- Update to 0.57.0:

* Support for Python 3.11 (minimum is moved to 3.8)
  * Support for NumPy 1.24 (minimum is moved to 1.21)
  * Python language support enhancements:
    + Exception classes now support arguments that are not compile time
      constant.
    + The built-in functions hasattr and getattr are supported for compile
      time constant attributes.
    + The built-in functions str and repr are now implemented similarly to
      their Python implementations. Custom __str__ and __repr__ functions
      can be associated with types and work as expected.
    + Numba’s unicode functionality in str.startswith now supports kwargs
      start and end.
    + min and max now support boolean types.
    + Support is added for the dict(iterable) constructor. 
- Dropped patches:
  * numba-pr8620-np1.24.patch
  * update-tbb-backend-calls-2021.6.patch
- Rebased existing patch.

OBS-URL: https://build.opensuse.org/package/show/devel:languages:python:numeric/python-numba?expand=0&rev=67
This commit is contained in:
Steve Kowalik 2023-05-26 13:36:43 +00:00 committed by Git OBS Bridge
parent fc396cbd22
commit 7dc6bd0e2e
8 changed files with 54 additions and 517 deletions

View File

@ -1,4 +1,5 @@
<multibuild> <multibuild>
<package>test-py39</package> <package>test-py39</package>
<package>test-py310</package> <package>test-py310</package>
<package>test-py311</package>
</multibuild> </multibuild>

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:32d9fef412c81483d7efe0ceb6cf4d3310fde8b624a9cecca00f790573ac96ee
size 2418748

3
numba-0.57.0.tar.gz Normal file
View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:2af6d81067a5bdc13960c6d2519dbabbf4d5d597cf75d640c5aeaefd48c6420a
size 2549269

