f445ddbc82
- This release brings a few important performance improvements, a wide range of: - usability upgrades, lots of bug fixes, and some new features. These include: - a plugin API to add backend engines, a new theme for the documentation,: - curve fitting methods, and several new plotting functions.: - Many thanks to the 38 contributors to this release: Aaron Spring, Alessandro Amici,: - Alex Marandon, Alistair Miles, Ana Paula Krelling, Anderson Banihirwe, Aureliana Barghini,: - Baudouin Raoult, Benoit Bovy, Blair Bonnett, David Trémouilles, Deepak Cherian,: - Gabriel Medeiros Abrahão, Giacomo Caria, Hauke Schulz, Illviljan, Mathias Hauser, Matthias Bussonnier,: - Mattia Almansi, Maximilian Roos, Ray Bell, Richard Kleijn, Ryan Abernathey, Sam Levang, Spencer Clark,: - Spencer Jones, Tammas Loughran, Tobias Kölling, Todd, Tom Nicholas, Tom White, Victor Negîrneac,: - Xianxiang Li, Zeb Nicholls, crusaderky, dschwoerer, johnomotani, keewis: - New Features: - apply ``combine_attrs`` on data variables and coordinate variables when concatenating and merging datasets and dataarrays (:pull:`4902`). By `Justus Magin <https://github.com/keewis>`_. - Add :py:meth:`Dataset.to_pandas` (:pull:`5247`) By `Giacomo Caria <https://github.com/gcaria>`_. - Add :py:meth:`DataArray.plot.surface` which wraps matplotlib's `plot_surface` to make surface plots (:issue:`2235` :issue:`5084` :pull:`5101`). By `John Omotani <https://github.com/johnomotani>`_. - Allow passing multiple arrays to :py:meth:`Dataset.__setitem__` (:pull:`5216`). By `Giacomo Caria <https://github.com/gcaria>`_. - Add 'cumulative' option to :py:meth:`Dataset.integrate` and :py:meth:`DataArray.integrate` so that result is a cumulative integral, like :py:func:`scipy.integrate.cumulative_trapezoidal` (:pull:`5153`). By `John Omotani <https://github.com/johnomotani>`_. - Add ``safe_chunks`` option to :py:meth:`Dataset.to_zarr` which allows overriding checks made to ensure Dask and Zarr chunk compatibility (:issue:`5056`). By `Ryan Abernathey <https://github.com/rabernat>`_ OBS-URL: https://build.opensuse.org/package/show/devel:languages:python:numeric/python-xarray?expand=0&rev=48
106 lines
3.4 KiB
RPMSpec
106 lines
3.4 KiB
RPMSpec
#
|
|
# spec file for package python-xarray
|
|
#
|
|
# Copyright (c) 2021 SUSE LLC
|
|
#
|
|
# All modifications and additions to the file contributed by third parties
|
|
# remain the property of their copyright owners, unless otherwise agreed
|
|
# upon. The license for this file, and modifications and additions to the
|
|
# file, is the same license as for the pristine package itself (unless the
|
|
# license for the pristine package is not an Open Source License, in which
|
|
# case the license is the MIT License). An "Open Source License" is a
|
|
# license that conforms to the Open Source Definition (Version 1.9)
|
|
# published by the Open Source Initiative.
|
|
|
|
# Please submit bugfixes or comments via https://bugs.opensuse.org/
|
|
#
|
|
|
|
|
|
%{?!python_module:%define python_module() python-%{**} python3-%{**}}
|
|
%define skip_python2 1
|
|
# NEP 29: Numpy 1.20 dropped support for Python 3.6, python36-numpy is removed from Tumbleweed. xarray will follow on next release
|
|
%define skip_python36 1
|
|
Name: python-xarray
|
|
Version: 0.18.0
|
|
Release: 0
|
|
Summary: N-D labeled arrays and datasets in Python
|
|
License: Apache-2.0
|
|
URL: https://github.com/pydata/xarray
|
|
Source: https://files.pythonhosted.org/packages/source/x/xarray/xarray-%{version}.tar.gz
|
|
BuildRequires: %{python_module numpy >= 1.15}
|
|
BuildRequires: %{python_module numpy-devel >= 1.14}
|
|
BuildRequires: %{python_module pandas >= 0.25}
|
|
BuildRequires: %{python_module setuptools_scm}
|
|
BuildRequires: %{python_module setuptools}
|
|
BuildRequires: fdupes
|
|
BuildRequires: python-rpm-macros
|
|
Requires: python-numpy >= 1.15
|
|
Requires: python-pandas >= 0.25
|
|
Provides: python-xray = %{version}
|
|
Obsoletes: python-xray < %{version}
|
|
BuildArch: noarch
|
|
Suggests: python-dask-all
|
|
# SECTION extras accel
|
|
Recommends: python-scipy >= 1.3
|
|
Recommends: python-bottleneck
|
|
Recommends: python-numbagg
|
|
# /SECTION
|
|
# SECTION extras viz
|
|
Suggests: python-matplotlib
|
|
Suggests: python-seaborn
|
|
Suggests: python-nc-time-axis
|
|
#/SECTION
|
|
# SECTION extras io
|
|
Suggests: python-netCDF4
|
|
Suggests: python-h5netcdf
|
|
Suggests: python-scipy
|
|
Suggests: python-pydap
|
|
Suggests: python-zarr
|
|
Suggests: python-fsspec
|
|
Suggests: python-cftime
|
|
Suggests: python-rasterio
|
|
Suggests: python-cfgrib
|
|
#/SECTION
|
|
# SECTION tests
|
|
BuildRequires: %{python_module dask-dataframe}
|
|
BuildRequires: %{python_module pytest-xdist}
|
|
BuildRequires: %{python_module pytest}
|
|
BuildRequires: %{python_module scipy}
|
|
# /SECTION
|
|
%python_subpackages
|
|
|
|
%description
|
|
xarray (formerly xray) is a python-pandas-like and pandas-compatible
|
|
toolkit for analytics on multi-dimensional arrays. It provides
|
|
N-dimensional variants of the python-pandas labeled data structures,
|
|
rather than the tabular data that pandas uses.
|
|
|
|
The Common Data Model for self-describing scientific data is used.
|
|
The dataset is an in-memory representation of a netCDF file.
|
|
|
|
%prep
|
|
%autosetup -p1 -n xarray-%{version}
|
|
chmod -x xarray/util/print_versions.py
|
|
|
|
%build
|
|
%python_build
|
|
|
|
%install
|
|
%python_install
|
|
%python_expand %fdupes %{buildroot}%{$python_sitelib}
|
|
|
|
%check
|
|
if [ $(getconf LONG_BIT) -eq 32 ]; then
|
|
# precision errors on 32-bit
|
|
donttest="(test_interpolate_chunk_advanced and linear)"
|
|
fi
|
|
%pytest -n auto ${donttest:+ -k "not ($donttest)"} xarray
|
|
|
|
%files %{python_files}
|
|
%doc README.rst
|
|
%license LICENSE licenses/
|
|
%{python_sitelib}/xarray
|
|
%{python_sitelib}/xarray-%{version}*-info
|
|
|
|
%changelog
|