Accepting request 610084 from devel:languages:python

- Update to 0.23.0:
  * Round-trippable JSON format with ‘table’ orient.
  * Instantiation from dicts respects order for Python 3.6+.
  * Dependent column arguments for assign.
  * Merging / sorting on a combination of columns and index levels.
  * Extending Pandas with custom types.
  * Excluding unobserved categories from groupby.
  * Changes to make output shape of DataFrame.apply consistent.

- Do not bother generating pandas doc if it is already in both
  html and pdf provided by upstream, just point to the URL

OBS-URL: https://build.opensuse.org/request/show/610084
OBS-URL: https://build.opensuse.org/package/show/openSUSE:Factory/python-pandas?expand=0&rev=10
This commit is contained in:
Dominique Leuenberger 2018-05-19 13:38:05 +00:00 committed by Git OBS Bridge
parent 4328c07ff5
commit 4d1c673719
6 changed files with 47 additions and 494 deletions

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:44a94091dd71f05922eec661638ec1a35f26d573c119aa2fad964f10a2880e6c
size 11297071

3
pandas-0.23.0.tar.gz Normal file
View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:84ab1d50590cb2d9554211f164dc1b1a216bc94da2ba922aed2690c83f248fd9
size 13092442

View File

@ -1,419 +0,0 @@
-------------------------------------------------------------------
Thu Jan 11 11:19:29 UTC 2018 - tchvatal@suse.com
- Format with spec-cleaner
-------------------------------------------------------------------
Wed Jan 3 22:41:40 UTC 2018 - arun@gmx.de
- specfile:
* update copyright year
- update to version 0.22.0:
* Pandas 0.22.0 changes the handling of empty and all-NA sums and
products. The summary is that
+ The sum of an empty or all-NA Series is now 0
+ The product of an empty or all-NA Series is now 1
+ Weve added a min_count parameter to .sum() and .prod()
controlling the minimum number of valid values for the result to
be valid. If fewer than min_count non-NA values are present, the
result is NA. The default is 0. To return NaN, the 0.21
behavior, use min_count=1.
-------------------------------------------------------------------
Sat Dec 16 23:04:54 UTC 2017 - arun@gmx.de
- update to version 0.21.1:
* Highlights include:
+ Temporarily restore matplotlib datetime plotting
functionality. This should resolve issues for users who
implicitly relied on pandas to plot datetimes with
matplotlib. See here.
+ Improvements to the Parquet IO functions introduced in
0.21.0. See here.
* Improvements to the Parquet IO functionality
+ DataFrame.to_parquet() will now write non-default indexes when
the underlying engine supports it. The indexes will be preserved
when reading back in with read_parquet() (GH18581).
+ read_parquet() now allows to specify the columns to read from a
parquet file (GH18154)
+ read_parquet() now allows to specify kwargs which are passed to
the respective engine (GH18216)
* Other Enhancements
+ Timestamp.timestamp() is now available in Python 2.7. (GH17329)
+ Grouper and TimeGrouper now have a friendly repr output
(GH18203).
* Deprecations
+ pandas.tseries.register has been renamed to
pandas.plotting.register_matplotlib_converters`() (GH18301)
* Performance Improvements
+ Improved performance of plotting large series/dataframes
(GH18236).
* Conversion
+ Bug in TimedeltaIndex subtraction could incorrectly overflow
when NaT is present (GH17791)
+ Bug in DatetimeIndex subtracting datetimelike from DatetimeIndex
could fail to overflow (GH18020)
+ Bug in IntervalIndex.copy() when copying and IntervalIndex with
non-default closed (GH18339)
+ Bug in DataFrame.to_dict() where columns of datetime that are
tz-aware were not converted to required arrays when used with
orient='records', raising"TypeError` (GH18372)
+ Bug in DateTimeIndex and date_range() where mismatching tz-aware
start and end timezones would not raise an err if end.tzinfo is
None (GH18431)
+ Bug in Series.fillna() which raised when passed a long integer