View File

@ -1,415 +0,0 @@
Index: numba-0.56.4/numba/cuda/tests/cudapy/test_intrinsics.py
===================================================================
--- numba-0.56.4.orig/numba/cuda/tests/cudapy/test_intrinsics.py
+++ numba-0.56.4/numba/cuda/tests/cudapy/test_intrinsics.py
@@ -619,7 +619,7 @@ class TestCudaIntrinsic(CUDATestCase):
arg2 = np.float16(4.)
compiled[1, 1](ary, arg1, arg2)
np.testing.assert_allclose(ary[0], arg2)
- arg1 = np.float(5.)
+ arg1 = np.float16(5.)
compiled[1, 1](ary, arg1, arg2)
np.testing.assert_allclose(ary[0], arg1)
@@ -631,7 +631,7 @@ class TestCudaIntrinsic(CUDATestCase):
arg2 = np.float16(4.)
compiled[1, 1](ary, arg1, arg2)
np.testing.assert_allclose(ary[0], arg1)
- arg1 = np.float(5.)
+ arg1 = np.float16(5.)
compiled[1, 1](ary, arg1, arg2)
np.testing.assert_allclose(ary[0], arg2)
Index: numba-0.56.4/numba/np/arraymath.py
===================================================================
--- numba-0.56.4.orig/numba/np/arraymath.py
+++ numba-0.56.4/numba/np/arraymath.py
@@ -4177,6 +4177,10 @@ iinfo = namedtuple('iinfo', _iinfo_suppo
# This module is imported under the compiler lock which should deal with the
# lack of thread safety in the warning filter.
def _gen_np_machar():
+ # NumPy 1.24 removed np.MachAr
+ if numpy_version >= (1, 24):
+ return
+
np122plus = numpy_version >= (1, 22)
w = None
with warnings.catch_warnings(record=True) as w:
Index: numba-0.56.4/numba/np/ufunc/_internal.c
===================================================================
--- numba-0.56.4.orig/numba/np/ufunc/_internal.c
+++ numba-0.56.4/numba/np/ufunc/_internal.c
@@ -285,9 +285,7 @@ static struct _ufunc_dispatch {
PyCFunctionWithKeywords ufunc_accumulate;
PyCFunctionWithKeywords ufunc_reduceat;
PyCFunctionWithKeywords ufunc_outer;
-#if NPY_API_VERSION >= 0x00000008
PyCFunction ufunc_at;
-#endif
} ufunc_dispatch;
static int
@@ -303,10 +301,8 @@ init_ufunc_dispatch(int *numpy_uses_fast
if (strncmp(crnt_name, "accumulate", 11) == 0) {
ufunc_dispatch.ufunc_accumulate =
(PyCFunctionWithKeywords)crnt->ml_meth;
-#if NPY_API_VERSION >= 0x00000008
} else if (strncmp(crnt_name, "at", 3) == 0) {
ufunc_dispatch.ufunc_at = crnt->ml_meth;
-#endif
} else {
result = -1;
}
@@ -326,10 +322,15 @@ init_ufunc_dispatch(int *numpy_uses_fast
} else if (strncmp(crnt_name, "reduceat", 9) == 0) {
ufunc_dispatch.ufunc_reduceat =
(PyCFunctionWithKeywords)crnt->ml_meth;
+ } else if (strncmp(crnt_name, "resolve_dtypes", 15) == 0) {
+ /* Ignored */
} else {
result = -1;
}
break;
+ case '_':
+ // We ignore private methods
+ break;
default:
result = -1; /* Unknown method */
}
@@ -341,6 +342,8 @@ init_ufunc_dispatch(int *numpy_uses_fast
*numpy_uses_fastcall = crnt->ml_flags & METH_FASTCALL;
}
else if (*numpy_uses_fastcall != (crnt->ml_flags & METH_FASTCALL)) {
+ PyErr_SetString(PyExc_RuntimeError,
+ "ufunc.at() flags do not match numpy_uses_fastcall");
return -1;
}
}
@@ -351,11 +354,13 @@ init_ufunc_dispatch(int *numpy_uses_fast
&& (ufunc_dispatch.ufunc_accumulate != NULL)
&& (ufunc_dispatch.ufunc_reduceat != NULL)
&& (ufunc_dispatch.ufunc_outer != NULL)
-#if NPY_API_VERSION >= 0x00000008
&& (ufunc_dispatch.ufunc_at != NULL)
-#endif
);
+ } else {
+ char const * const fmt = "Unexpected ufunc method %s()";
+ PyErr_Format(PyExc_RuntimeError, fmt, crnt_name);
}
+
return result;
}
@@ -425,13 +430,11 @@ dufunc_outer_fast(PyDUFuncObject * self,
}
-#if NPY_API_VERSION >= 0x00000008
static PyObject *
dufunc_at(PyDUFuncObject * self, PyObject * args)
{
return ufunc_dispatch.ufunc_at((PyObject*)self->ufunc, args);
}
-#endif
static PyObject *
dufunc__compile_for_args(PyDUFuncObject * self, PyObject * args,
