SHA256
1
0
forked from pool/gmp

Accepting request 287571 from home:pluskalm:branches:devel:libraries:c_c++

- Remove old ppc related conditionals

- Cleanup spec file with spec-cleaner
- Refresh sources
- Add gpg signature
- Correct version number so that it matches actuall version

OBS-URL: https://build.opensuse.org/request/show/287571
OBS-URL: https://build.opensuse.org/package/show/devel:libraries:c_c++/gmp?expand=0&rev=61
This commit is contained in:
Marcus Meissner 2015-02-25 08:09:16 +00:00 committed by Git OBS Bridge
parent f8f5bda8fd
commit 465469edd2
4 changed files with 498 additions and 30 deletions

BIN
gmp-6.0.0a.tar.bz2.sig Normal file

Binary file not shown.

View File

@ -1,3 +1,16 @@
-------------------------------------------------------------------
Tue Feb 24 16:36:38 UTC 2015 - mpluskal@suse.com
- Remove old ppc related conditionals
-------------------------------------------------------------------
Tue Feb 24 15:10:11 UTC 2015 - mpluskal@suse.com
- Cleanup spec file with spec-cleaner
- Refresh sources
- Add gpg signature
- Correct version number so that it matches actuall version
-------------------------------------------------------------------
Mon Nov 17 08:29:15 UTC 2014 - schwab@suse.de

459
gmp.keyring Normal file
View File

@ -0,0 +1,459 @@
-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v2
mQFNBFDrIWMBCgCyyYoTAD/aL6Yl90eSJ1xuFpODTcwyRZsNSUZKSmKwnqXo9LgS
2B00yVZ2nO2OrSmWPiYikTciitv04bAqFaggSstx6hlni6n3h2PL0jXpf9EI6qOO
oKwi2IVtbBnJAhWpfRcAce6WEqvnav6KjuBM3lr8/5GzDV8tm6+X/G/paTnBqTB9
pBxrH7smB+iRjDt/6ykWkbYLd6uBKzIkAp4HqAZb/aZMvxI28PeWGjZJQYq2nVPf
LroM6Ub/sNlXpv/bmHJusFQjUL368njhZD1+aVLCUfBCCDzvZc3EYt3wBkbmuCiA
xOb9ramHgiVkNENtzXR+sbQHtKRQv/jllY1qxROM2/rWmL+HohdxL5E0VPple2bg
U/zqX0Hg2byb8FbpzPJO5PnBD+1PME3Uirsly4N7XT80OvhXlYe4t+9X0QARAQAB
tCROaWVscyBNw7ZsbGVyIDxuaXNzZUBseXNhdG9yLmxpdS5zZT6IRgQQEQIABgUC
UO+4OwAKCRCRWsxFqPTC/VJ2AJ476S2rmYBjmVkDeUD8jqEAoiTazgCfQvldeNG9
0cjFjkdJU2ZGfKIi32eIRgQQEQgABgUCUu+lQgAKCRCBP+g6dJdIJHrvAJ9X3GhH
fPtxjAJNuKmEbELLIF9yGACg0B7IAguP2w4FzvEBB+nwyg0YfR+IRgQTEQgABgUC
UvTduAAKCRCl5JmPpsyF+2FPAJ94GdVamtip6qD4VGP5gmsvMOpTbQCghDnaG7dI
00yYHiArAVuHqs9W9umIXgQQEQgABgUCUu66wAAKCRAyCarWkNOa0bTTAQChJitT
Ico+A99v3AqjSGnQavQT7+6XBZWcRJIf3zY3VgD/aDsmZwtWmVTZIwNzwol37ERj
RkXbxAyBXwru9v/ivzCIXgQQEQgABgUCUu9apAAKCRACWrAQaxfqHr0QAP4jFQbV
jzSY1+3b7ujNkA9p+4fXQn+BiwLy10rFU7BtCQD/UwWRwl/uw49eX7+aKWYJXt5u
Z0hhFMP2KMWiOz/KXtKIXgQQEQgABgUCUvQNRAAKCRDJ8LaXneN+1AXXAP9adCRf
DSWgN8p62AGtCOjTHNtuxZayYHD4OcrOoenN4AD/f3fnuR/uULcYvdkDuHXDP7ob
5dDuqMgTNqBaa5nJUe+IZQQTEQoAJQUCUwDn+x4aaHR0cDovL3d3dy5nb3RoZ29v
c2UubmV0L3BncC8ACgkQtHXiB7q1gikVmgCglC90w/dZfmB//263FOW/I18/t0MA
oN6Hx7doF3NvvCDpeCAqQPRFPitUiGUEExEKACUFAlMA6AYeGmh0dHA6Ly93d3cu
Z290aGdvb3NlLm5ldC9wZ3AvAAoJEJSP1qDhD1Auyx4AoP5JnZHPOCnHAO6jGMMl
4xfOoABUAJ0eYzrHNG/Ei0yzyyGdKdgiTW/GK4kBHAQQAQIABgUCUu693QAKCRAx
fqbGmBxOSD+LCACSqW/pB1BEaEPkxmJhkZgex06SqOAJza2Q5exmN/Nk1Wh/ZbTL
DAgjq3zntQVqttrSxDCItOWB20vsnBS5xaQb7TwxV4oLrhxmqUktDXyWTrBE3qpL
rq20tx5L0l9HbClvnYkxeBlojGQt5m2KwdKUnTWE5GrxvkDTRLonKnL3nXDvlTOJ
QV3Dez6wlEqBYYj/fntw6eH8k1Gz7zYW2hrNZ7uzhlI4FYEThQv8mXrxp1TW8E0q
l9ub7Cv+X0ljbhC7cXIcOcvtGesXduYACwGgHcUeiR85QdyFVqoMrMSlUqaxEbP4
1Tt0p4KDy5slR0OIoSJ0ayzFCJjWxZ/sYRj9iQEcBBABAgAGBQJS8m+gAAoJEEH6
0dUhuUq5UZoH/3e+Xtg1CTT6P5XndYxT/E5WKUSBLZt/7YRzPe5WY7gov32hXk7e
7ThGGamQcvUpfcFaGqW86x+Pi+7e7e1A2VUaGRyvoCRZslOs5/PsGu6/8QXiQjJW
+EUtEiiq+xh/ci++bHDIgo1/QzVAlpODwYlEgEvbV+N97Tcol0Ikp+4HWjNdXyn6
0JYPcHmLE6cEAOuuKgOr0euWa6/1SINEiTtAhqim0zsWMzb/ry2rtZzkE0tisDq/
fDDxAmqRuTrs51yRpmHobnZBMT1cDDuNplXqh9Q5YWRncesDSQEYyiy1Ffaq4TvA
6webey/0Ns56YkX45evtMJrTWLaKLzTIzgKJARwEEgEKAAYFAlL3zMcACgkQ39J/
9/ag8xIVKgf/SXw3m01Cnx/ttDIzqL6/KlZU4q7TpVp3kd7QXx+pDg31oRV2SJwi
/hhIVWSdrzTU+AUxB3b432r2oOYRUxIAyVlCHg7/gr6euwUn6NrOeTjUDdq0ct0S
dJd1w9cOdjDpax6gM5Hwqgt+x5cAQYFpOV3Of6k3S7socrvlH6hIZ5sYiS+AvYaM
YKPIfeVEDualg/Mz0i2ahC7JnJHsyAIMtAzKi99VPi13kPMP1Gtl6CRZAzDlsm2D
yOwsGwbwPyfVIjSJxvfHbN4zecFjvrGKDFei6GCBIr1hqAqp/7V7PjzOs2FS65OM
ihnac+J/1/zGd0U5GmTcbh32W5z9wa9FeIkBfgQTAQIAKAUCUOshYwIbAwUJEswD
AAYLCQgHAwIGFQgCCQoLBBYCAwECHgECF4AACgkQ81mf+CjGcpiqbQn8DhvpMTmo
9aJaPSSuJQFKanKzepTP3eBHoW3vDZ/jvwom7NtJp2/KfS49yc/boAZM5CrvlGG2
AImB1hu9GhxOOUyH2M5fnzgfHyGL9BKukJJgyePp1Apu7RhAgWNnHyA95i/Mby3f
gUI0TNnT1FBmrL+6RHI330uTAS4/gVarjzpvt2mC/sYL5IeVlwxyjpVbwUs5Psox