on Python 2 (GH18159).
* Indexing
+ Bug in a boolean comparison of a datetime.datetime and a
datetime64[ns] dtype Series (GH17965)
+ Bug where a MultiIndex with more than a million records was not
raising AttributeError when trying to access a missing attribute
(GH18165)
+ Bug in IntervalIndex constructor when a list of intervals is
passed with non-default closed (GH18334)
+ Bug in Index.putmask when an invalid mask passed (GH18368)
+ Bug in masked assignment of a timedelta64[ns] dtype Series,
incorrectly coerced to float (GH18493)
* I/O
+ Bug in class:~pandas.io.stata.StataReader not converting
date/time columns with display formatting addressed
(GH17990). Previously columns with display formatting were
normally left as ordinal numbers and not converted to datetime
objects.
+ Bug in read_csv() when reading a compressed UTF-16 encoded file
(GH18071)
+ Bug in read_csv() for handling null values in index columns when
specifying na_filter=False (GH5239)
+ Bug in read_csv() when reading numeric category fields with high
cardinality (GH18186)
+ Bug in DataFrame.to_csv() when the table had MultiIndex columns,
and a list of strings was passed in for header (GH5539)
+ Bug in parsing integer datetime-like columns with specified
format in read_sql (GH17855).
+ Bug in DataFrame.to_msgpack() when serializing data of the
numpy.bool_ datatype (GH18390)
+ Bug in read_json() not decoding when reading line deliminted
JSON from S3 (GH17200)
+ Bug in pandas.io.json.json_normalize() to avoid modification of
meta (GH18610)
+ Bug in to_latex() where repeated multi-index values were not
printed even though a higher level index differed from the
previous row (GH14484)
+ Bug when reading NaN-only categorical columns in HDFStore
(GH18413)
+ Bug in DataFrame.to_latex() with longtable=True where a latex
multicolumn always spanned over three columns (GH17959)
* Plotting
+ Bug in DataFrame.plot() and Series.plot() with DatetimeIndex
where a figure generated by them is not pickleable in Python 3
(GH18439)
* Groupby/Resample/Rolling
+ Bug in DataFrame.resample(...).apply(...) when there is a
callable that returns different columns (GH15169)
+ Bug in DataFrame.resample(...) when there is a time change (DST)
and resampling frequecy is 12h or higher (GH15549)
+ Bug in pd.DataFrameGroupBy.count() when counting over a
datetimelike column (GH13393)
+ Bug in rolling.var where calculation is inaccurate with a
zero-valued array (GH18430)
* Reshaping
+ Error message in pd.merge_asof() for key datatype mismatch now
includes datatype of left and right key (GH18068)
+ Bug in pd.concat when empty and non-empty DataFrames or Series
are concatenated (GH18178 GH18187)
+ Bug in DataFrame.filter(...) when unicode is passed as a
condition in Python 2 (GH13101)
+ Bug when merging empty DataFrames when np.seterr(divide='raise')
is set (GH17776)
* Numeric
+ Bug in pd.Series.rolling.skew() and rolling.kurt() with all
equal values has floating issue (GH18044)
+ Bug in TimedeltaIndex subtraction could incorrectly overflow
when NaT is present (GH17791)
+ Bug in DatetimeIndex subtracting datetimelike from DatetimeIndex
could fail to overflow (GH18020)
* Categorical
+ Bug in DataFrame.astype() where casting to category on an
empty DataFrame causes a segmentation fault (GH18004)
+ Error messages in the testing module have been improved when
items have different CategoricalDtype (GH18069)
+ CategoricalIndex can now correctly take a
pd.api.types.CategoricalDtype as its dtype (GH18116)
+ Bug in Categorical.unique() returning read-only codes array when
all categories were NaN (GH18051)
+ Bug in DataFrame.groupby(axis=1) with a CategoricalIndex
(GH18432)
* String
+ Series.str.split() will now propogate NaN values across all
expanded columns instead of None (GH18450)
-------------------------------------------------------------------
Mon Oct 30 06:05:48 UTC 2017 - arun@gmx.de
- specfile:
* updated minimum numpy version to 1.9.0 (see setup.py)