@@ -609,11 +612,9 @@ static struct PyMethodDef dufunc_methods
{"outer",
(PyCFunction)dufunc_outer,
METH_VARARGS | METH_KEYWORDS, NULL},
-#if NPY_API_VERSION >= 0x00000008
{"at",
(PyCFunction)dufunc_at,
METH_VARARGS, NULL},
-#endif
{"_compile_for_args",
(PyCFunction)dufunc__compile_for_args,
METH_VARARGS | METH_KEYWORDS,
@@ -643,11 +644,9 @@ static struct PyMethodDef dufunc_methods
{"outer",
(PyCFunction)dufunc_outer_fast,
METH_FASTCALL | METH_KEYWORDS, NULL},
-#if NPY_API_VERSION >= 0x00000008
{"at",
(PyCFunction)dufunc_at,
METH_VARARGS, NULL},
-#endif
{"_compile_for_args",
(PyCFunction)dufunc__compile_for_args,
METH_VARARGS | METH_KEYWORDS,
@@ -791,9 +790,7 @@ MOD_INIT(_internal)
if (PyModule_AddIntMacro(m, PyUFunc_One)
|| PyModule_AddIntMacro(m, PyUFunc_Zero)
|| PyModule_AddIntMacro(m, PyUFunc_None)
-#if NPY_API_VERSION >= 0x00000007
|| PyModule_AddIntMacro(m, PyUFunc_ReorderableNone)
-#endif
)
return MOD_ERROR_VAL;
Index: numba-0.56.4/numba/stencils/stencilparfor.py
===================================================================
--- numba-0.56.4.orig/numba/stencils/stencilparfor.py
+++ numba-0.56.4/numba/stencils/stencilparfor.py
@@ -21,6 +21,7 @@ from numba.core.ir_utils import (get_cal
find_callname, require, find_const, GuardException)
from numba.core.errors import NumbaValueError
from numba.core.utils import OPERATORS_TO_BUILTINS
+from numba.np import numpy_support
def _compute_last_ind(dim_size, index_const):
@@ -264,7 +265,11 @@ class StencilPass(object):
dtype_g_np_assign = ir.Assign(dtype_g_np, dtype_g_np_var, loc)
init_block.body.append(dtype_g_np_assign)
- dtype_np_attr_call = ir.Expr.getattr(dtype_g_np_var, return_type.dtype.name, loc)
+ return_type_name = numpy_support.as_dtype(
+ return_type.dtype).type.__name__
+ if return_type_name == 'bool':
+ return_type_name = 'bool_'
+ dtype_np_attr_call = ir.Expr.getattr(dtype_g_np_var, return_type_name, loc)
dtype_attr_var = ir.Var(scope, mk_unique_var("$np_attr_attr"), loc)
self.typemap[dtype_attr_var.name] = types.functions.NumberClass(return_type.dtype)
dtype_attr_assign = ir.Assign(dtype_np_attr_call, dtype_attr_var, loc)
Index: numba-0.56.4/numba/tests/test_array_methods.py
===================================================================
--- numba-0.56.4.orig/numba/tests/test_array_methods.py
+++ numba-0.56.4/numba/tests/test_array_methods.py
@@ -1193,7 +1193,7 @@ class TestArrayMethods(MemoryLeakMixin,
pyfunc = array_sum_dtype_kws
cfunc = jit(nopython=True)(pyfunc)
all_dtypes = [np.float64, np.float32, np.int64, np.int32, np.uint32,
- np.uint64, np.complex64, np.complex128, TIMEDELTA_M]
+ np.uint64, np.complex64, np.complex128]
all_test_arrays = [
[np.ones((7, 6, 5, 4, 3), arr_dtype),
np.ones(1, arr_dtype),
@@ -1207,8 +1207,7 @@ class TestArrayMethods(MemoryLeakMixin,
np.dtype('uint32'): [np.float64, np.int64, np.float32],
np.dtype('uint64'): [np.float64, np.int64],
np.dtype('complex64'): [np.complex64, np.complex128],
- np.dtype('complex128'): [np.complex128],
- np.dtype(TIMEDELTA_M): [np.dtype(TIMEDELTA_M)]}
+ np.dtype('complex128'): [np.complex128]}
for arr_list in all_test_arrays:
for arr in arr_list:
@@ -1216,15 +1215,15 @@ class TestArrayMethods(MemoryLeakMixin,
subtest_str = ("Testing np.sum with {} input and {} output"
.format(arr.dtype, out_dtype))
with self.subTest(subtest_str):
- self.assertPreciseEqual(pyfunc(arr, dtype=out_dtype),
- cfunc(arr, dtype=out_dtype))
+ self.assertPreciseEqual(pyfunc(arr, dtype=out_dtype),
+ cfunc(arr, dtype=out_dtype))
def test_sum_axis_dtype_kws(self):
""" test sum with axis and dtype parameters over a whole range of dtypes """
pyfunc = array_sum_axis_dtype_kws
cfunc = jit(nopython=True)(pyfunc)
