From fa854ac6b4c2a691a418cfac0eb5a2305731576c Mon Sep 17 00:00:00 2001 From: "adria.labay" Date: Wed, 8 Feb 2023 15:40:36 +0100 Subject: [PATCH] support numpy 1.20 --- ssim/utils.py | 26 ++++++++++++-------------- 1 file changed, 12 insertions(+), 14 deletions(-) Index: pyssim-0.5/ssim/utils.py =================================================================== --- pyssim-0.5.orig/ssim/utils.py +++ pyssim-0.5/ssim/utils.py @@ -2,31 +2,29 @@ from __future__ import absolute_import -import numpy -from numpy.ma.core import exp +import numpy as np import scipy.ndimage from ssim.compat import ImageOps + def convolve_gaussian_2d(image, gaussian_kernel_1d): """Convolve 2d gaussian.""" - result = scipy.ndimage.filters.correlate1d( + result = scipy.ndimage.correlate1d( image, gaussian_kernel_1d, axis=0) - result = scipy.ndimage.filters.correlate1d( + return scipy.ndimage.correlate1d( result, gaussian_kernel_1d, axis=1) - return result + def get_gaussian_kernel(gaussian_kernel_width=11, gaussian_kernel_sigma=1.5): """Generate a gaussian kernel.""" # 1D Gaussian kernel definition - gaussian_kernel_1d = numpy.ndarray((gaussian_kernel_width)) - norm_mu = int(gaussian_kernel_width / 2) + gaussian_kernel_1d = np.arange(0, gaussian_kernel_width, 1.) + gaussian_kernel_1d -= gaussian_kernel_width / 2 + gaussian_kernel_1d = np.exp(-0.5 * gaussian_kernel_1d**2 / + gaussian_kernel_sigma**2) + return gaussian_kernel_1d / np.sum(gaussian_kernel_1d) - # Fill Gaussian kernel - for i in range(gaussian_kernel_width): - gaussian_kernel_1d[i] = (exp(-(((i - norm_mu) ** 2)) / - (2 * (gaussian_kernel_sigma ** 2)))) - return gaussian_kernel_1d / numpy.sum(gaussian_kernel_1d) def to_grayscale(img): """Convert PIL image to numpy grayscale array and numpy alpha array. @@ -37,11 +35,11 @@ def to_grayscale(img): Returns: (gray, alpha): both numpy arrays. """ - gray = numpy.asarray(ImageOps.grayscale(img)).astype(numpy.float) + gray = np.asarray(ImageOps.grayscale(img)).astype(float) imbands = img.getbands() alpha = None if 'A' in imbands: - alpha = numpy.asarray(img.split()[-1]).astype(numpy.float) + alpha = np.asarray(img.split()[-1]).astype(float) return gray, alpha