- update to version 0.21.0:
* Highlights include:
+ Integration with Apache Parquet, including a new top-level
read_parquet() function and DataFrame.to_parquet() method, see
here.
+ New user-facing pandas.api.types.CategoricalDtype for specifying
categoricals independent of the data, see here.
+ The behavior of sum and prod on all-NaN Series/DataFrames is now
consistent and no longer depends on whether bottleneck is
installed, see here.
+ Compatibility fixes for pypy, see here.
+ Additions to the drop, reindex and rename API to make them more
consistent, see here.
+ Addition of the new methods DataFrame.infer_objects (see here)
and GroupBy.pipe (see here).
+ Indexing with a list of labels, where one or more of the labels
is missing, is deprecated and will raise a KeyError in a future
version, see here.
* full list at http://pandas.pydata.org/pandas-docs/stable/whatsnew.html
-------------------------------------------------------------------
Sat Sep 23 21:12:48 UTC 2017 - arun@gmx.de
- update to version 0.20.3:
* bug fix release, see http://pandas.pydata.org/pandas-docs/stable/whatsnew.html#v0-20-3-july-7-2017
for complete changelog
- changes from version 0.20.2:
* bug fix release, see http://pandas.pydata.org/pandas-docs/stable/whatsnew.html#v0-20-2-june-4-2017
for complete changelog
-------------------------------------------------------------------
Tue May 30 17:08:33 UTC 2017 - toddrme2178@gmail.com
- Fix documentation BuildRequires.
-------------------------------------------------------------------
Thu May 18 01:07:08 UTC 2017 - toddrme2178@gmail.com
- Update to version 0.20.1
Highlights include:
* New ``.agg()`` API for Series/DataFrame similar to the
groupby-rolling-resample API's
* Integration with the ``feather-format``, including a new
top-level ``pd.read_feather()`` and ``DataFrame.to_feather()``
method
* The ``.ix`` indexer has been deprecated
* ``Panel`` has been deprecated
* Addition of an ``IntervalIndex`` and ``Interval`` scalar type
* Improved user API when grouping by index levels in ``.groupby()``
* Improved support for ``UInt64`` dtypes
* A new orient for JSON serialization, ``orient='table'``, that
uses the Table Schema spec and that gives the possibility for
a more interactive repr in the Jupyter Notebook
* Experimental support for exporting styled DataFrames
(``DataFrame.style``) to Excel
* Window binary corr/cov operations now return a MultiIndexed
``DataFrame`` rather than a ``Panel``, as ``Panel`` is now
deprecated
* Support for S3 handling now uses ``s3fs``
* Google BigQuery support now uses the ``pandas-gbq`` library
-------------------------------------------------------------------
Tue Apr 25 18:39:03 UTC 2017 - toddrme2178@gmail.com
- Implement single-spec version.
-------------------------------------------------------------------
Thu Mar 30 15:00:41 UTC 2017 - toddrme2178@gmail.com
- update to version 0.19.2:
* Enhancements
The pd.merge_asof(), added in 0.19.0, gained some improvements:
+ pd.merge_asof() gained left_index/right_index and
left_by/right_by arguments (GH14253)
+ pd.merge_asof() can take multiple columns in by parameter and
has specialized dtypes for better performace (GH13936)
* Performance Improvements
+ Performance regression with PeriodIndex (GH14822)
+ Performance regression in indexing with getitem (GH14930)
+ Improved performance of .replace() (GH12745)
+ Improved performance Series creation with a datetime index and
dictionary data (GH14894)
* Bug Fixes
+ Compat with python 3.6 for pickling of some offsets (GH14685)
+ Compat with python 3.6 for some indexing exception types
(GH14684, GH14689)
+ Compat with python 3.6 for deprecation warnings in the test
suite (GH14681)
+ Compat with python 3.6 for Timestamp pickles (GH14689)
+ Compat with dateutil==2.6.0; segfault reported in the testing
suite (GH14621)
+ Allow nanoseconds in Timestamp.replace as a kwarg (GH14621)
+ Bug in pd.read_csv in which aliasing was being done for