all_dtypes = [np.float64, np.float32, np.int64, np.int32, np.uint32,
- np.uint64, np.complex64, np.complex128, TIMEDELTA_M]
+ np.uint64, np.complex64, np.complex128]
all_test_arrays = [
[np.ones((7, 6, 5, 4, 3), arr_dtype),
np.ones(1, arr_dtype),
@@ -1238,9 +1237,7 @@ class TestArrayMethods(MemoryLeakMixin,
np.dtype('uint32'): [np.float64, np.int64, np.float32],
np.dtype('uint64'): [np.float64, np.uint64],
np.dtype('complex64'): [np.complex64, np.complex128],
- np.dtype('complex128'): [np.complex128],
- np.dtype(TIMEDELTA_M): [np.dtype(TIMEDELTA_M)],
- np.dtype(TIMEDELTA_Y): [np.dtype(TIMEDELTA_Y)]}
+ np.dtype('complex128'): [np.complex128]}
for arr_list in all_test_arrays:
for arr in arr_list:
Index: numba-0.56.4/numba/tests/test_comprehension.py
===================================================================
--- numba-0.56.4.orig/numba/tests/test_comprehension.py
+++ numba-0.56.4/numba/tests/test_comprehension.py
@@ -11,6 +11,7 @@ from numba import jit, typed
from numba.core import types, utils
from numba.core.errors import TypingError, LoweringError
from numba.core.types.functions import _header_lead
+from numba.np.numpy_support import numpy_version
from numba.tests.support import tag, _32bit, captured_stdout
@@ -360,6 +361,7 @@ class TestArrayComprehension(unittest.Te
self.check(comp_nest_with_array_conditional, 5,
assert_allocate_list=True)
+ @unittest.skipUnless(numpy_version < (1, 24), 'Removed in NumPy 1.24')
def test_comp_nest_with_dependency(self):
def comp_nest_with_dependency(n):
l = np.array([[i * j for j in range(i+1)] for i in range(n)])
Index: numba-0.56.4/numba/tests/test_linalg.py
===================================================================
--- numba-0.56.4.orig/numba/tests/test_linalg.py
+++ numba-0.56.4/numba/tests/test_linalg.py
@@ -1122,6 +1122,32 @@ class TestLinalgSvd(TestLinalgBase):
Tests for np.linalg.svd.
"""
+ # This checks that A ~= U*S*V**H, i.e. SV decomposition ties out. This is
+ # required as NumPy uses only double precision LAPACK routines and
+ # computation of SVD is numerically sensitive. Numba uses type-specific
+ # routines and therefore sometimes comes out with a different answer to
+ # NumPy (orthonormal bases are not unique, etc.).
+
+ def check_reconstruction(self, a, got, expected):
+ u, sv, vt = got
+
+ # Check they are dimensionally correct
+ for k in range(len(expected)):
+ self.assertEqual(got[k].shape, expected[k].shape)
+
+ # Columns in u and rows in vt dictates the working size of s
+ s = np.zeros((u.shape[1], vt.shape[0]))
+ np.fill_diagonal(s, sv)
+
+ rec = np.dot(np.dot(u, s), vt)
+ resolution = np.finfo(a.dtype).resolution
+ np.testing.assert_allclose(
+ a,
+ rec,
+ rtol=10 * resolution,
+ atol=100 * resolution # zeros tend to be fuzzy
+ )
+
@needs_lapack
def test_linalg_svd(self):
"""
@@ -1150,34 +1176,8 @@ class TestLinalgSvd(TestLinalgBase):
# plain match failed, test by reconstruction
use_reconstruction = True
- # if plain match fails then reconstruction is used.
- # this checks that A ~= U*S*V**H
- # i.e. SV decomposition ties out
- # this is required as numpy uses only double precision lapack
- # routines and computation of svd is numerically
- # sensitive, numba using the type specific routines therefore
- # sometimes comes out with a different answer (orthonormal bases
- # are not unique etc.).
if use_reconstruction:
- u, sv, vt = got
-
- # check they are dimensionally correct
- for k in range(len(expected)):
- self.assertEqual(got[k].shape, expected[k].shape)
-
- # regardless of full_matrices cols in u and rows in vt
- # dictates the working size of s
- s = np.zeros((u.shape[1], vt.shape[0]))
- np.fill_diagonal(s, sv)
-
- rec = np.dot(np.dot(u, s), vt)
