
* Experimental support for isinstance.
|
||||
* The following functions are now supported:
|
||||
- np.broadcast_to
|
||||
- np.float_power
|
||||
- np.cbrt
|
||||
- np.logspace
|
||||
- np.take_along_axis
|
||||
- np.average
|
||||
- np.argmin gains support for the axis kwarg.
|
||||
- np.ndarray.astype gains support for types expressed as
|
||||
literal strings.
|
||||
* For users of the Numba extension API, Numba now has a new error
|
||||
handling mode whereby it will treat all exceptions that do not
|
||||
inherit from numba.errors.NumbaException as a “hard error” and
|
||||
immediately unwind the stack. This makes it much easier to
|
||||
debug when writing @overloads etc from the extension API as
|
||||
there’s now no confusion between Python errors and Numba
|
||||
errors. This feature can be enabled by setting the environment
|
||||
variable: NUMBA_CAPTURED_ERRORS='new_style'.
|
||||
* The threading layer selection priority can now be changed via
|
||||
the environment variable NUMBA_THREADING_LAYER_PRIORITY.
|
||||
* Support for NVIDIA’s CUDA Python bindings.
|
||||
* Support for 16-bit floating point numbers and their basic
|
||||
operations via intrinsics.
|
||||
* Streams are provided in the Stream.async_done result, making it
|
||||
easier to implement asynchronous work queues.
|
||||
* Support for structured types in device arrays, character
|
||||
sequences in NumPy arrays, and some array operations on nested
|
||||
arrays.
|
||||
* Much underlying refactoring to align the CUDA target more
|
||||
closely with the CPU target, which lays the groudwork for
|
||||
supporting the high level extension API in CUDA in future
|
||||
releases.
|
||||
* Intel also kindly sponsored research and development into
|
||||
native debug (DWARF) support and handling per-function
|
||||
compilation flags:
|
||||
* Line number/location tracking is much improved.
|
||||
* Numba’s internal representation of containers (e.g. tuples,
|
||||
arrays) are now encoded as structures.
|
||||
* Numba’s per-function compilation flags are encoded into the ABI
|
||||
field of the mangled name of the function such that it’s
|
||||
possible to compile and differentiate between versions of the
|
||||
same function with different flags set.
|
||||
* There are no new general deprecations.
|
||||
* There are no new CUDA target deprecations.
|
||||
- Drop numba-pr7483-numpy1_21.patch
|
||||
- Add numba-pr7748-random32bitwidth.patch -- gh#numba/numba#7748
|
||||
|
||||
-------------------------------------------------------------------
|
||||
Sat Jan 8 22:19:07 UTC 2022 - Ben Greiner <code@bnavigator.de>
|
||||
|
||||
|
@ -16,9 +16,8 @@
|
||||
#
|
||||
|
||||
|
||||
%{?!python_module:%define python_module() python-%{**} python3-%{**}}
|
||||
%{?!python_module:%define python_module() python3-%{**}}
|
||||
%define skip_python2 1
|
||||
%define skip_python310 1
|
||||
%define plainpython python
|
||||
%global flavor @BUILD_FLAVOR@%{nil}
|
||||
%if "%{flavor}" == "test"
|
||||
@ -29,7 +28,7 @@
|
||||
%bcond_with test
|
||||
%endif
|
||||
Name: python-numba%{psuffix}
|
||||
Version: 0.54.1
|
||||
Version: 0.55.0
|
||||
Release: 0
|
||||
Summary: NumPy-aware optimizing compiler for Python using LLVM
|
||||
License: BSD-2-Clause
|
||||
@ -37,26 +36,25 @@ URL: https://numba.pydata.org/
|
||||
Source: https://files.pythonhosted.org/packages/source/n/numba/numba-%{version}.tar.gz
|
||||
# PATCH-FIX-UPSTREAM fix-max-name-size.patch -- fix for gh#numba/numba#3876 -- from gh#numba/numba#4373
|
||||
Patch0: fix-max-name-size.patch
|
||||