na_values when passed in as a dictionary (GH14203)
+ Bug in pd.read_csv in which column indices for a dict-like
na_values were not being respected (GH14203)
+ Bug in pd.read_csv where reading files fails, if the number of
headers is equal to the number of lines in the file (GH14515)
+ Bug in pd.read_csv for the Python engine in which an unhelpful
error message was being raised when multi-char delimiters were
not being respected with quotes (GH14582)
+ Fix bugs (GH14734, GH13654) in pd.read_sas and
pandas.io.sas.sas7bdat.SAS7BDATReader that caused problems when
reading a SAS file incrementally.
+ Bug in pd.read_csv for the Python engine in which an unhelpful
error message was being raised when skipfooter was not being
respected by Pythons CSV library (GH13879)
+ Bug in .fillna() in which timezone aware datetime64 values were
incorrectly rounded (GH14872)
+ Bug in .groupby(..., sort=True) of a non-lexsorted MultiIndex
when grouping with multiple levels (GH14776)
+ Bug in pd.cut with negative values and a single bin (GH14652)
+ Bug in pd.to_numeric where a 0 was not unsigned on a
downcast='unsigned' argument (GH14401)
+ Bug in plotting regular and irregular timeseries using shared
axes (sharex=True or ax.twinx()) (GH13341, GH14322).
+ Bug in not propogating exceptions in parsing invalid datetimes,
noted in python 3.6 (GH14561)
+ Bug in resampling a DatetimeIndex in local TZ, covering a DST
change, which would raise AmbiguousTimeError (GH14682)
+ Bug in indexing that transformed RecursionError into KeyError or
IndexingError (GH14554)
+ Bug in HDFStore when writing a MultiIndex when using
data_columns=True (GH14435)
+ Bug in HDFStore.append() when writing a Series and passing a
min_itemsize argument containing a value for the index (GH11412)
+ Bug when writing to a HDFStore in table format with a
min_itemsize value for the index and without asking to append
(GH10381)
+ Bug in Series.groupby.nunique() raising an IndexError for an
empty Series (GH12553)
+ Bug in DataFrame.nlargest and DataFrame.nsmallest when the index
had duplicate values (GH13412)
+ Bug in clipboard functions on linux with python2 with unicode
and separators (GH13747)
+ Bug in clipboard functions on Windows 10 and python 3 (GH14362,
GH12807)
+ Bug in .to_clipboard() and Excel compat (GH12529)
+ Bug in DataFrame.combine_first() for integer columns (GH14687).
+ Bug in pd.read_csv() in which the dtype parameter was not being
respected for empty data (GH14712)
+ Bug in pd.read_csv() in which the nrows parameter was not being
respected for large input when using the C engine for parsing
(GH7626)
+ Bug in pd.merge_asof() could not handle timezone-aware
DatetimeIndex when a tolerance was specified (GH14844)
+ Explicit check in to_stata and StataWriter for out-of-range
values when writing doubles (GH14618)
+ Bug in .plot(kind='kde') which did not drop missing values to
generate the KDE Plot, instead generating an empty
plot. (GH14821)
+ Bug in unstack() if called with a list of column(s) as an
argument, regardless of the dtypes of all columns, they get
coerced to object (GH11847)
- update to version 0.19.1:
* Performance Improvements
+ Fixed performance regression in factorization of Period data
(GH14338)
+ Fixed performance regression in Series.asof(where) when where is
a scalar (GH14461)
+ Improved performance in DataFrame.asof(where) when where is a
scalar (GH14461)
+ Improved performance in .to_json() when lines=True (GH14408)
+ Improved performance in certain types of loc indexing with a
MultiIndex (GH14551).
* Bug Fixes
+ Source installs from PyPI will now again work without cython
installed, as in previous versions (GH14204)
+ Compat with Cython 0.25 for building (GH14496)
+ Fixed regression where user-provided file handles were closed in
read_csv (c engine) (GH14418).
+ Fixed regression in DataFrame.quantile when missing values where
present in some columns (GH14357).