- resolution = np.finfo(a.dtype).resolution
- np.testing.assert_allclose(
- a,
- rec,
- rtol=10 * resolution,
- atol=100 * resolution # zeros tend to be fuzzy
- )
+ self.check_reconstruction(a, got, expected)
# Ensure proper resource management
with self.assertNoNRTLeak():
@@ -1238,8 +1238,11 @@ class TestLinalgSvd(TestLinalgBase):
got = func(X, False)
np.testing.assert_allclose(X, X_orig)
- for e_a, g_a in zip(expected, got):
- np.testing.assert_allclose(e_a, g_a)
+ try:
+ for e_a, g_a in zip(expected, got):
+ np.testing.assert_allclose(e_a, g_a)
+ except AssertionError:
+ self.check_reconstruction(X, got, expected)
class TestLinalgQr(TestLinalgBase):
Index: numba-0.56.4/numba/tests/test_mathlib.py
===================================================================
--- numba-0.56.4.orig/numba/tests/test_mathlib.py
+++ numba-0.56.4/numba/tests/test_mathlib.py
@@ -516,7 +516,7 @@ class TestMathLib(TestCase):
with warnings.catch_warnings():
warnings.simplefilter("error", RuntimeWarning)
self.assertRaisesRegexp(RuntimeWarning,
- 'overflow encountered in .*_scalars',
+ 'overflow encountered in .*scalar',
naive_hypot, val, val)
def test_hypot_npm(self):
Index: numba-0.56.4/numba/tests/test_np_functions.py
===================================================================
--- numba-0.56.4.orig/numba/tests/test_np_functions.py
+++ numba-0.56.4/numba/tests/test_np_functions.py
@@ -932,11 +932,11 @@ class TestNPFunctions(MemoryLeakMixin, T
yield np.inf, None
yield np.PINF, None
yield np.asarray([-np.inf, 0., np.inf]), None
- yield np.NINF, np.zeros(1, dtype=np.bool)
- yield np.inf, np.zeros(1, dtype=np.bool)
- yield np.PINF, np.zeros(1, dtype=np.bool)
+ yield np.NINF, np.zeros(1, dtype=np.bool_)
+ yield np.inf, np.zeros(1, dtype=np.bool_)
+ yield np.PINF, np.zeros(1, dtype=np.bool_)
yield np.NINF, np.empty(12)
- yield np.asarray([-np.inf, 0., np.inf]), np.zeros(3, dtype=np.bool)
+ yield np.asarray([-np.inf, 0., np.inf]), np.zeros(3, dtype=np.bool_)
pyfuncs = [isneginf, isposinf]
for pyfunc in pyfuncs:
@@ -4775,6 +4775,7 @@ def foo():
eval(compile(funcstr, '<string>', 'exec'))
return locals()['foo']
+ @unittest.skipIf(numpy_version >= (1, 24), "NumPy < 1.24 required")
def test_MachAr(self):
attrs = ('ibeta', 'it', 'machep', 'eps', 'negep', 'epsneg', 'iexp',
'minexp', 'xmin', 'maxexp', 'xmax', 'irnd', 'ngrd',
@@ -4817,7 +4818,8 @@ def foo():
cfunc = jit(nopython=True)(iinfo)
cfunc(np.float64(7))
- @unittest.skipUnless(numpy_version >= (1, 22), "Needs NumPy >= 1.22")
+ @unittest.skipUnless((1, 22) <= numpy_version < (1, 24),
+ "Needs NumPy >= 1.22, < 1.24")
@TestCase.run_test_in_subprocess
def test_np_MachAr_deprecation_np122(self):
# Tests that Numba is replaying the NumPy 1.22 deprecation warning
Index: numba-0.56.4/setup.py
===================================================================
--- numba-0.56.4.orig/setup.py
+++ numba-0.56.4/setup.py
@@ -23,7 +23,7 @@ min_python_version = "3.7"
max_python_version = "3.11" # exclusive
min_numpy_build_version = "1.11"
min_numpy_run_version = "1.18"
-max_numpy_run_version = "1.24"
+max_numpy_run_version = "1.25" # exclusive
min_llvmlite_version = "0.39.0dev0"
max_llvmlite_version = "0.40"
Index: numba-0.56.4/numba/__init__.py
===================================================================
--- numba-0.56.4.orig/numba/__init__.py
+++ numba-0.56.4/numba/__init__.py
@@ -142,8 +142,8 @@ def _ensure_critical_deps():
if numpy_version < (1, 18):
raise ImportError("Numba needs NumPy 1.18 or greater")
- elif numpy_version > (1, 23):
- raise ImportError("Numba needs NumPy 1.23 or less")
+ elif numpy_version > (1, 24):
+ raise ImportError("Numba needs NumPy 1.24 or less")
try:
import scipy