# PATCH-FIX-UPSTREAM support numpy 1.21 -- gh#numba/numba#7176, gh#numba/numba#7483, gh#numpy/numpy#20376
|
||||
Patch1: numba-pr7483-numpy1_21.patch
|
||||
# PATCH-FIX-UPSTREAM numba-pr7748-random32bitwidth.patch -- gh#numba/numba#7748
|
||||
Patch1: numba-pr7748-random32bitwidth.patch
|
||||
# PATCH-FIX-OPENSUSE skip tests failing due to OBS specifics
|
||||
Patch3: skip-failing-tests.patch
|
||||
BuildRequires: %{python_module devel >= 3.7 with %python-devel < 3.10}
|
||||
BuildRequires: %{python_module devel >= 3.7}
|
||||
BuildRequires: %{python_module numpy-devel >= 1.18 with %python-numpy-devel < 1.22}
|
||||
BuildRequires: %{python_module setuptools}
|
||||
BuildRequires: fdupes
|
||||
BuildRequires: gcc-c++
|
||||
BuildRequires: python-rpm-macros
|
||||
BuildRequires: tbb-devel >= 2021
|
||||
Requires: python-llvmlite < 0.38
|
||||
Requires: python-llvmlite >= 0.37
|
||||
Requires: python-scipy >= 0.16
|
||||
Requires: (python-llvmlite >= 0.38 with python-llvmlite < 0.39)
|
||||
Requires: (python-numpy >= 1.18 with python-numpy < 1.22)
|
||||
Requires(post): update-alternatives
|
||||
Requires(preun):update-alternatives
|
||||
Recommends: python-Jinja2
|
||||
Recommends: python-Pygments
|
||||
Recommends: python-cffi
|
||||
Recommends: python-scipy > 1.0
|
||||
Recommends: python-tbb
|
||||
%if %{with test}
|
||||
BuildRequires: %{python_module Jinja2}
|
||||
@ -69,7 +67,7 @@ BuildRequires: %{python_module numba-devel >= %{version}}
|
||||
BuildRequires: %{python_module pip}
|
||||
BuildRequires: %{python_module psutil}
|
||||
BuildRequires: %{python_module pytest}
|
||||
BuildRequires: %{python_module scipy >= 0.16}
|
||||
BuildRequires: %{python_module scipy >= 1.0}
|
||||
BuildRequires: %{python_module tbb}
|
||||
%endif
|
||||
%python_subpackages
|
||||
@ -102,17 +100,13 @@ Requires: %{plainpython}(abi) = %{python_version}
|
||||
This package contains files for developing applications using numba.
|
||||
|
||||
%prep
|
||||
%setup -q -n numba-%{version}
|
||||
%autopatch -p1
|
||||
%autosetup -p1 -n numba-%{version}
|
||||
sed -i -e '1{/env python/ d}' numba/misc/appdirs.py
|
||||
|
||||
# timeouts randomly in OBS
|
||||
# random timeouts in OBS
|
||||
rm numba/tests/test_typedlist.py
|
||||
# if we reduced the amount of tests too much:
|
||||
# sed -i -e '/check_testsuite_size/ s/5000/3000/' numba/tests/test_runtests.py
|
||||
# our setup imports distutils. Not sure why, but should not be a problem.
|
||||
sed -i -e "/def test_laziness/,/def/ {/'distutils',/ d}" numba/tests/test_import.py
|
||||
|
||||
sed -i -e '1{/env python/ d}' numba/misc/appdirs.py
|
||||
|
||||
%build
|
||||
%if !%{with test}
|
||||
@ -136,13 +130,14 @@ sed 's|^%{buildroot}|%%exclude |' devel-files0-%{$python_bin_suffix}.files > dev
|
||||
|
||||
%check
|
||||
%if %{with test}
|
||||
mv numba numba_temp
|
||||
export NUMBA_PARALLEL_DIAGNOSTICS=1
|
||||
%{python_expand # test the installed package
|
||||
# test the installed package, not the source without compiled modules
|
||||
mkdir emtpytestdir
|
||||
pushd emtpytestdir
|
||||
%{python_expand # numbatests: check specific tests with `osc build -M test --define="numbatests <testnames>"`
|
||||
%{_bindir}/numba-%{$python_bin_suffix} -s
|
||||
$python -m numba.runtests -v -b --exclude-tags='long_running' -m %{_smp_build_ncpus} -- numba.tests
|
||||
$python -m numba.runtests -v -b --exclude-tags='long_running' -m %{_smp_build_ncpus} -- %{?!numbatests:numba.tests}%{?numbatests}
|
||||
}
|
||||
mv numba_temp numba
|
||||
popd
|
||||
%endif
|
||||
|
||||
%if !%{with test}
|
||||
|
Loading…
Reference in New Issue
Block a user