python-xarray/python-xarray.spec
Sebastian Wagner 4c54ff85ae - update to version 0.15.0:
- This release brings many improvements to xarray's documentation: our examples are now binderized notebooks (`click here <https://mybinder.org/v2/gh/pydata/xarray/master?urlpath=lab/tree/doc/examples/weather-data.ipynb>`_):
 - and we have new example notebooks from our SciPy 2019 sprint (many thanks to our contributors!).:
 - This release also features many API improvements such as a new:
:py:class:`~core.accessor_dt.TimedeltaAccessor` and support for :py:class:`CFTimeIndex` in
:py:meth:`~DataArray.interpolate_na`); as well as many bug fixes.
 - Breaking changes:
  - Bumped minimum tested versions for dependencies:
    - numpy 1.15
    - pandas 0.25
    - dask 2.2
    - distributed 2.2
    - scipy 1.3
  - Remove ``compat`` and ``encoding`` kwargs from ``DataArray``, which
    have been deprecated since 0.12. (:pull:`3650`).
    Instead, specify the ``encoding`` kwarg when writing to disk or set
    the :py:attr:`DataArray.encoding` attribute directly.
    By `Maximilian Roos <https://github.com/max-sixty>`_.
  - :py:func:`xarray.dot`, :py:meth:`DataArray.dot`, and the ``@`` operator now
    use ``align="inner"`` (except when ``xarray.set_options(arithmetic_join="exact")``;
    :issue:`3694`) by `Mathias Hauser <https://github.com/mathause>`_.
 - New Features:
  - :py:meth:`DataArray.sel` and :py:meth:`Dataset.sel` now support :py:class:`pandas.CategoricalIndex`. (:issue:`3669`)
    By `Keisuke Fujii <https://github.com/fujiisoup>`_.
  - Support using an existing, opened h5netcdf ``File`` with
    :py:class:`~xarray.backends.H5NetCDFStore`. This permits creating an
    :py:class:`~xarray.Dataset` from a h5netcdf ``File`` that has been opened
    using other means (:issue:`3618`).
    By `Kai Mühlbauer <https://github.com/kmuehlbauer>`_.
  - Implement ``median`` and ``nanmedian`` for dask arrays. This works by rechunking

OBS-URL: https://build.opensuse.org/package/show/devel:languages:python:numeric/python-xarray?expand=0&rev=31
2020-02-01 15:13:57 +00:00

81 lines
2.7 KiB
RPMSpec

#
# spec file for package python-xarray
#
# Copyright (c) 2020 SUSE LLC
#
# All modifications and additions to the file contributed by third parties
# remain the property of their copyright owners, unless otherwise agreed
# upon. The license for this file, and modifications and additions to the
# file, is the same license as for the pristine package itself (unless the
# license for the pristine package is not an Open Source License, in which
# case the license is the MIT License). An "Open Source License" is a
# license that conforms to the Open Source Definition (Version 1.9)
# published by the Open Source Initiative.
# Please submit bugfixes or comments via https://bugs.opensuse.org/
#
%{?!python_module:%define python_module() python-%{**} python3-%{**}}
%define skip_python2 1
Name: python-xarray
Version: 0.15.0
Release: 0
Summary: N-D labeled arrays and datasets in Python
License: Apache-2.0
URL: https://github.com/pydata/xarray
Source: https://files.pythonhosted.org/packages/source/x/xarray/xarray-%{version}.tar.gz
BuildRequires: %{python_module numpy >= 1.15}
BuildRequires: %{python_module numpy-devel >= 1.14}
BuildRequires: %{python_module pandas >= 0.25}
BuildRequires: %{python_module setuptools_scm}
BuildRequires: %{python_module setuptools}
BuildRequires: fdupes
BuildRequires: python-rpm-macros
Requires: python-numpy >= 1.15
Requires: python-pandas >= 0.25
Suggests: python-dask >= 2.2
Recommends: python-scipy >= 1.3
Provides: python-xray = %{version}
Obsoletes: python-xray < %{version}
BuildArch: noarch
# SECTION tests
# dask tests currently failing
# BuildRequires: %%{python_module dask-dataframe}
BuildRequires: %{python_module pytest >= 2.7.1}
BuildRequires: %{python_module scipy}
BuildRequires: python2-mock
# /SECTION
%python_subpackages
%description
xarray (formerly xray) is a python-pandas-like and pandas-compatible
toolkit for analytics on multi-dimensional arrays. It provides
N-dimensional variants of the python-pandas labeled data structures,
rather than the tabular data that pandas uses.
The Common Data Model for self-describing scientific data is used.
The dataset is an in-memory representation of a netCDF file.
%prep
%setup -q -n xarray-%{version}
chmod -x xarray/util/print_versions.py
%build
%python_build
%install
%python_install
%python_expand %fdupes %{buildroot}%{$python_sitelib}
%check
# Tests are xfail on aarch64: gh#pydata/xarray#2334
%pytest -k "not test_datetime_reduce and not test_roundtrip_numpy_datetime_data and not test_download_from_github" xarray
%files %{python_files}
%doc README.rst
%license LICENSE licenses/
%{python_sitelib}/xarray*
%changelog