View File

@ -1,3 +1,26 @@
-------------------------------------------------------------------
Fri May 26 13:28:26 UTC 2023 - Steve Kowalik <steven.kowalik@suse.com>
- Update to 0.57.0:
* Support for Python 3.11 (minimum is moved to 3.8)
* Support for NumPy 1.24 (minimum is moved to 1.21)
* Python language support enhancements:
+ Exception classes now support arguments that are not compile time
constant.
+ The built-in functions hasattr and getattr are supported for compile
time constant attributes.
+ The built-in functions str and repr are now implemented similarly to
their Python implementations. Custom __str__ and __repr__ functions
can be associated with types and work as expected.
+ Numbas unicode functionality in str.startswith now supports kwargs
start and end.
+ min and max now support boolean types.
+ Support is added for the dict(iterable) constructor.
- Dropped patches:
* numba-pr8620-np1.24.patch
* update-tbb-backend-calls-2021.6.patch
- Rebased existing patch.
------------------------------------------------------------------- -------------------------------------------------------------------
Wed Apr 12 05:53:24 UTC 2023 - Steve Kowalik <steven.kowalik@suse.com> Wed Apr 12 05:53:24 UTC 2023 - Steve Kowalik <steven.kowalik@suse.com>

View File

@ -17,13 +17,9 @@
%define skip_python2 1 %define skip_python2 1
# Not compatible with Python 3.11 yet. If this changes, and the python311
# flavor is active, make sure to expand the multibuild test flavors
# https://github.com/numba/numba/issues/8304
%define skip_python311 1
%define plainpython python %define plainpython python
# upper bound is exclusive: min-numpy_ver <= numpy < max_numpy_ver # upper bound is exclusive: min-numpy_ver <= numpy < max_numpy_ver
%define min_numpy_ver 1.18 %define min_numpy_ver 1.21
%define max_numpy_ver 1.25 %define max_numpy_ver 1.25
%global flavor @BUILD_FLAVOR@%{nil} %global flavor @BUILD_FLAVOR@%{nil}
@ -43,22 +39,24 @@
%define skip_python311 1 %define skip_python311 1
%bcond_without test %bcond_without test
%endif %endif
%if "%{flavor}" == "test-py311"
%define psuffix -test-py311
%define skip_python39 1
%define skip_python310 1
%bcond_without test
%endif
Name: python-numba%{?psuffix} Name: python-numba%{?psuffix}
Version: 0.56.4 Version: 0.57.0
Release: 0 Release: 0
Summary: NumPy-aware optimizing compiler for Python using LLVM Summary: NumPy-aware optimizing compiler for Python using LLVM
License: BSD-2-Clause License: BSD-2-Clause
URL: https://numba.pydata.org/ URL: https://numba.pydata.org/
# SourceRepository: https://github.com/numba/numba # SourceRepository: https://github.com/numba/numba
Source: https://files.pythonhosted.org/packages/source/n/numba/numba-%{version}.tar.gz Source: https://files.pythonhosted.org/packages/source/n/numba/numba-%{version}.tar.gz
# PATCH-FIX-UPSTREAM numba-pr8620-np1.24.patch gh#numba/numba#8620 + raising upper bound in setup.py and numba/__init__.py
Patch1: numba-pr8620-np1.24.patch
# PATCH-FIX-OPENSUSE skip tests failing due to OBS specifics # PATCH-FIX-OPENSUSE skip tests failing due to OBS specifics
Patch3: skip-failing-tests.patch Patch3: skip-failing-tests.patch
# PATCH-FIX-OPENSUSE update-tbb-backend-calls-2021.6.patch, based on gh#numba/numba#7608 BuildRequires: %{python_module devel >= 3.8}
Patch4: update-tbb-backend-calls-2021.6.patch
BuildRequires: %{python_module devel >= 3.7}
BuildRequires: %{python_module numpy-devel >= %{min_numpy_ver} with %python-numpy-devel < %{max_numpy_ver}} BuildRequires: %{python_module numpy-devel >= %{min_numpy_ver} with %python-numpy-devel < %{max_numpy_ver}}
BuildRequires: %{python_module pip} BuildRequires: %{python_module pip}
BuildRequires: %{python_module setuptools} BuildRequires: %{python_module setuptools}
@ -67,7 +65,7 @@ BuildRequires: fdupes
BuildRequires: gcc-c++ BuildRequires: gcc-c++
BuildRequires: python-rpm-macros BuildRequires: python-rpm-macros
BuildRequires: (tbb-devel >= 2021) BuildRequires: (tbb-devel >= 2021)
Requires: (python-llvmlite >= 0.39 with python-llvmlite < 0.40) Requires: (python-llvmlite >= 0.40 with python-llvmlite < 0.41)
Requires: (python-numpy >= %{min_numpy_ver} with python-numpy < %{max_numpy_ver}) Requires: (python-numpy >= %{min_numpy_ver} with python-numpy < %{max_numpy_ver})
Requires(post): update-alternatives Requires(post): update-alternatives
Requires(postun):update-alternatives Requires(postun):update-alternatives
@ -147,7 +145,6 @@ sed 's|^%{buildroot}||' devel-files0-%{$python_bin_suffix}.files > devel-files-%
sed 's|^%{buildroot}|%%exclude |' devel-files0-%{$python_bin_suffix}.files > devel-files-exclude-%{$python_bin_suffix}.files sed 's|^%{buildroot}|%%exclude |' devel-files0-%{$python_bin_suffix}.files > devel-files-exclude-%{$python_bin_suffix}.files
} }
%python_clone -a %{buildroot}%{_bindir}/numba %python_clone -a %{buildroot}%{_bindir}/numba
%python_clone -a %{buildroot}%{_bindir}/pycc
%endif %endif
%check %check
@ -164,7 +161,7 @@ popd
%if !%{with test} %if !%{with test}
%post %post
%python_install_alternative numba pycc %python_install_alternative numba
%postun %postun
%python_uninstall_alternative numba %python_uninstall_alternative numba
@ -173,7 +170,6 @@ popd
%license LICENSE %license LICENSE
%doc CHANGE_LOG README.rst %doc CHANGE_LOG README.rst
%python_alternative %{_bindir}/numba %python_alternative %{_bindir}/numba
%python_alternative %{_bindir}/pycc
%{python_sitearch}/numba/ %{python_sitearch}/numba/
%{python_sitearch}/numba-%{version}.dist-info %{python_sitearch}/numba-%{version}.dist-info