+ Fixed regression in Index.difference where the freq of a
DatetimeIndex was incorrectly set (GH14323)
+ Added back pandas.core.common.array_equivalent with a
deprecation warning (GH14555).
+ Bug in pd.read_csv for the C engine in which quotation marks
were improperly parsed in skipped rows (GH14459)
+ Bug in pd.read_csv for Python 2.x in which Unicode quote
characters were no longer being respected (GH14477)
+ Fixed regression in Index.append when categorical indices were
appended (GH14545).
+ Fixed regression in pd.DataFrame where constructor fails when
given dict with None value (GH14381)
+ Fixed regression in DatetimeIndex._maybe_cast_slice_bound when
index is empty (GH14354).
+ Bug in localizing an ambiguous timezone when a boolean is passed
(GH14402)
+ Bug in TimedeltaIndex addition with a Datetime-like object where
addition overflow in the negative direction was not being caught
(GH14068, GH14453)
+ Bug in string indexing against data with object Index may raise
AttributeError (GH14424)
+ Corrrecly raise ValueError on empty input to pd.eval() and
df.query() (GH13139)
+ Bug in RangeIndex.intersection when result is a empty set
(GH14364).
+ Bug in groupby-transform broadcasting that could cause incorrect
dtype coercion (GH14457)
+ Bug in Series.__setitem__ which allowed mutating read-only
arrays (GH14359).
+ Bug in DataFrame.insert where multiple calls with duplicate
columns can fail (GH14291)
+ pd.merge() will raise ValueError with non-boolean parameters in
passed boolean type arguments (GH14434)
+ Bug in Timestamp where dates very near the minimum (1677-09)
could underflow on creation (GH14415)
+ Bug in pd.concat where names of the keys were not propagated to
the resulting MultiIndex (GH14252)
+ Bug in pd.concat where axis cannot take string parameters 'rows'
or 'columns' (GH14369)
+ Bug in pd.concat with dataframes heterogeneous in length and
tuple keys (GH14438)
+ Bug in MultiIndex.set_levels where illegal level values were
still set after raising an error (GH13754)
+ Bug in DataFrame.to_json where lines=True and a value contained
a } character (GH14391)
+ Bug in df.groupby causing an AttributeError when grouping a
single index frame by a column and the index level
(:issue`14327`)
+ Bug in df.groupby where TypeError raised when
pd.Grouper(key=...) is passed in a list (GH14334)
+ Bug in pd.pivot_table may raise TypeError or ValueError when
index or columns is not scalar and values is not specified
(GH14380)
-------------------------------------------------------------------
Mon Mar 27 19:12:32 UTC 2017 - toddrme2178@gmail.com
- Fix documentation building
-------------------------------------------------------------------
Sun Oct 23 01:32:23 UTC 2016 - toddrme2178@gmail.com
- update to version 0.19.0:
(long changelog, see http://pandas.pydata.org/pandas-docs/stable/whatsnew.html#v0-19-0-october-2-2016)
* Highlights include:
+ merge_asof() for asof-style time-series joining
+ .rolling() is now time-series aware
+ read_csv() now supports parsing Categorical data
+ A function union_categorical() has been added for combining
categoricals
+ PeriodIndex now has its own period dtype, and changed to be more
consistent with other Index classes
+ Sparse data structures gained enhanced support of int and bool
dtypes
+ Comparison operations with Series no longer ignores the index,
see here for an overview of the API changes.
+ Introduction of a pandas development API for utility functions
+ Deprecation of Panel4D and PanelND. We recommend to represent
these types of n-dimensional data with the xarray package.
+ Removal of the previously deprecated modules pandas.io.data,
pandas.io.wb, pandas.tools.rplot.
- specfile:
* require python3-Cython
* Split documentation into own subpackage to speed up build.
* Remove buildrequires for optional dependencies to speed up build.
- Remove unneeded patches:
* 0001_disable_experimental_msgpack_big_endian.patch ^
* 0001_respect_byteorder_in_statareader.patch

