Sebastian Wagner 2023-12-20 20:40:51 +00:00 committed by Git OBS Bridge
parent 548007d024
commit 088b745878
2 changed files with 0 additions and 40 deletions

View File

@ -27,8 +27,6 @@ Source: https://files.pythonhosted.org/packages/source/x/xarray/xarray-%
# PATCH-FEATURE-UPSTREAM local_dataset.patch gh#pydata/xarray#5377 mcepl@suse.com
# fix xr.tutorial.open_dataset to work with the preloaded cache.
Patch0: local_dataset.patch
# PATCH-FIX-UPSTREAM xarray-pr8139-pandas-fill_value.patch gh#pydata/xarray#8125, gh#pydata/xarray#8139
#Patch1: https://github.com/pydata/xarray/pull/8139.patch#/xarray-pr8139-pandas-fill_value.patch
BuildRequires: %{python_module base >= 3.9}
BuildRequires: %{python_module numpy-devel >= 1.22}
BuildRequires: %{python_module packaging >= 21.3}

View File

@ -1,38 +0,0 @@
From 3e48312c41cb26bbd4dc83ae286444f1469b7aa2 Mon Sep 17 00:00:00 2001
From: Maximilian Roos <m@maxroos.com>
Date: Fri, 1 Sep 2023 19:41:41 -0700
Subject: [PATCH] Fix pandas interpolate(fill_value=) error
Pandas no longer has a `fill_value` parameter for `interpolate`.
Weirdly I wasn't getting this locally, on pandas 2.1.0, only in CI on https://github.com/pydata/xarray/actions/runs/6054400455/job/16431747966?pr=8138.
Removing it passes locally, let's see whether this works in CI
---
xarray/tests/test_missing.py | 6 ++++--
1 file changed, 4 insertions(+), 2 deletions(-)
diff --git a/xarray/tests/test_missing.py b/xarray/tests/test_missing.py
index a6b6b1f80c..c303659116 100644
--- a/xarray/tests/test_missing.py
+++ b/xarray/tests/test_missing.py
@@ -104,7 +104,8 @@ def test_interpolate_pd_compat():
for dim in ["time", "x"]:
actual = da.interpolate_na(method=method, dim=dim, fill_value=np.nan)
expected = df.interpolate(
- method=method, axis=da.get_axis_num(dim), fill_value=(np.nan, np.nan)
+ method=method,
+ axis=da.get_axis_num(dim),
)
# Note, Pandas does some odd things with the left/right fill_value
# for the linear methods. This next line inforces the xarray
@@ -140,7 +141,8 @@ def test_interpolate_pd_compat_non_uniform_index():
method="linear", dim=dim, use_coordinate=True, fill_value=np.nan
)
expected = df.interpolate(
- method=method, axis=da.get_axis_num(dim), fill_value=np.nan
+ method=method,
+ axis=da.get_axis_num(dim),
)
# Note, Pandas does some odd things with the left/right fill_value