diff --git a/python-joblib.changes b/python-joblib.changes index 2097650..afa39a5 100644 --- a/python-joblib.changes +++ b/python-joblib.changes @@ -1,3 +1,8 @@ +------------------------------------------------------------------- +Thu Jan 11 22:12:57 UTC 2018 - jengelh@inai.de + +- Ensure neutrality of description. + ------------------------------------------------------------------- Mon May 22 16:35:59 UTC 2017 - toddrme2178@gmail.com diff --git a/python-joblib.spec b/python-joblib.spec index 3342b16..fe456f7 100644 --- a/python-joblib.spec +++ b/python-joblib.spec @@ -1,7 +1,7 @@ # # spec file for package python-joblib # -# Copyright (c) 2017 SUSE LINUX Products GmbH, Nuernberg, Germany. +# Copyright (c) 2018 SUSE LINUX GmbH, Nuernberg, Germany. # # All modifications and additions to the file contributed by third parties # remain the property of their copyright owners, unless otherwise agreed @@ -27,10 +27,10 @@ License: BSD-3-Clause Group: Development/Languages/Python Url: https://github.com/joblib/joblib Source: https://files.pythonhosted.org/packages/source/j/joblib/joblib-%{version}.tar.gz -BuildRequires: fdupes -BuildRequires: python-rpm-macros BuildRequires: %{python_module devel} BuildRequires: %{python_module setuptools} +BuildRequires: fdupes +BuildRequires: python-rpm-macros %if %{with test} BuildRequires: %{python_module numpy} BuildRequires: %{python_module pytest} @@ -41,18 +41,17 @@ BuildArch: noarch %python_subpackages %description -Joblib is a set of tools to provide **lightweight pipelining in -Python**. In particular, joblib offers: +Joblib is a set of tools to provide lightweight pipelining in +Python. In particular, joblib offers: 1. transparent disk-caching of the output values and lazy re-evaluation (memoize pattern) - 2. easy simple parallel computing + 2. parallel computing 3. logging and tracing of the execution -Joblib is optimized to be **fast** and **robust** in particular on large -data and has specific optimizations for `numpy` arrays. +Joblib can handle large data and has specific optimizations for `numpy` arrays. %prep