View File

@ -1,68 +0,0 @@
#
# spec file for package python-pandas-doc
#
# Copyright (c) 2018 SUSE LINUX GmbH, Nuernberg, Germany.
#
# All modifications and additions to the file contributed by third parties
# remain the property of their copyright owners, unless otherwise agreed
# upon. The license for this file, and modifications and additions to the
# file, is the same license as for the pristine package itself (unless the
# license for the pristine package is not an Open Source License, in which
# case the license is the MIT License). An "Open Source License" is a
# license that conforms to the Open Source Definition (Version 1.9)
# published by the Open Source Initiative.
# Please submit bugfixes or comments via http://bugs.opensuse.org/
#
%{?!python_module:%define python_module() python-%{**} python3-%{**}}
Name: python-pandas-doc
Version: 0.22.0
Release: 0
Summary: Documentation for python-pandas
License: BSD-3-Clause
Group: Documentation/HTML
Url: http://pandas.pydata.org/
Source0: https://files.pythonhosted.org/packages/source/p/pandas/pandas-%{version}.tar.gz
BuildRequires: %{python_module pandas = %{version}}
BuildRequires: gcc-c++
BuildRequires: python-rpm-macros
BuildRequires: python3-Sphinx
BuildRequires: python3-devel
BuildRequires: python3-jupyter_client
BuildRequires: python3-jupyter_ipykernel
BuildRequires: python3-jupyter_nbconvert
BuildRequires: python3-jupyter_nbformat
BuildRequires: python3-jupyter_nbsphinx
BuildRequires: python3-matplotlib
BuildRequires: python3-numpy-devel >= 1.7.1
BuildRequires: python3-python-dateutil >= 1.5
BuildRequires: python3-pytz
BuildRequires: python3-scipy
BuildRequires: python3-setuptools
Provides: %{python_module pandas-doc = %{version}}
BuildArch: noarch
%description
Documentation, help files, and examples for python3-pandas.
%prep
%setup -q -n pandas-%{version}
%build
python3 setup.py build_ext --inplace
pushd doc
python3 make.py html
popd
%install
mkdir -p %{buildroot}%{_docdir}/python-pandas
cp -r doc/build/html %{buildroot}%{_docdir}/python-pandas/
%files
%doc LICENSE
%{_docdir}/python-pandas/
%changelog

View File

@ -1,3 +1,21 @@
-------------------------------------------------------------------
Thu May 17 12:28:44 UTC 2018 - tchvatal@suse.com
- Update to 0.23.0:
* Round-trippable JSON format with table orient.
* Instantiation from dicts respects order for Python 3.6+.
* Dependent column arguments for assign.
* Merging / sorting on a combination of columns and index levels.
* Extending Pandas with custom types.
* Excluding unobserved categories from groupby.
* Changes to make output shape of DataFrame.apply consistent.
-------------------------------------------------------------------
Thu May 17 12:06:17 UTC 2018 - tchvatal@suse.com
- Do not bother generating pandas doc if it is already in both
html and pdf provided by upstream, just point to the URL
------------------------------------------------------------------- -------------------------------------------------------------------
Thu Jan 11 11:18:48 UTC 2018 - tchvatal@suse.com Thu Jan 11 11:18:48 UTC 2018 - tchvatal@suse.com