View File

@ -3,9 +3,11 @@
numba/tests/test_parfors_passes.py | 1 + numba/tests/test_parfors_passes.py | 1 +
2 files changed, 4 insertions(+), 2 deletions(-) 2 files changed, 4 insertions(+), 2 deletions(-)
--- a/numba/tests/test_parfors.py Index: numba-0.57.0/numba/tests/test_parfors.py
+++ b/numba/tests/test_parfors.py ===================================================================
@@ -1174,6 +1174,7 @@ class TestParforNumPy(TestParforsBase): --- numba-0.57.0.orig/numba/tests/test_parfors.py
+++ numba-0.57.0/numba/tests/test_parfors.py
@@ -1190,6 +1190,7 @@ class TestParforNumPy(TestParforsBase):
self.check_variants(test_impl2, data_gen) self.check_variants(test_impl2, data_gen)
self.count_parfors_variants(test_impl2, data_gen) self.count_parfors_variants(test_impl2, data_gen)
@ -13,16 +15,16 @@
def test_ndarray_fill(self): def test_ndarray_fill(self):
def test_impl(x): def test_impl(x):
x.fill(7.0) x.fill(7.0)
@@ -4396,7 +4397,7 @@ class TestParforsVectorizer(TestPrangeBa @@ -4479,7 +4480,7 @@ class TestParforsVectorizer(TestPrangeBa
# to check vsqrtpd operates on zmm
match_vsqrtpd_on_zmm = re.compile('\n\s+vsqrtpd\s+.*zmm.*\n') return asm
- @linux_only - @linux_only
+ @unittest.skip("Our x86_64 asm is most probably different from the upstream one.") + @unittest.skip("Our x86_64 asm is most probably different from the upstream one.")
def test_vectorizer_fastmath_asm(self): def test_vectorizer_fastmath_asm(self):
""" This checks that if fastmath is set and the underlying hardware """ This checks that if fastmath is set and the underlying hardware
is suitable, and the function supplied is amenable to fastmath based is suitable, and the function supplied is amenable to fastmath based
@@ -4439,7 +4440,7 @@ class TestParforsVectorizer(TestPrangeBa @@ -4519,7 +4520,7 @@ class TestParforsVectorizer(TestPrangeBa
# check no zmm addressing is present # check no zmm addressing is present
self.assertTrue('zmm' not in v) self.assertTrue('zmm' not in v)
@ -31,8 +33,10 @@
def test_unsigned_refusal_to_vectorize(self): def test_unsigned_refusal_to_vectorize(self):
""" This checks that if fastmath is set and the underlying hardware """ This checks that if fastmath is set and the underlying hardware
is suitable, and the function supplied is amenable to fastmath based is suitable, and the function supplied is amenable to fastmath based
--- a/numba/tests/test_parfors_passes.py Index: numba-0.57.0/numba/tests/test_parfors_passes.py
+++ b/numba/tests/test_parfors_passes.py ===================================================================
--- numba-0.57.0.orig/numba/tests/test_parfors_passes.py
+++ numba-0.57.0/numba/tests/test_parfors_passes.py
@@ -516,6 +516,7 @@ class TestConvertLoopPass(BaseTest): @@ -516,6 +516,7 @@ class TestConvertLoopPass(BaseTest):
str(raises.exception), str(raises.exception),
) )
@ -41,10 +45,10 @@
def test_init_prange(self): def test_init_prange(self):
def test_impl(): def test_impl():
n = 20 n = 20
Index: numba-0.56.2/numba/tests/test_cli.py Index: numba-0.57.0/numba/tests/test_cli.py
=================================================================== ===================================================================
--- numba-0.56.2.orig/numba/tests/test_cli.py --- numba-0.57.0.orig/numba/tests/test_cli.py
+++ numba-0.56.2/numba/tests/test_cli.py +++ numba-0.57.0/numba/tests/test_cli.py
@@ -264,6 +264,7 @@ class TestGDBCLIInfoBrokenGdbs(TestCase) @@ -264,6 +264,7 @@ class TestGDBCLIInfoBrokenGdbs(TestCase)
self.assertIn("No such file or directory", stdout) self.assertIn("No such file or directory", stdout)
self.assertIn(path, stdout) self.assertIn(path, stdout)