qUfTpyZ2EU+sVJgAgcO7cKxiELySchBX31fOej8p5KQTCSq1gM53PTHgdZ07AeuX
ZLZfoTHWrdBFdyrzgRhDAfPZYQZo9HtV3vo/knXCIc3qvA7h7F+CxHJO9zo0NA9M
WqagLPC4++JiTok2cev0TlOQtPuUCcRISEwvLIgb/tTCmC7kLvUgxpOk6l/wMRT0
1T/O7GAegxooFlp5gqzRLbqzXPAY6VBfRP2JAhwEEAECAAYFAlLvoZoACgkQeJEM
xFO8oQ4UaQ/7BmicDOblep4MudwuHpkxOTW5FhfHvlIRthoXV6xISIEdR5D2PV/r
WcE2R+Ma281WsdXo3jc4N0DP9pwr8UKIo86mpJQruGCmLrf3CZkVMzMsEa0nceNr
cuKynLS0mJcDOArEMxW6qSVj+LM1vyIqZ4/O+s0+RjEbwxsjy63QBtWGImQRZ9YM
0AlWx9voBaJIVr8kU7m7e3Nl/TcNE1/6PtcgeVY0QRMBloKBOelay6LKJhmfiBHU
XVq+QMeoj66BH6w9J2P80QfgEERD0CGqGFSQNTCToMmS4EgiUehG+ZhEa+2iMtI0
OkCmwz72jiav1MSD4A4dm2T5qTLvDKbBLmYIeMqPxkrFgYiS8/Ot9o/EXhmAmgK7
eOIxpBn7/aiAJxGJp8bCelGefdjy3YRGIdq4Aye3zMHGfAOAKMMAoctns0cfr0P3
VJZDauhBdbf6hM3mNiCaHjc1f/VqaLtTPfHJyAIdpLmpnhSKWGqwJm6bD7NFdyAY
cKi7YWkV0JEWrP8jvttUzBiFykwlHGcMaXXHqBrviGb2hnV4XpvxgXVP5bNjoyUl
beQsIqMo8a2bEUt3EiusXYRwlogjhR/Pi0i3POut6ckqiDhB9ZRC0VYQM22Vf17w
JpkXEG88cHpmMbno5aJxZ2CxYTUcqMSc5AjkxH/FrY9hrY2FVsQV8uOJAhwEEAEC
AAYFAlLwnYYACgkQ2z52t6iKXi+GQBAAuEejSKBzcJ4UD21AelrJOm5oLkqC4zEo
zYCST6kq2HNxPYOBeKCbS5GQ1+na6fA7mMorVlJ+zHgFx8l45x1YglvwzqvvtDqN
tZNY1I7x+TmKOCjAu9+bFQymLTMxAjIlWrJ1WBDjVltRrfz+6M2HRKzcrunaxP6H
FD5JSCfkSk0vxGQYKoql+I1hEu9Uxjx/KE/FLVc64rOShvv9Fz28udbldhjijqdM
XggJXdPnJzlamQ2/KbYsqO45492e9uePCLdhv9f46yepLL5ImaI7WL7bXjqLo+lY
D7jkoOHCkI+Gsq7qSAPv7eP6StpXyYOTyw7TXe2edj8S29ydlET8jZPPVDJVBHIz
IL2bowYd8yO3Jd1FOHxw/UK0L53oBcrGr3JPm1EzG1OjVigFsU6hVlNcRyHw+MJ6
BfGwwFBgrCwsH8jk7PrGWQ+QiVael4EzK3IOIJ4UxZ1ngS5xYkAcaz8HTmK0XkTr
+aXjg5M46d4jzHYjkx0HwHG7P42W6bs08q+IMOVNaFn6cgBAv67ovdSdFAdfIue9
UuAIvUrheLfG8qqaOn8YWjv+utR5w3KJg9h0a5Rvo34SpsMBdjTsc9/Iww25YVJz
ZgVVPxGF3T/XXykZ98N4i1Ip7DSG4BiBI+k/q1YuIBGrjTManWoqr1e7nOrayQdX
gazsBvQaOsyJAhwEEAECAAYFAlLz5z4ACgkQ9ogekIipH6O4uRAAtisA/eJYWBsn
4F0m9UjsfyO42BTzRyGW0AfBnnwLZowiReGmKQ+2xsNhXq3Ps6bHom5REBJlPVLd
zyCDoKnavv3V0W5kOcwJChMb75XrNrmedyEkkc/kt6itD0cnRZKwEO8mMACgaIxi
6xCJqVZfAWTTtkomNsQK2Fb1CNbCBvM72prr6++uCod+iJJUvAn0L8zhwN5mCJsA
Cl9YtKfVYVaFUjJNZr/zTvqeR+/WZiOd2LAScMlkNMTLvKxo6CrPGLELSuUmysP1
OvjE1tQwR3LxuAu6QrhrUYIQqRUEBpD3V8NwbKxfXWhQjnL+s9JJbEUmW45bwN6j
4s4V7VmP0UdFKGM3cX4rFvkXFBeQtboo606h1j+M+osimNH/Oq2Zr8THoh+uN7A6
oqILpzMPw5WNaSt4QzIIOQntbtAjcQGXASZGzdG5ZDgjpZ58lvoTcjQUcXNU60bI
4QEB6UUhOI94YXrCr/PiZ5pzJB5qip6BO3LBbrnneFnHo242BN8pxIJQywt43fCv
goNclHNU8yWj4mA5jTitYwicMuTNaLENnNKFFXUpZl8EmvY1OjXFbjKI/RZQge/8
yGXppGecJU0T7hS0bZ4o5so1vlfISpfbpX52aIf8Fc5MbVJxhIs8vbCvcI+fI1Rw
VtEcniiDeF3e0P0A9M2RLOWf/2TwFyaJAhwEEAECAAYFAlL1AkkACgkQq6HLMOmX
o6+F8Q//Ws8xwtcPV+T5GMsly+N/vO2CJBJYa4uIPJXvqvVpJ11OCVoneJ+IDZbl
PW7Fyt9X//niNgVcisQVzZfwk2+90qvE6rdGJ6fAtMXLkSIm/HR/8djG/dj3mJ/F
x0oHZzLIxWXP1TV0BhNdvkHddN2cubY6rIikj16AzUtvGXq3v7EXU9WB5xzKBScD
zPkrkw8vglze0VaM0/IJywR3oDxIrGTKu2w8f8E+FHqwRlhjxijAJBaETN1t21Of
8RbFg/AO1L9SHYgehNpKn83ZUra01wItxsG1QmYWWLKgf1JgkAccGl/f/ckXpNjP
9uasu/Wmba6RqTBCXPsIgbxHa0M1qvQtnnw61XiTOkN8TyiVk5z727im14811KYW
6HGefjPooefPSo4v3lLZVvlNoznURcjSYz1Yo0vBVN/ulDcZk/Be4ByIlaTbfWL6
g/fj7FUHNH+ULEThmGd9XRk8nnu1BvF3Sn9ngWFeYuTc/8/V9KXmrHAT98yctU4O
q3w94TIICC+eKS/EoQ7CTjll3aKsMxXbEY6gKv0zXmEAWRQCTEev9b5UbCem942n
AQwQPBENDWDmS+QjBbcVOBw/Nf07dt/PT9uZJTkpfCLMJdrV8PPOYbxv6Q1hhyzE
3i1+5/j6MZHplYsjLYPgp+za61RlX1aYm44VibVSPoPGvLz76TOJAhwEEAECAAYF
AlL/gRcACgkQ5m5nbAlJTBRKwRAAls1gKy8sjXW781iRVAw+g8rOH1Gqie7TwvdA
kP55YvEOEgvMCY544glm48HR6UUZRcsj9OtVXx2+NDmZwGC4tVsKHF4+V8UNV7UJ
UixkkmDCs1sOoCiRnbXNqoZE36MiDbXpClqNfjg8f0j34bECM1xGTvcpjcukrFHB
HXDuAA4oB6LxO/mgY9SLfMsNbjXbUzRFbtZyK1KeGolLEK8fCw7Pg08vfy7QWoCQ
wXFq47iLkDVV/YPFJfZftx72rwCXHssw8nAERbvXEd4ztaA7SZvHZ6vezjPGeEyh
k55rJfsxgWNe6CKG++96lUliTQecjBh6DFDoiLaUZWhZWSlXdgME/GYbF9MoxM+b
AIEjGZofyYbnqM94cLm+TpwdGHX3SoHhqqRJm8qi/DqoKvWmeJSjZpOLjCYmn7Sc
zE0JCEqENG9FncWr/GYhzHoa+OZlCUEg/6y08xP1qxo7yd8Q43tqMgpKFrqbN1k5
wjw3WJGnuVdQDOfuL8/leDHP9DsMb8a+SzIQY/UGme0OJq2eqe0odxg51xAdujde
bPaxzTIJJDEqE5HuP1qYSSJYLrmuYuFjlMPsDlerA+dkdF1DBHV2ujQbwcAIVpAc
YLbFXZIyvBBkUfcLiSSGy3Nzo3ibP0aeqHfi9IBMdexfa/Lbg1LPSFfbiOy8e3yR
vbmM4k6JAhwEEAECAAYFAlL/zekACgkQyW6LOURKfsf0lxAAuroSVSpNanfy9QPa
f8R/JKdvG+W6JFhzuSJtQX7uyEHiXA/0jrNIclLwAdTn9W6ByQXobXDopBUCz2PX
emoq5AENyOPwV/nsxHmSXc231SQ3JBElx2JBet907RhPp/rnVa9NyTvmSYnOFLiG
DieB0XYlE5zeXZCC+tboqDx1uRpJ2skUgH5OzYTsqOVaLfWGrknt8KAHYcysne6F
jSoboqQsjmx8RNyAqWFqznQ8tJkIfZYr393m6d5baVygEnXdvhd1RCFD3TtdbyuS
f6xVqA+1JnuFex89ylCfMELkl10taa3LFurhQvANwXBSMqtnPr8eKY+CronAVqzS