View File

@ -17,25 +17,39 @@
%{?!python_module:%define python_module() python-%{**} python3-%{**}} %{?!python_module:%define python_module() python-%{**} python3-%{**}}
%define oldpython python
Name: python-pandas Name: python-pandas
Version: 0.22.0 Version: 0.23.0
Release: 0 Release: 0
Summary: Make working with "relational" or "labeled" data both easy and intuitive Summary: Make working with "relational" or "labeled" data both easy and intuitive
License: BSD-3-Clause License: BSD-3-Clause
Group: Development/Libraries/Python Group: Development/Libraries/Python
Url: http://pandas.pydata.org/ URL: http://pandas.pydata.org/
Source0: https://files.pythonhosted.org/packages/source/p/pandas/pandas-%{version}.tar.gz Source0: https://files.pythonhosted.org/packages/source/p/pandas/pandas-%{version}.tar.gz
BuildRequires: %{python_module Cython}
BuildRequires: %{python_module SQLAlchemy}
BuildRequires: %{python_module XlsxWriter}
BuildRequires: %{python_module beautifulsoup4}
BuildRequires: %{python_module devel} BuildRequires: %{python_module devel}
BuildRequires: %{python_module lxml}
BuildRequires: %{python_module nose}
BuildRequires: %{python_module numpy-devel >= 1.9.0} BuildRequires: %{python_module numpy-devel >= 1.9.0}
BuildRequires: %{python_module pytest}
BuildRequires: %{python_module python-dateutil >= 1.5} BuildRequires: %{python_module python-dateutil >= 1.5}
BuildRequires: %{python_module python-dateutil}
BuildRequires: %{python_module pytz} BuildRequires: %{python_module pytz}
BuildRequires: %{python_module setuptools} BuildRequires: %{python_module setuptools}
BuildRequires: %{python_module six}
BuildRequires: %{python_module xlrd}
BuildRequires: fdupes BuildRequires: fdupes
BuildRequires: gcc-c++ BuildRequires: gcc-c++
BuildRequires: python-rpm-macros BuildRequires: python-rpm-macros
Requires: python-Cython
Requires: python-lxml
Requires: python-numpy >= 1.9.0 Requires: python-numpy >= 1.9.0
Requires: python-python-dateutil >= 1.5 Requires: python-python-dateutil >= 1.5
Requires: python-pytz Requires: python-pytz
Requires: python-six
Recommends: python-Bottleneck Recommends: python-Bottleneck
Recommends: python-Jinja2 Recommends: python-Jinja2
Recommends: python-SQLAlchemy >= 0.8.1 Recommends: python-SQLAlchemy >= 0.8.1
@ -45,7 +59,6 @@ Recommends: python-blosc
Recommends: python-boto Recommends: python-boto
Recommends: python-google-api-python-client Recommends: python-google-api-python-client
Recommends: python-html5lib Recommends: python-html5lib
Recommends: python-lxml
Recommends: python-matplotlib Recommends: python-matplotlib
Recommends: python-numexpr >= 2.1 Recommends: python-numexpr >= 2.1
Recommends: python-oauth2client Recommends: python-oauth2client
@ -59,8 +72,10 @@ Recommends: python-xarray >= 0.7.0
Recommends: python-xlrd Recommends: python-xlrd
Recommends: python-xlwt Recommends: python-xlwt
Recommends: xclip Recommends: xclip
Obsoletes: python-pandas-doc
%ifpython2 %ifpython2
Recommends: python-backports.lzma Recommends: python-backports.lzma
Obsoletes: %{oldpython}-pandas-doc
%endif %endif
%python_subpackages %python_subpackages
@ -72,6 +87,8 @@ doing practical, real world data analysis in Python. Additionally, it has
the broader goal of becoming the most powerful and flexible open source data the broader goal of becoming the most powerful and flexible open source data
analysis / manipulation tool available in any language. analysis / manipulation tool available in any language.
http://pandas.pydata.org/pandas-docs/stable/
%prep %prep
%setup -q -n pandas-%{version} %setup -q -n pandas-%{version}
@ -85,8 +102,13 @@ export CFLAGS="%{optflags} -fno-strict-aliasing"
%python_expand rm -r %{buildroot}%{$python_sitearch}/pandas/tests %python_expand rm -r %{buildroot}%{$python_sitearch}/pandas/tests
# Needs X and various other fun to work
#%check
#%%python_expand PYTHONPATH=%{buildroot}%{$python_sitearch} py.test-%{$python_version} pandas/tests
%files %{python_files} %files %{python_files}
%doc LICENSE doc/README.rst RELEASE.md %license LICENSE
%doc doc/README.rst RELEASE.md
%{python_sitearch}/pandas/ %{python_sitearch}/pandas/
%{python_sitearch}/pandas-%{version}-py*.egg-info %{python_sitearch}/pandas-%{version}-py*.egg-info