View File

@ -1,72 +0,0 @@
---
numba/np/ufunc/tbbpool.cpp | 29 ++++++++++++++++++++++++-----
1 file changed, 24 insertions(+), 5 deletions(-)
--- a/numba/np/ufunc/tbbpool.cpp
+++ b/numba/np/ufunc/tbbpool.cpp
@@ -12,6 +12,7 @@ Implement parallel vectorize workqueue o
#undef _XOPEN_SOURCE
#endif
+#include <tbb/version.h>
#include <tbb/tbb.h>
#include <string.h>
#include <stdio.h>
@@ -27,10 +28,28 @@ Implement parallel vectorize workqueue o
* from here:
* https://github.com/intel/tbb/blob/2019_U5/include/tbb/tbb_stddef.h#L29
*/
-#if (TBB_INTERFACE_VERSION >= 12060) || (TBB_INTERFACE_VERSION < 12010)
-#error "TBB version is incompatible, 2021.1 through to 2021.5 required, i.e. 12010 <= TBB_INTERFACE_VERSION < 12060"
+#if TBB_INTERFACE_VERSION < 12010
+#error "TBB version is too old, 2021 update 1, i.e. TBB_INTERFACE_VERSION >= 12010 required"
#endif
+static tbb::task_scheduler_handle tbb_tsh_attach()
+{
+#if TBB_INTERFACE_VERSION >= 12060
+ return tbb::attach();
+#else
+ return tbb::task_scheduler_handle::get();
+#endif
+}
+
+static void tbb_tsh_release(tbb::task_scheduler_handle& tsh)
+{
+#if TBB_INTERFACE_VERSION >= 12060
+ tsh.release();
+#else
+ tbb::task_scheduler_handle::release(tsh);
+#endif
+}
+
#define _DEBUG 0
#define _TRACE_SPLIT 0
@@ -235,7 +254,7 @@ static void prepare_fork(void)
{
if (!tbb::finalize(tsh, std::nothrow))
{
- tbb::task_scheduler_handle::release(tsh);
+ tbb_tsh_release(tsh);
puts("Unable to join threads to shut down before fork(). "
"This can break multithreading in child processes.\n");
}
@@ -260,7 +279,7 @@ static void reset_after_fork(void)
if(need_reinit_after_fork)
{
- tsh = tbb::task_scheduler_handle::get();
+ tbb_tsh_attach();
set_main_thread();
tsh_was_initialized = true;
need_reinit_after_fork = false;
@@ -298,7 +317,7 @@ static void launch_threads(int count)
if(count < 1)
count = tbb::task_arena::automatic;
- tsh = tbb::task_scheduler_handle::get();
+ tsh = tbb_tsh_attach();
tsh_was_initialized = true;
tg = new tbb::task_group;