LmYmH/WCkWEhHXPysK9DxN6pMQaIL7F3FgmDAvZljClYaRUssxIGg6F4Ne/AG6FY
UEHSzea7cP6SeJyxxMPLt/mpKnNPbJOpqn/Rj0pWl1EUhs5fAH/sq15WCds9uiLP
KXZ8uVQ6ATpQGgzXGw7Wj1FCcSUo12z1NILoU2uhLyzbwDYS1CdYVtstQvSsqnnn
hZCPLbT2xxg/v3fE93zDQQROrzMQRRMP+qmb+P98y1eYIwhnmpF6cJjj+5mpCqH6
rVyYTPDFS+ewALg1ZZIeYylqtbXQut21Z0qPPtn3KVWjAfJPOpjDavVIRWBpAkgG
bI48BR4sv18x7U0ff1IXvzzLdKOJAhwEEAECAAYFAlMKewoACgkQCZZR7mU6MAoY
eBAAt/J1n5Wl78kaeCo1tLr9S2d4NOhF/Ri49dCUOCKeO6uv/18zzWHMONePr2eL
8odUqut3UHi+2Z92P6399Y5OKZNebCwJFmCmWITPTEvtUWYi4hxc5w2r4klSRSzg
J8U2nHrOZX4qqpksNYuyrsikoMKT/zWTfgWYUUQkpVe8SlJwiOiwyfiaURLRZ1EP
/QX1dBk3rU7M/8v3kxQwZl+SwnrHg9qln93ow5WsJoWhuXzYD4sdJoNMRCJ5aNmi
U1/7dU46q+szoNQFFUwy60d3zoSByEC00sToNyvpZtZfaEhw0H1Ct61y15KqoX3I
A9lrbcAjWzzXkzfhWpm8DLRtNWKdIMW3nudFjZr7CnpY3T4fkoXL1LZEsdzUyWLL
aJzoTiO1y+CwVD1CWqQ3PB45yDcYKsyLnh0v/MTQaMBzCv0fQ5vBS4s5JfLOfOZ6
k3VPJ7mPj9D3XjmRE5JIQmRx1iDIm0w8G/QLWqZiF3qTFz6u1tL7d8wXD0FTC0p0
HpRAypKj56OENkZjyo+8/+lHJLdJxllbCbqXdAnJScbOxnGhqADX8j3lcEgPPQyY
Jet8zp/uEYB+UzxTFXfAGu7FLj0nVHClCsbwkMd3cmsqTpwXa8hdDsJZ4JY01VmR
LhVcVs7ccu8t2+mXEA6OeDgjDvuQCwhJ48ccQ6Xkv37TXfCJAhwEEAECAAYFAlML
kjcACgkQgtUke4G/3HAPzQ/+MbeNGwBUiiAOQXPDMV49iQnhC1aIrCE53SIY+BPu
xVOdvvckFcz2Z8SmDQ9bBy/9rjGdedyihiRgFun5H+JXUErYLyBpTyTJwreV1ICx
OmhKuB7B/rnfWB+3tlKZECrdj9KWGELX/W4RhyMO9PCbSd/b1FdrLXcmtqOxJt0l
np7H8hLQyDwG78dQP2yBZ9m8sgnvuFd1Cnu+l2u2Ijt2pcZ9j8wFZZutcKHLWVTp
Hf5MaNihuf48N5HJYM/s+uMFEA92oYQ7dj+jIW7gDGcnuDnOSwsumFlIBgdwmJB7
+Mxb3yXaGwilfbkgwQSURwDQLsYU70RF58xeyL0BY11H32/Cp+KEOYfiMtkOou3R
slQwT8XAe3rh/ZB7bAiGwF8xv9f6caffhLxy/5Nb1P38ntmCW+YeIwapW7hqkInn
G960gDBg6NFv1KNo5BUREaDD8VDR3WdjIxGGEzdJLJwfhkrZbnQTkqLjV81qrk+J
84bT+MwCAhwuo/dD6PYi+/ZeeAFQ782ynjTL2LqWc/Yq46xbsmAgSlj/mdrwtUOb
kAm/tDBi0p5Cxsi2/htXr0XAPRignkXhniyhn+uNokMQ78TFvgrNHATTb4zHcFOZ
MUxxF8o/2qaUg8Fv1ZVl3ZBWBNs8OK9ZDXyJLKttG/ViM0Bgg53LR/ExjiQDC1H0
3d+JAhwEEAECAAYFAlNnjyYACgkQi1iAr6wCGMcmng//X3r0c5WQX1PT2dKn5Erw
JkNjWwUVypZcIsBPbtWF3efINUtHbmkQzTc8M6krrxT995wIxaZ2eKFqQc1+7cbp
8eETjjABWKKiuXGr2HA/Vm7jjtafhSV2+xnznZ5DsGpBPhHyUjI7jrvhO42ommgs
tEpBo0iPMRHKqnoeZyjvfiuCEQ1oUByA7uyPJ0OhsMAQmcsOV/w+Hx2OSTGykSKW
jzC7kGW5c1xOamavwL+4lhmqPALnb3M4eZKQEBlXLWzVeezVly8Dv+HonDq8wjsW
iSayI3nmKCmOSjUJQMRPTxIrGV21OGeXHGLqCSO2m0OfnsllIpqwgM3oTN6JtQ8x
b2wE4/NvH7L61N6EAdeo62j2f/VEn07L1Vcx8Q4+/lyvcMBNK4H/f0MtHlZ1fHzk
iNyPrKbuoptit0DGwjahzMJdJg4OQTm9OA7YktqR2eccxHmkdbB3GcGGk1g2g0g5
KvpeiRiZl4fiUf/isE5wwJVlqgba35pghPWXXGQrRRFAWv5Tv4gtR0bfjU/4PQR/
sONhhlm2Yl3kuynTWli2wNtteYSFp66xZAC/FSYgkiivyMexLO3f1mv1R1r1lEWa
2MwnCasKu+zhOe7EcehTISbMr54V7eEkX/1002z+uE3xCobrZ+LX026x6GdBghou
3Yq+Po7f71aZ4mj9p5NlC7qJAhwEEAECAAYFAlNnjzUACgkQSAS0vD9V7vs4yBAA
stclZBnSTRXtHLD31vkqlvg9RnMqkD7O7756DHinGsXqR0xrWhfJXkZnvehYhbWs
25iJ5iiRNWz6h1D0eQZGq/bJSnFNRpseeP+CzwcQgRNITgv7ktOVpN1uTaRHGNg2
1YLwNB0F9wS+WALebR0V82n0v6oWGAqaDVAmEzSkzggBCTVRcmxxSjxt4cXqb+LQ
V9zvqBYhsSIPMZIArPjiz4n321pBipQw3uRt7JaBHy1wZ9SYca7gytEa2N6zeDwT
PFjQboc30flFvxxCvrT1AEGJ+tRtwJBWR8BsyAin4bTLclz9U91vDSKyaRlr0DD9
1d/XM62uvTb2yq6063xYrCmaKngbJ4HYVKNSle+v9Ou74kynOvcX0P7heHHGfW+n
ZcWOsQEgyrSMhc2+2499iEoIGAxzaPeGWShYSBCi0kAXU7+30oULCXzSXVVaHSUB
LerNI4qRBKMUo8pgr4sPzx8rGNwjbIN6YgkICoi6Lxs7LPjnOvreLgFyoQcjKuTq
1iZoqYZXcplET5IkV9Qh6OA+AWi0SRiYxWbt1Nlx3GOaAlkCCUGU0jn9ki8fw27g
psPx3/owPG7Su6d6YensSF8RtQ4+NmBSmIGbhiGj21kLmB+yS7ko+VeteKQXSHuo
1Nx6PhPny263KDwEx8b4qNQCpU/Yg6Uhk7KWJTvH3ZGJAhwEEAECAAYFAlOKAhkA
CgkQQwBNCWZf1XN5GRAAjntsa/6r8wNwdRekY00uk0oFQJvncVowOhBwRQKK9A6u
lNPynt9Zvlzha5JwNwDkCnnKt7E1E1qy59m/7O/P9cZqd50S6lrdpp04j7WFZab4
/BlbRnDsIKHTrm/FSpjE1YpM7Ur937Gu6u4/WjOdPZ9UjYzWZ2RuLkPuxWxoclWR
VGz8W9j2A02z+wBY4/TVqnJ1Wc0NUxq4YiFeRveO4y5Dkp4D68vFkdc2TvE36TkL
DOwvCQ2rL4dIIfdgnrOdWAdCZx3hpqK0TxkG1L1FOHm2cEAeFjR+cDmlwJEqJZB8
yjhd9rTxjbvYOkC86bu1EfKu2rb62EonlaPybqgGbMunuIcNR5LUsmo7UsNnEHLk
QxTtlU2vKDvrpTMtX47lJIu45/4I8mD8AECch9cNVAZR1irw7UFrFpKvdsVifGJ9
ZTkt8YiFwQGDx8Z712TgbpYe8YXNoeJ5b2rz5Drg0cYCDQaEt42uDCClyCOvfNMP
bfCv/I/0DScbbGf6th4WtYJuqav8DjhcSi1A9Q2byzLNhJXfE0AVfxsu99D1pgwJ
PzxjW8VkCPZz23cF8afljO1tBDs0sWl4wFeVgKXNaLQa92SvpHxgoCmtXQmVhmVT
Jz1+LBdc+tlAwP3y1sjITSpuPbGItNKu0PLdn5pT9lqX0YALDBz1Pv3h1+7mPH+J
AhwEEAEIAAYFAlLu1rIACgkQi+h5sChzHhzP7Q//SsjCPUG4AI86npwY8gmBWpRy
U2E0WGEbHq4RKdcQZKcJDKE8ZuIrjZFWYEbi0o9DdRknxK/DhncDem/YUbikTda3
01W62YNfTOJ+oa9+vXzbjFjp4RmPcGZtIDC9STXn5/KdrGPqtUA4QYWwv4WReG9R
4hjCoXM2avQb6NF0c1I3R71uea7cW9IK2cVB36PDOPr278cKsabIHWTY4fE2eB92
ah9QpWAbHT+yAUxYRblLS6slHYt5r1YUs0eoqCKo17SQWZ83IaF2OPyrCXQbTlp9
2AG3maDcLNJk1JoCIXi1FA6o/z3C6S52cW3SdrvFYSY21+E0O7oVDfjH1PVa2KTt
PMGoIUm3bKwpDjYw3dBPxRvRlgR+dgCFJbdrTMOnx2TpUHRgaMc0uERQfEghbp1V
tuQyciv+keFD+JAxOKr+hq7e3JNJUWI9/CrZ6Za41n2EU3ybLH9GnH87sP8BSYHf
zzawF3sJETqScM7hQiqW2po9LBJi36ZZwsR4pUhYVViq+K2NWronOYhdho13v31N
lcb3epecvTW0w+prI3OpFhzEt11rRoBNT4r1FK1ZsR9Q1zIxWE9hzst3c4/LYbP4
pmtjUHGE02LwbiZRwqawxFYC0lhSQ9pBETQXhvFj2sgPkCmHuo09k3gPoUPSNoPC
jLpf0QBWs1xA4ah2vVKJAhwEEAEIAAYFAlLvpz0ACgkQOHcGommY5cShoA//SXBZ
ByQALj9zMlb88+Wn0+SFB0xpng6PiqqC4wc/YgFGXlkBmRuNxB53eB6sHZzee7hb
qD5BYzgwI6hAh8LlPKOWpuxlimbNcwEILfZ1zP4RkSeMy0R2b9xWwZ4Rbj+00wm7
0tM6MS+ToVIU+8EZ5rTape+hd0agu4wNFMXhVVvAReOgsKN19W2hzBF/MUP24eIO
lVtmPBKzjjfgaTZkjxrOzmK7KKUvbjukGpzkJN1VoU1Wa8sWS7WCqFgc2dkc8/mk
HXLdIzqLjfmS+1d13a6dE46GgKmMfZ/fIF4KveIEeI9TrZhO6Dy6xrb7NZjmXKLV
tRlXnWjJcFRl4iW8qLyYLJwFu8YbL6dPvkjiKLr4qgYxHHLlSplZPgljVth3rQkx
vV4PjaaovefYR2g0TInjz1pZCDq9cXJcnQxa/sqPNNjQOO1eL+DnNaXHfba9fUwT
IBAqxQoce5zJZbuO/w4qQk5wZ8rIzn9o1qE13VDU2r8z0La8hJojjNo7f2MP0Us8
pZ5yOmQEvy63FBKRVmc38+fvW37dob9arPj0453k49ihDPvoJrZ9tZfpNPdDp4mL
oW1hnZu9BrlOavN/85yq9eoI2ATXJ7eU3f4/Z89otRwpUwnVD3WJI2Xuj/NPou37
7AD5KwpyQ0t5pBQ/mYki0s+qIHazhcPjhdXvq7yJAhwEEAEIAAYFAlLwM6oACgkQ
fSrNr0ZTzyg4axAAwKxXCFy7GG6d25pZcbcgJql57bkrfiwMASWfB6y7sZrZAx1g
+wcln/a7AM1d+WbEEpsyF6MOXWYuunxGfTDh00WAJxGjW+KZCXEGxnyPIijAr4Wn
36daz3I+AP5A3LnzElsxqaKanDheov6PyT56QaRMaFChWgcEuLRa9llLTNJI02jn
/AEvaOMQivfp+zYkKpB3GSjJZkk61O3v2CuKLGiTmgUzglaS0roXq1GNMlzGur2T
OtCQS1bvnAKZyUShl9JvVLxQ4fvXdOrD8sApItmdxuqSGaPk6W7IXU4GHnWvqBEF
zCUumnHejunGTK6ik58jVkSDj4tGjN3t1sGv23MCEy7IE35khPQQ5go+owcqmSTy
mXFyDXzGE+IN6ajxw02ntIy62UzpNeVL06syodrZkJhNycNpx5LLkws4HeAmQkML
YNWUhlfrqfOei/H0e+EPENjIcB/QTSXvhE/78skRHViypZ+Ky/Pp73ubnElPT7Qp
Md6RWzJMLXq6lebhxQeFb7WyCa/tGb84dyRZcgQ/6GAD18dqBBq4i+kn4ezuAYsm
0Czg2XmiFiegHDj8Lh9Y5V9fU1yzOAX1PEeFg20JBsZl4omXxI64e74oIc8bctyd
/Pbnfr4rFHOFLjW1TUldRWK/QGAIDNmyjWtFDfNOsxLuoK88UPbxt+ax8v2JAhwE
EAEIAAYFAlLyLJMACgkQamzVt2VjLTo/vQ/7BSApMq69979EJWxShWO+eNyJHZwD
CaP1x1TDn3lc3s4A0ef5qY62/MG3y1xKWA6oFelJi0MwcCZThrRzslPrs1JpmVlr
AUIexCQ0RFuTgttVyB2xpCMBeIuYmFyRRdCi+NN3mBjpKYbxoOBz0uQ+9CCGZWQI
WHu/21O9gNzZeNVPzmdeMOLg8OhF6Pgq2jZJ6OgM5kYP4yjzG676+gtJPa8KR1Q6
C6aaWBGO4g/oHCNRWpEhW7FMayppWCYA0h7Ag4/yGKIswce1u2nMpMR1D8MxpjMc
D7DWB5zByMnN+e3q6Ww6OM8HiiuPPYCfeDO6bwPU3tMdTxIvgLYEXNt5KiIl8Ux8
nEcySeRm6XlaE82yLkH1Rj+Dtf4jiISfIzkgm3mSCvEVNZ/JQ7dk0kWUS9Z92pHM
7MuwQCQCAhgTPUeaNcjuUIu/JTq+g/RVhgghx8mdOdPMMqcuZbmVE6bOWTct/ekZ
N8uP/Vasf/GEN6U0Ewtnag12z/SDjzwLN8wPnzxqmRCgslHIw+3MX4px970ALsTn
aOmQaaReUHk0y/lMqLUXrXXquafEHyc2dnb28VTszo+oNrQOoossNi7Wh+gchBqP
DC2YQy4gGhy7iRd0v0zoNwe9KuOBI1am1i2VUWzXXi4wj/jOYbEUix16wH8MNqmn
Q9NOPVBwg12fOkOJAhwEEAEKAAYFAlLueqQACgkQdIJlXjB+NFIU/A/+N/BfPubv
+x4VrNX/eYSjHqDq+TbtFE4foU5UxMP++drB3ZOVzmyrDPU/9Z7L3UAK2t4WHaje
jAu6FzDPaw9f/c0qT9QYzy1JlC7GRAfKGfx21IjcbCqfD1gNzJkyG3msV/2g5cUf
rqPHdYXES3JXtgGED4BChtSkYXWKR+tkzo2/0BbD+68VYTkGPfRDxtgc0XDFAWJo
lHaDqFr1Bf33Yidga4n9P36qvBuw0batBYCAsSM2oRZrZyL+3ThILVqwMQKpp6MO
R3l4gb/Gvio8qdLHjXzVEKcm9NBBz/39hqRXh4sINhmUbK2FAJHa6T2ADguknl4H
6AUmZ//XiBPxUIfW0lPvJF5h6DHoXH1KlJN0rsBalpJ5NiGZD1o+GddbIiBcbf7T
W7KC9dFdx7PmcXjaF4AfdDyx+1ZlFaiRwbL694Wum8FA1xn+TWANtzUPN5P5bE3p
zk9PmSlhUJslHSS2dB7UHIzHtdYiJPQ/pYpNjO59m7xjdPpuNQ1LtfUeGIkIOedw
Hi4HJZgP5X1v9orGBp0WIAaSuHgsNEldcVMM1a2zaTTsyaG0x4Yy1+GRnceYlMGJ
9BSpaA0bQmg8nnhtaVibsvsKfQyp6ZE2vUW39G8F/Dx1h/jjuEyyk6/sXDsVzyOf
d/4Y+soduvgHog6q22eYVCgji7exMDq9otyJAhwEEAEKAAYFAlLwEzgACgkQBgT0
kMpAVbwfQhAAiyExde1slPK13PI85gwollloATq+a/IyYhewmOkMFq706jYdjASP
zdBI9NeaHNIo0b+nyL5r7S7XIw3t4npgGe6JU7h1rxDRjF+EJ1SdN3BtTAzYrqmc
UGw3JB4ubgMlFh6oRQ5VXgq92pwNKmBO0dOIqM2ItFmsvcsO8oYjXdZEPIAxbD7U
Pyd7NqrS97pJSBr6+1wQSuZgExClO0ELi7qIOqXpO7gvJcjphUjee0PY6RQbd8hi
RLY2QyCWlKQr9V/mKPSF7Fd4tfrvGTXprE5XdRGXzVOLcS2rCVy+F7Gu3mMHURhZ
9c44JSTkt5TGAYa5Vv5HbDF+B7x9XySSJ8nOF9GUPdjyKc422k4dutbrl7sWylRH
XG7wLC4c6C3ZbfZam2K2fAig1TiMb/CGt2LyUonqC8nU49np4auaRvHOIWUiMw6q
F91idgsP/aWjsgboyx7UmGp48kpXCP1EcrWuCGxIzJQR7IH+yjdwKrlD0UcNaiL2
7BDE+aYCEocONDI94bCKqUlQOdDI27lYmOopY9E0x8KglAO1DBb+dxCfe9vMr4iX
GK7PaO3694L5fGAqza5nlDyRD8+YttY7YYLn1XRiqAPLk9JsxLiUWHop+CjofENi
JhW+QfXJUyNkeLCx3v6QZuWBwyvud6aDDdYbwcubTN9piAGVdHMIEXyJAhwEEAEK
AAYFAlMeiIUACgkQOSeNqBCeYkT0NQ//ZzAevji0VdpjoO+EdQeNHvpNj9NvXt/c
i8uK/WtCIQDyUUY7//B4Yx+tZukA/mI4/emZC4G8lXb797KnjDtg6Co5jjIIrDy4
IaayUFH6aGTzU0wquFCyMUvNn+yMaMhQvhnas6SCL6aEbmVqkpSOCMWhoI6Ry/Tu
fkEtsLjMzGONhCfFBH3ECLXMvYNUc7+0genkkXxQAbnQWDYBtTpmgDRJ1e9mDjzL
R7tsgzbvwDBJGUHQY341BuaaehIN4hs7FK19vbNSvcbubyLAzueCLoZPmnnjeo8b
upX3mRTxaOOoUlS0UACcy95MvLStihK/G7dtoYmZW3GkAcjJy7HMH1ucsPXGOxvM
isUPBG6CKNKYIcYnOdP5YtYiYeYluWN4v4Ik66TVQhoqKrITh0dNy4IIN9DyPsif
nCjs7Dfu8EeRIdi4i5YM5XCGyx8t2ArthswUOFcz/vuTwIrlPlRS0PYluV1WnUYx
TxQoP5FOhr7zer3ZXYG2Q4YUuJVEkgA9XXmSi9w5cCWCroodKJbTA/ZGLvEqf6eg
ZWeKiAONimph/gup1npEDu4U75OerT8CulsWkZ1TYM429Wr12QTtZP+3PVaIgQa7
k7GduUgBvhamPRHqXpjgHEbbweaSwtAeMyjJ7Zpddg2K9D2+bX/iUUXq2z4eOVY+
p3yZB/JblViJAhwEEAEKAAYFAlN8UwoACgkQEUWTSuB6xbWq7hAAsspEpRVuOx65
K4Ls6utgOlnqdVrbwiQ1A0C60E7TRgo9aDHCNRud2GjQl9+lRYFEQi+K2CaoDxdh
/8w+skK4RHi2CXXMmDdN9UyPbUT22oNUNxRZdTz9YRQZ4hCdIj5EJRPVPzXSx9xD
n23ztQGG7PogHhzu9AqNUDaU0MqpftweVPQ3VrfLs9wBQGMcM8wbiCuiJ6Y+sdR7
ylk1RkrMXmiKEriU/00mqm5yN1HXuBNCdC7SICMY1PLPFJFN0RTRt9QhnMxDaUeO
2DfraBBPvpp6Gym02uRo0p5IQ6eWv/r2YzwnY8gaFE3vthgzTw8gxeOJHGk7+qA3
ZzZgD0GPGoBqCCqfsyAv8C7Mwnd8x/UygiwbuzdBuC2/jz/633SP00T8NbreQWJa
O0+AjYIk/ln7a06HUel5MgMfC/6Cf7KGay8gjJIA81OBkoF09Rl2Uhy5OlYwlSu6
bhqj5ZjKVn8Id4mjTCOU4s0RBOBQsY8zDNzeNkwcdMVgcCpIrBstj4qgxMAD7Dgd
HmexpIJKwEevIfwFrxBEKDSIKMXbhHVgA14pvXp/1ONOCwb0D5qdOJvbnJUHrMPA
ByunFeq9xMa3OwkkYVcj1Mj+1QtRrK4/uOvPxPEpGB/IECgKtXGTZy04xlpT2/SZ
NSfkn6RADvXVvt6uqSMECn9VgkUXldiJAhwEEQECAAYFAlOTsCIACgkQYLy7T1zX
+e9zYA//QzaHJ0Xt1XXw9n5+nLMmFYV0GQZCC8xS9YtzXPvCvas7TGLaY7Q51ifb
1mMOFjE/naSpIi0+uGh60wlMTrKs6EJ4kXjRXyww2ZJNDmvs9qq/7Q7d2RgpY16S
GkUo9leq39wbY5QE8TINTEhjqM6+arH3vwsQopdSRykEl71qCp33gqfx9bGTO1RW
MogDhVyNGuWGMhxMWOjUQRVUKPB7oHARShJS+CZbKXUr5usguAgDEu5hPV/0KCBN
BWdHfR/u8RMExJ2WRifB3u4rnSByMNnEyb0Rla5R8SWPlIlCWjPwPEfWkJkuJJpz
MBlbeQVad+4Ce6h44RUaW6ndyrGNzYDDgoxVpVlm+erBj5A3TRNykzq7+8Dcv05z
dzQwhaEVyxLrCBSkp/41AGyQiDLT9GfY0fYK7bgO95D/Gw3/SCZ/4IoHWCLPrtJO
u+64BUH3cpHbrrXPrVItR+TOTsQKY/QqRRfOisyXwvlXATFeo6Y/ya1flrrQcoCD
jHlIM+IhwaKONqarhM+Iv0EV27KDUa6Z0LwCCDQDeoGQp9NvCush7sfumKEoHXh8
NcVJ+YFBbdpVpDt13DEE9dXhHsu6I83lIZ2XgT5Z21b+hCRDv+bx6Y1p/AvtVJeE
t0PVSU4UCp9SNNjyn9tR19HLm7IY14wJ4wOyTrd0LMSC7Rll1sSJAhwEEgECAAYF
AlL3la0ACgkQW56hYWaQz5R8WhAAyv9WKnb7eHz4dG0rlKBi3gT+/AgDdOYJbWy1
Ka+V+MMedDiOiZ3owvfMYaC84Ns9aZoxyWOC3mPHkfMZu/pj4lDi3t/AhxvSZTTo
xQWeX2nUmRiS9Qfoe0AuKBuqrHqbKBsjr4Up2vcTOr7j1oww9xAcWH5bdWnPLlre
8T04CuxSah6G1AXVKFYsmmji0Ot+HN0uD+J3z50HmUtIFXvIiWGUbC+jukk1/Tfs
NsczDwoJLmCC0Do1nhlN+RK+pRmtTWmW9oFoZ26OLsO9kxLqHS+BGOPbHudQvE7i
g3b1R0YzeA4ND7bVs2Qx6rRlNWatr2H1e09jNPnTFcR0YiP7yzl0ZNxn1zy5d11k
TMTCx9GgXtXWPg5ba9EmK+nf52SqRlClRuly7CUmY7B1aNQaUWKEydj6JW03e53A
SP3R5UX9Ns3DMpb6wBhrGqiv3Zl5zv26mT+ov/YX6gZ8lxd1uzg1PIjnvE1Y8cy4
ZW6RN+VS0H8qaZOewNQ1hlH2d3WKOFfQ0/BqdmTKnYwN6fCYYIDG30HDhbmp/8Au
XDsORni02IzC2HpTJhlXj+01IsFg1EHW/1s1Khe2aKO7zW+8CXl28UqFivScKiD6
+VvcuHou/yBpEp8pkNP+etUVFtu3TTGtafvDVoDhffqi0zcgyEAfsJEa0UXC3l9n
1DnIGYSJAhwEEgECAAYFAlMhrwYACgkQ0LD14xrbgZqMAg/9G2TaQloh580628a5
rj48sg0XwAFkEsEx7rzSlilKHZajCEZzQrkRy8aGEA4a2Vwz/FOURwxfDqvDheQM
DCVqYl02tpMHsN8l8KfyKK6NTDJh6Rn/BnzyftsxT+NAfL+E9VTWCIbCHbLqLxyb
+jnuXANinUFHkNNBU2khm6acvXRd6Z99nEzosVNmCS5w7XfSKtjRoopSlUw7qpFo
pZRlB7aVPUUtAv+aTdZKkZt5iD1nlchJqxeIQ7Bq9qYasEGcwXRxoyMsVYk021Jc
CZ5mVB9fDeO0Rr+Rek/NPjrWe7w2oYnaG0dpP7GtR+3HwW97YjYOGSD3ck40s3Tj
mQkMYaF8BiEL6dcj6/xvuNpWXXjvt25kcdS7I1UxJ8v4bd1xo0p9G02XM0A3yJEA
4T0S91DVj0K+sXg9d9R053GFDjpU4PZ5/BNhXF/80fWyEZ8Tocw9UldVg7gV10Kr
f9OoPInTqLRo9fwBmKfPzbZ6SjLOg6ia8B0i9OCbpKuA2bCkuDXJiRO2d0P0adEw
ixKgE+M2xMgU/pqAOBXB3s294aViSArNnpV2vdHVm8797QWRJXBfcRffLzKqRlmh
Xpv7Z8PRj8bzN/bzAc0N8tbWMwx+lw5J7nJWQpMWP2UxQPpF10wTyxjb+LUXpFAH
d3ypy/VMauaKrKBK7TWWnmoovWCJAhwEEgEIAAYFAlMl3WIACgkQkYFdZwKYKkqs
BRAAlWKKYkqyMC1cwNji4kPwQ2iF2+J84fzP0D7/p5dRUA6RTxFeRvxN6mir5SZH
n28Etf9aZr8MZU67SPxfzLj9VraLW1QalNahMngB1V1bKMVcwyV3f9Ox72BBaJtS
rV6O1pJMt/yGX60QrlEY9kXNw39jcONSimVKhPvi30KGY3iiwZ2OoyDtDMsRkhHa
tar1GLmAPZLsJi3MIw38FleGK3IMOQc5PbgeXzrlaEOneNb8WAMK2WwW+iSJmKzD
EjDksCfcpwtm3RFAkgpwFBIwlBiWANssyuBAk/s3/RcisTBw0TqFl9B1BTow1Fio
nvEnuwKx4Yo0koWTDzCU0RCWDLnLZ+vzdRR8m4tRS5YSbqhoS1smnyHz6trv/Vl5
dpYNIvUmaZx4F1zIq+vOC/tNLe4KObANi0ie9aRROoY6DOzrr2LwhkwZWQOFxRWT
A6u6vkQzRZMNVL6HAIIeynWq43GRIZA2iI5r/hN96xgwZ/0G18CRRjvB0dgczGKC
XX70E67qaAdDWr/zBpdMkaNaELvTx8gNEPjSRnsIGFZ0rFym6K3FLb2H1neLoRaK
GKo27dl9ZEYHgw5V3gV7UCgDjw6BYOIbNnUamTfCx6yGCeLp3IzZL0MBuqgHQnHv
wSfidsQNKQuP/iYbQVo7vqcBsMQehcAbQPzVVNAs0V+wRiCJAhwEEgEKAAYFAlLz
snIACgkQSCXJCkV1iiHMUhAAg3tH7PbVG4HYoLJNLQEkQQlVecd7LhzlegI2gQSw
JVgFnv1RYWdN3acj6YPSdmS2t3iYSyXJ56S+vUoo1Y3HNjHxvQh5FR0rGZUlEQWk
iijrmGo9K/js+JAQ6RaNVwbN/W3VyTHnsAst+mPrx8LH5dLrG4+Uqc0dcvd5SYCX
Z9TEWcXsE5zo9WEAbupHr0a4Uk6s+WDhdnmyM6gC0v4l7tUOyF8zuurDLgFATK3o
YbasV4EAb7vXWIip+nUuhynkLTfsi8ZJSfGPM9m/pAIbXSyDxC8k7+47D2zEGwNK
BMTVzWcu60Mzi1mEcNzwpBJw+aX4S1e7+CbC5dJ2+RAWE8vTv6nQr0kizJrHJQ5o
np/vWWsnRTfSsSYgDPT8zdp2mWPTGnYe1h2s4W4IyZmTqNjKMRzFCVavu1JLbxYG
RyjI5MG8xKsAvXvQyGus+GIfGqQ0vBQgJFIaW30KNwoLZ/a/kWKwTixZCWly1hB4
n1uAnYnpRmOuHZXwLsXUw3cGI9E+1txj6IXQKGUVfHrplEUIDJ+KUvKqug5FyiEl
SnLHVHdySsnMpKxfboWjEOd9LxEbsXgcKzeHUqMAOOoyu7wpsOHGSGaFWECYPxCx
SMWFqKuLqd5gMGiKI2XPL6y0bIy9J308K4zF0+YPhRZWWgCz+5KcyJxRypYCxGg9
U1OJAhwEEwEKAAYFAlLv0OsACgkQqchsjdOujTogyg/8D7TKBs91SUAAc1P/9/Hk
eeukgCYmdteQIauzlDgzO6Lx3W2FkuSfNo3EJhJpt+bJYDK6GXonApcsj5uQQ9yT
S11bmbDn4/8JdSKd6sjuwHV+MFn/iLmATk273lCt2qHUMFiCW5+o7H54xzRqPmOJ
8VOTmAHn6jh8o/pbyka6T0xTmPvW7yqvDy3vawKHLEJ5oqzeFklD++lzjDZstAMS
qqPdQ9Pml/TdoPsch+zWBHxSext0fuG4shK53r9nBDM652BcY9SfOD39k0VhrCqx
nnhJwbbUGRonP9//Nrob5hyW/ZY966BxKOz1oewdSZBP13CZk2Bne1gA91tm1vSl
trwZDrGCrDrWTRvVXArqV1P4iPLl67rHebde6I13RVQHxSM2i0FBpAySIxuuZM6h
Ylgkt3CKlujO9catYswFIKI7QO0rzrg3Sw3EZMmGQ4MXBjwKgHGIuTTlTMGRvLuA
YiSYkN/ad3exdec/G54l4RV8lN5BZovp9SzWLd23/JLqjJaKTsZeNnoM1/0uyTnW
PRgJde/89HSjRBYBxdHDBH0feqDbcfKIYzDEz+3sRmH+fYHTgl4xSbU9RUb2e1YV
Z/o7Sg/d/MFKD42Qc0/bNWV3n1++iUu+x/qz5/8RnA3xXH8/nR5WJ8aPa45yPaaR
2EJFiq2FXBxlul8ZRM3IuTaJAjsEEwEKACUFAlMA6AkeGmh0dHA6Ly93d3cuZ290
aGdvb3NlLm5ldC9wZ3AvAAoJEHoGhUIeiZBCXhwP/AyhkNSyg2urwrImOS+ZA4zo
8SYg1dMuMLtP1+ZBgiGw5o9qbZvjzy4kzB/esIhrgCj1co4fSMRttL9acXvRJd0T
kpYfDoL+JMfhl9QgZETv7cuhTP9QqSCcuwjkyV5i23TdloDYnK3KorTJd+Ar7riz
RzDa/aMT+U8KQM4cEyVRvHTmphCd7tn/bKDm77NbaabejNmIyqvgeQjvf3+P/6LS
V0k+zDz1CMuQYLA0kLc3PIVByaO8ZhRZqPeJeaocZrUyWdsiJb6/CYYtR7rRcixQ
GsuKaaFJEPjO/brkZfh2c1CfHSnfNkoiTRuUN+rWz69sOl6Tb8GFOfsthikvMrB/
22E5ub4GT4jnmUoylQgvTg6PQGWq4+brHymEy4kFAEZBg6zh45Oq3dCdxEEwBUfM
iv4kPA2cHo6wEDUaw4phy7oy0TmQloKzF9/zuwRrubNKxEeTtFUsQTV4dzqOnkKa
JYOgYAAmZEFic25PDhCcgZNjkGEWHnv+tJUdNmJuL4+HNDoJWSEDY0J2vytbH+HS
OxUBrqVGhLL09MVP6/R57cxOn0sTWSle1LeKh5vF9fe0fowba9xsNsGP9tWvgzK4
GCvYIngAHpCSzrAZYnB5zNTJADHFxbzHGV8BAQN1wAJl8YqzaklA9xQ4ge0vML71
jO1Peuztb6rcpeBJbuF0iQLOBBIBCAC4BQJS9kamBYMB4TOAchSAAAAAAB4AS29j
Y2FzaW9uQG5pZWxzLmRlc3QtdW5yZWFjaC5iZSJaaW1tZXJtYW5u4oCTU2Fzc2Ft
YW4gYmFzZWQga2V5IHNpZ25pbmcgcGFydHkgYXQgRk9TREVNMjAxNCBvbiAyMDE0
LTAyLTAyIjgaaHR0cDovL25pZWxzLmRlc3QtdW5yZWFjaC5iZS9wZ3Ata2V5LXNp
Z25pbmctcG9saWN5LnR4dAAKCRAlv0hPCKtISd2DD/9rVA9XRxPeiZCEU/Xb/DAt
2hWURoL+h6r3ZjFrLq1L3/FxG3+TGb2wUZdq5ELA5BKKhOo9UOzLtqHazl9xUEub
vS9VdgXBklS5LExKHcthX21yGVg60hfx50N/VDkbadbFge0sXXzzCtg89GRXfuFO
YsPuLsz8pzyNp9OUrZ+ZAiTlFxD4cDtLFJYlm+AczpuHz9NAXmykjxbEve3DPtZr
aGafqkmaNxdPMTrazl5o/4nYpXdBoWYRpZqXXcX+D+3pXljVtD2mjuhr0Z7uHA3e
v970i0RjZCWCNVh3zTm8KZyo6SZKCBxeIe8pSvN4okksYeWTa9VwLWzkhM7iW1SM
HGKFXoB4z0QJVC57HrsSDwlXRGjx4WsUqLooRjlcrAbVP9E4xIrgWtrv0S63w09r
yHi74wjpKET/n4qpjtaiRoZBnCXqaJyqi5Sl68szWSnOmVgwt85cokyYiqYSIus0
zkagcgHVusYx8ysvYWEmUCB1AwUwdXUk+6K4PG8oczLSm1dkkRiLXm730aZv+XoO
pxgUncM6MmAsTvZzHjLKJvM+ocjVseTqOTWfW1qxKk3f3uyY252FnLFKcOkRWtx5
s1fg0uhxXdRNEE/NOsgCaCVDpYXw2xWg7XE+uo0G4+9cb/3BoJZa9Jy8fe5nnaFO
MXmdXRFYNqoRy6eWr6RTeIkDnAQQAQgABgUCUu+hcQAKCRBZj5Wq9smcX4KzHAC7
g22vj1BV2wD9Haeflvx+2QD3+U86AZoKOObNOXaJtOX26ylGCPN5mdfchlnFVWo6
wLSKfO00xXhj5pKwhF6jjSmGuLxiRxmQOktfRGi2rHi9E9w/nE/tcnA4tv8vUY6g
Rzj8N7AdSJRk180cC2ekMmgJe3btes4WapcFRCZ6ACuvtGDE0CemtgyXVESJfWi3
gu0MG6H488s4vfiToOLV9Ia18wZx2JclyVWVXEs1LkGbw/CfaGWW9RjTcDpdku1+
FGaBKrIS6V16MWhuETnK/P6UZhGFEdEHVmqeWU3lt9Tck2AK0bAr68cmbv+GXYrp
ihJak4UVnFyC6M6X3qg4cdAGZ59cF0wBC5tWBgzW4R7QVFEPY3Czr4Wz74BeDm6R
b7E3nO3SNKKRIewNAHEaC7TF0rBx/i/DQDgH8V4vBQ18gNTNrZjrtHj0AvMQ8/P2
3AzMOjVAZ9pbPz95t4q1c52aCvN0o6ZH78L7RBIx4nrix6eU8MWosDvD9EticgGM
94EGFqp84WlzHL169GjLkTCd8MfOEd7SnUWa8YtvzrFJMbM7UU1ItHhGQaKl0/83
BbP4PVLEtrdKjMZ/EcmcoD+AzfOttxzC6asy0O39ya/tIIFE81OLzh3ZXb1gWowu
OMqk1YAdVDvEszKCiSCMG27ZFM0BviBcbpCK5Hl9pJ4MdUeBDaNd3qjOjGv4SIQm
XXIUhnAcPU+EClbWzApTa9ScFjQQywBmR1SoLQXku2+df9XaM+8j5hCfo4ITCq6b
d9P3YGQ1kbiMzyeJPw6Nja4cow6dsd2sbqnVxKUIzURIYtAGVi5HNMkmbl31KTrC
oyhWNYyysMoTWo4vlWk98cvSZp4CzNeRJFn3gh3tENNAl8QcD87W84Xwr7gtFf3I
8XcJ1ZYRCkI5RCKjwrZxgZpu49YwMAlp5ermla/ZiPq1+ay/2KzFqakVBht/ebCm
wn/Jp/a8GnS4wlxRxJ1YibA/782ymycughLwc4ewRVlZ8xttQjnOIUCAKpOsmyYM
j4Z51e6b0nLQoiHeRXKxj0IUmnFwQ6Y9n5ces6h0ZXbb+KIL7F+NHZpuTZaAOohl
cKKt71Drtw8ZOEMv0xkD1od8ukTuVamHbrMDPAehsiFZvbDPOAJVdl60jPj+6h7G
34kaPsASqanMPYOYUJo0YfyBDmYA3Sw0h6X79baWPIkDnAQSAQgABgUCUvArfgAK
CRBZj5Wq9smcX0uuHADI3cFPUO3hsgbP8AxlOmfnE0XTXX9lsV0DtuwrFPshKznT
dg4tQqtEj6DL3JivLP20TONK+4QZD6j2QwvM2W9d5oeH/JN5nWXchjoJzIYchjbO
3nonm0lXxGaWic5iaM3nmnOVfDT5+iuZxLrUC7MiCIVRF26/VUwKcN5eHi4zGFKz
r4Zjp6kow5wa3EuI2gXSG49eqRpiU8MjfRUWB+JReVTxyBC9nOz2L9e4uB+FkBcv
NJ8jQjZb/ti0DXzBk6uPV74gdkZmflaGL6CQvDuImnsBhQm7VjOLeIywSg+SO8Rs
TkJ71QY1497IvwErF0eLQzOJgGVKYtGD2XhzPgzyI4uuzA1yIMA1b+CUTvQrroAE
S9Xdn0WqzRPL07gPJiqApZXAoKJYvQht0XAn/2a54m094S0/d/VBqre7IgbaXIhC
qGAvlbWEyhBX+36+gWBgOg3ySv56WCo5JDYjtabVDuXfB86P5nbSC++I6K5Xlygi
zl7tq8gjJp28IY0b7+PigUVBx1qLZS+SqJAbzDcmL7gMRQ0BtBWqbmQ52tBiOnBq
xnZVUW6W4w/w7xcxF2hMypLCPVUrXD3hT3sRgwg/CW7VgVn8Cu3D8P2O5gHX+kwq
HJOcZqLS3Q7tO8cJROGphhn1ctmDvn+LTnDV0Y4fi6bzvQAvQZ4M6p0ggTGDvwCE
XUtBlLl1KghgnTdF15FkCSuarhCAC4OEJ+Jor8Hh7sPUHgSqoCgPZLtwANXSUXAA
m1Xq9546oRcVK6rrJ+ip21EWIoHczrRJN0GoJQC/ACwtdzMBP/3UZ28k9CeIFGjA
7OshecHNGMovLq9VWY+UZO9UjnramgB4JvNJsjeGOKWVgt+aj0HRnA/jtdhAkjzG
NC7G0U9EDVaFXLr/naq6Fizwt5Xa7Y+sAwtv13ZW5ScqN6eu0xQJV+fROhhNzZ+p
PgLqHcgPoWtfIFx9CkvTW7b66MXpafg1Z95RxKZFG6hOgkLPp24/N0xZjclKevrD
m7Oor2nKPEmyQZbMoXYO4qz9PAkv8NmAQmLGAB3NhrYaWuXcQipBFVTPj/7z/TAL
v1RbGbOW/IDUU8p5O0k1uw1Bw6CtUk0NFjlqJ69wVLgamqmm/di7ie2x8DNN64LE
yFVTD6zfQb4KYS31eMwQX0nRj5xdyg6qE0qZfkD0Kt7IN2rwUAI86ocLtyUETYkD
vAQwAQgAJgUCUvArax8dAFNjcmV3ZWQgdXAgZW1haWwgdmVyaWZpY2F0aW9uAAoJ
EFmPlar2yZxfRsQb/0LsS+c5TTPI4c5OX7j6TfYvvlvPKn73gGgbcS01ntlCZdf9
dMR348NWuxYyd6LGJxL9tclv8Pp34ZzFJNg7oAuNP82//hGj6wCD7L8lw0YyTX/P
amC6ouHGoLDyOa808tt9ImJNZF6zd6ciGO33jXdHVqZArAyOboN4W3swhmC3INAf
uJrDJLgBjlNQrbrPy9rCKXWNu+0GahWqytMYGEhk2bf6IRl6NzW1GpGxC8Xk4EEn
S5nh+knIcxEuyr+Fmp79y0TQGR4Ve8CUqwIrh6YA5+nf2FqhcFtj6Ek1jdQoAsmT
ToJ+XGUwkzZ8KPdFEsMh4nf8faGZZjDQC51pPdwDgdUwcjgaEm434itMUAJq0JYp
PnjkmBHiMRoPgfwisu8C6suQxG39yHjQIiNVFQ0GW+MKFyfisfoL3CDrLSuQBsy1
6MGl3Vq6rK30UBF4uqsXsL+z+YRQv3tf++uOZSx8or7U4+BeaXrkGIKKb8Sm44//
ZMumID7Ke+73WAmUYVOMR8lh/c12cFQnTHuRjSmHMTMifQExApisXxplwIqhcbc0
R66G5QlR+GneYfv3UoTx/i1MFSaK86dIAcfRPmcnLpDD5hFc44ugk/J2u6bTaHsQ
iLdUx9r8MBScCz8ZURlRHI+mgO4queCsKf4aY2DG4NdUL0KasOFIOLV7N99SD5Hm
Gym2j7nb33gctxbnDuWEgRZyhSKu+0NyA+dNC+3vbbZ77Z/7N2SGamOf/O4799Md
/aNEqACJ7HKN4VYgGERmayypOIwMjP6vPGAmuq+5HD0i6WJnyPuzsRWLkvzbzeOl
C9qM5tzUM5lySogHgkIgFcrPPXiOVfkDqLTM/4TEW/ejhDPwALa2Sxl18ZUQtGiS
WF1z2BC1gtKjMb60emf9C2MirLCAh+UIL+1W6xUS5VcOuFVfzGYyP4KwVz+ch2q1
Dwa7gjh3t+W5dK+0nPlgMqhYJoj/BF6vL8E0LwaLhBt05e7EnB4CjUOvtgYctxf3
XoeGnzfttcWd+SOB0vDGTWhUp0F5LXSqkjMZ6VIafKBaLIUGdZs+TLqvkXYJPOCy
tQfh8V6jGl8+KXBe0rr1PGaHjJZGywXSwgM4B1Ii9T2fbmGvAcTnChK4OOkmpJJM
G1/dIxKNltsr+80briskj2WifFUxykLc8LgfkuTpnxOVg82P0h30FRj2aChjiQQc
BBIBAgAGBQJTLspSAAoJEP1Kkf6BjrHxBu0gAIkh7j5gTvxRNtGComCufJCiYZHw
Xu4NFu68I5V1GwQ7Njc9BZ9oMmCSCe/gSg+OWx8ci984AopbWdsJlWC5k5ux4i6A
SZXLrMvtGqvMRdrf2ptDxSGUGbAzArNSqU7kQLzCIUGi2ef9uP6hPUQjlrzpIziP
4w6MafsjJe/Mur5NbXv+Mpfk16dlv8tEKGyTQ8BUw6hVWsRIybPCySuyW6rcReqZ
RzrZPO+AGm1AIXb07V98TTDaGQDaDljHECqVScjLlQiLDKIRLnOGhrBhOMijbwJx
sCBtPUCET72vx4hlZfgYCUIJnyffYrMIzPN7aPXPigV5ZgXiM68AeGIjSHqSYt7h
+RLUOL+7cbcl/Ce17BWVdfrNFJGD/6/IqAmL9sptzuCov+inCHUoilnZLrqi8Qw6
1TAwZpTGmcpNnZEddO3SVINwhZF3KouqA5PPcvhZFTX/MCODlCWBsw1AWEX1E3fe
cyf+iAa0wve8WmhVQtKQY3puVzaIOk2ggo+n5olDnFai8aQdHmhQV4+9LeY9wvWd
IFVwrdiiRVzy68CKU+NUTVmpakX09GRxznpde5cRFsL7gUy1Nbce9A8EJFdVPaiM
AZvbmp455CHzNbOOdW+utpXnvJB14MfqmqWMCuX8E1tEqHbbsq2IOvW4Cu2JbMVC
e6JJHcq5D7IE92hWlvRKfQN1FwpMPCvASx9p+HDMKoUet+FN9DE9+6z+p8hREr2S
s76NXdwl6Dj6omPCcQwp0qU5Xbd7dwXa3O+9XEc3ceuEtu9UyMCWHV54LFfuImko
yY+V5CRYsJRkD4mergqxh76utRi+viQIJCL3ZT1qVjBThB6cMxyjQV7imF/2J/DS
yR8VDcksDolMQVS3Tq0JxZbuqbGVAbqqUuofmB2czN829hKOnqGWJfeotXmvzK74
QRlkdo9wrjcKLnmcveKLxIUxVpaZQuwvdwsozsFwM+BMYW43pEOHU9KKBcdmjjlT
jBJam1tBOXscKHGXAG+Tj2Ts2M7dGLTNjYTRSLm4lOSPT3+69ZH9cg5Vi5BWf7cD
edQLwBaTapot3MxTAVP7hKfYNMZme+sP4O4faoY2tYYJ8RBPFQgQm9mReb12C2Cw
8dzjB3uIQQIK3DJ1kttk3x1CbTOA5rBzM7ZlY9Xuf53+F3QXm3+cKc0zhzaNmpxX
+Fw2xq+nTH+v7P3xTG4Ji8qZFZ3a3MqYE70ogWK+54/6YYjv/uY6rQt4pIR2Xfs+
C9uK4/B6nS9ejs+C6axN4gf/JMIDdBonvj78yyHt/CTtR5ktpeOkU7Ei7ZE+V7nG
y76MKy2sd8oWs+f84EUBUcpr3tJKQfN3tFrdcHaSwW3lEqyt6np+D7wkFgu5AU0E
UOshYwEKAMqU40j7kGpy7r37vZ+Ytk+LPMRSwhEDZjTDZETv64nkSz39hOnk+dYA
2k9PsZLwkmdzo0kl6HoaQyQYbCrk6nsIOyNb2lBnS8Bb3ReOfKeINr1bRb6bn5f8
s87OH6eKz1lx/Xs/3W2mssIuL5M45vfnG3f3qln5L4/C5XR0uIhh1VhXd7os0JXQ
uOESqnndNHBOstM09BWe3QM9hOH8qfXHp3nM5LQwrhDJso3VYlTqdghBFfJYqSLG
Nuz76NyBX+O5yT3pV7RuW+foN+p+kbxjNuapEK58ujrzcu2UFRnRz7OesPWei6pf
YRv8LKUbxDxlQdeKYIn6DpF8f2Q6a1Uf/bTy7+cOh9Uv9DR28Bd9Tkxfj1ztdjLs
HatOWT7ie415oczRpTZjXj5JDL6xHrPJ27t4Yt2qPNXQJf96SCuNABEBAAGJAWUE
GAECAA8FAlDrIWMCGwwFCRLMAwAACgkQ81mf+CjGcpgZRwn+P4vT+7N/AJHVpMFn
oUFP0503Jq1WObPbRqGyQXcHJKaRPVHTorTxg4Yn/8s9qOPR4qpTxYqDExzulaLl
Ib7IwWfZ1vkeckMaJKZKMJdb8HOxK3Xvzou07SbR6Fq2P2SXomvFA1drM6REnbDD
Xc/r/3VEFpXpHTwGYVOtRyjY/rD52MIXg2WeQ4trt8zpC01kz7IH4TNo+NIEWNkb
nYFVZmRxcRU3RwSM+7Oe5A6bHwOfLuVCKSnj026attqZrFkSKXHYGL2BJui81ooG
6dwqL1duiISI1sBqsbE/jRC+WTYC5da+r5+IGdTV7WdTahXv/ucBYfuSP9Wv8nFw
F46mw0MaRbtit3eaQkKuEb6MyzVXao1v1SGvlks4DjSwjPY8d8OtH6BzxMebank6
8JYQB66RgnbZdNQi3peg87QRFgM=
=mp3G
-----END PGP PUBLIC KEY BLOCK-----

View File

@ -1,7 +1,7 @@
#
# spec file for package gmp
#
# Copyright (c) 2014 SUSE LINUX Products GmbH, Nuernberg, Germany.
# Copyright (c) 2015 SUSE LINUX GmbH, Nuernberg, Germany.
#
# All modifications and additions to the file contributed by third parties
# remain the property of their copyright owners, unless otherwise agreed
@ -17,34 +17,30 @@
Name: gmp
BuildRequires: gcc-c++
# bug437293
%ifarch ppc64
Obsoletes: gmp-64bit
%endif
Version: 6.0.0
Version: 6.0.0a
Release: 0
Summary: The GNU MP Library
License: GPL-3.0+ and LGPL-3.0+
Group: System/Libraries
Url: http://gmplib.org/
Source: ftp://ftp.gmplib.org/pub/%{name}/%{name}-%{version}a.tar.bz2
Source2: baselibs.conf
Url: https://gmplib.org/
Source0: https://gmplib.org/download/%{name}/%{name}-%{version}.tar.bz2
Source1: https://gmplib.org/download/%{name}/%{name}-%{version}.tar.bz2.sig
Source2: %{name}.keyring
Source3: baselibs.conf
Patch0: gmp-noexec.diff
Patch1: gmp-6.0.0-ppc64-gcd.diff
BuildRequires: gcc-c++
BuildRoot: %{_tmppath}/%{name}-%{version}-build
%description
A library for calculating huge numbers (integer and floating point).
%package -n libgmp10
Summary: Shared library for the GNU MP Library
Group: System/Libraries
%description -n libgmp10
Shared library for the GNU MP Library.
A library for calculating huge numbers (integer and floating point).
%package -n libgmpxx4
Summary: C++ bindings for the GNU MP Library
@ -52,51 +48,51 @@ Group: System/Libraries
Requires: libgmp10 >= %{version}
%description -n libgmpxx4
C++ bindings for the GNU MP Library.
A library for calculating huge numbers (integer and floating point).
This package contains C++ bindings
C++ bindings for the GNU MP Library.
%package devel
Summary: Include Files and Libraries for Development with the GNU MP Library
Group: Development/Languages/C and C++
Requires: libgmp10 = %{version}
Requires: libgmpxx4 = %{version}
# bug437293
%ifarch ppc64
Obsoletes: gmp-devel-64bit
%endif
PreReq: %install_info_prereq
Requires(pre): %{install_info_prereq}
%description devel
These libraries are needed to develop programs which calculate with
huge numbers (integer and floating point).
%prep
%setup -q
# version is 6.0.0a but source contains directory 6.0.0
%setup -q -n %{name}-6.0.0
%patch0
%patch1 -p1
%build
export CFLAGS="$RPM_OPT_FLAGS -fexceptions"
# Do not use %%configure here, that will break build on SLE11 because
# there we pass a mismatched --target. See bnc#870358.
export CFLAGS="%{optflags} -fexceptions"
./configure \
--host=%{_host} --build=%{_build} \
--host=%{_host} \
--build=%{_build} \
--prefix=%{_prefix} \
--libdir=%{_libdir} \
--enable-cxx \
--enable-fat
make %{?_smp_mflags}
%check
# do not disable "make check", FIX THE BUGS!
make check
make %{?_smp_mflags} check
%install
make install DESTDIR=${RPM_BUILD_ROOT}
rm $RPM_BUILD_ROOT%{_libdir}/libgmp.la
rm $RPM_BUILD_ROOT%{_libdir}/libgmpxx.la
rm $RPM_BUILD_ROOT%{_libdir}/libgmpxx.a
make DESTDIR=%{buildroot} install %{?_smp_mflags}
rm %{buildroot}%{_libdir}/libgmp.la
rm %{buildroot}%{_libdir}/libgmpxx.la
rm %{buildroot}%{_libdir}/libgmpxx.a
%post -n libgmp10 -p /sbin/ldconfig
@ -128,7 +124,7 @@ rm $RPM_BUILD_ROOT%{_libdir}/libgmpxx.a
%{_libdir}/libgmp.a
%{_libdir}/libgmp.so
%{_libdir}/libgmpxx.so
/usr/include/gmp.h
/usr/include/gmpxx.h
%{_includedir}/gmp.h
%{_includedir}/gmpxx.h
%changelog