From 11b3e1f51ad7f5746a07c876e63c2025bbec142a7fc8b2d6e48dc199b1b01350 Mon Sep 17 00:00:00 2001 From: Dirk Stoecker Date: Fri, 4 Sep 2020 18:52:37 +0000 Subject: [PATCH] Accepting request 832184 from home:badshah400:branches:Application:Geo - Update to version 5.1.1. - Drop insighttoolkit-drop-netlib-triangle-files.patch: incorporated upstream. - Disable builds for aarch64: Known Eigen+CastXML issue [https://gitlab.com/libeigen/eigen/-/issues/1979]. OBS-URL: https://build.opensuse.org/request/show/832184 OBS-URL: https://build.opensuse.org/package/show/Application:Geo/insighttoolkit?expand=0&rev=31 --- InsightToolkit-5.1.0.tar.gz | 3 - insighttoolkit-5.1.1.tar.gz | 3 + ...httoolkit-drop-netlib-triangle-files.patch | 20032 ---------------- insighttoolkit.changes | 62 + insighttoolkit.spec | 15 +- 5 files changed, 71 insertions(+), 20044 deletions(-) delete mode 100644 InsightToolkit-5.1.0.tar.gz create mode 100644 insighttoolkit-5.1.1.tar.gz delete mode 100644 insighttoolkit-drop-netlib-triangle-files.patch diff --git a/InsightToolkit-5.1.0.tar.gz b/InsightToolkit-5.1.0.tar.gz deleted file mode 100644 index bb5246b..0000000 --- a/InsightToolkit-5.1.0.tar.gz +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:121020a1611508cec8123eb5226215598cec07be627d843a2e6b6da891e61d13 -size 20694338 diff --git a/insighttoolkit-5.1.1.tar.gz b/insighttoolkit-5.1.1.tar.gz new file mode 100644 index 0000000..1a76d3a --- /dev/null +++ b/insighttoolkit-5.1.1.tar.gz @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:185d4f3410585a8b833c708df7676820cf4e52044ff310aa00955f4d0e08c865 +size 20799343 diff --git a/insighttoolkit-drop-netlib-triangle-files.patch b/insighttoolkit-drop-netlib-triangle-files.patch deleted file mode 100644 index 69c2d41..0000000 --- a/insighttoolkit-drop-netlib-triangle-files.patch +++ /dev/null @@ -1,20032 +0,0 @@ -commit 7f95961fa74175981ff41eddfd8b1b1af83f315e -Author: Matt McCormick -Date: Mon Jul 13 13:34:04 2020 -0400 - - BUG: Remove netnlib triangle classes - - These are incompatible with ITK's license per Issue #1913. - -diff --git a/Modules/ThirdParty/VNL/CMakeLists.txt b/Modules/ThirdParty/VNL/CMakeLists.txt -index 0fffeb4022..c655dcdf80 100644 ---- a/Modules/ThirdParty/VNL/CMakeLists.txt -+++ b/Modules/ThirdParty/VNL/CMakeLists.txt -@@ -58,7 +58,7 @@ else() - ${ITKVNL_BINARY_DIR}/src/vxl/vcl - ${ITKVNL_BINARY_DIR}/src/vxl/core - ) -- set(ITKVNL_LIBRARIES itkvnl_algo itkvnl itkv3p_netlib itknetlib itkvcl) -+ set(ITKVNL_LIBRARIES itkvnl_algo itkvnl itkv3p_netlib itkvcl) - - if(ITK_TEMPLATE_VISIBILITY_DEFAULT) - add_definitions( "-DVNL_TEMPLATE_EXPORT=__attribute__((visibility(\"default\")))") -diff --git a/Modules/ThirdParty/VNL/src/CMakeLists.txt b/Modules/ThirdParty/VNL/src/CMakeLists.txt -index 75633c5ab5..c6200aa1a3 100644 ---- a/Modules/ThirdParty/VNL/src/CMakeLists.txt -+++ b/Modules/ThirdParty/VNL/src/CMakeLists.txt -@@ -18,7 +18,7 @@ add_subdirectory(vxl) - # Retrive the variable type to CACHE. - set(BUILD_EXAMPLES ${BUILD_EXAMPLES} CACHE BOOL "Build the examples from the ITK Software Guide." FORCE) - --foreach(lib itkvcl itkv3p_netlib itktestlib itkvnl itkvnl_algo itknetlib) -+foreach(lib itkvcl itkv3p_netlib itktestlib itkvnl itkvnl_algo) - itk_module_target(${lib} NO_INSTALL) - endforeach() - -diff --git a/Modules/ThirdParty/VNL/src/vxl/config/cmake/Modules/FindNetlib.cmake b/Modules/ThirdParty/VNL/src/vxl/config/cmake/Modules/FindNetlib.cmake -index c953a8bbc3..0fba6dddf2 100644 ---- a/Modules/ThirdParty/VNL/src/vxl/config/cmake/Modules/FindNetlib.cmake -+++ b/Modules/ThirdParty/VNL/src/vxl/config/cmake/Modules/FindNetlib.cmake -@@ -9,4 +9,4 @@ - set( NETLIB_FOUND "YES" ) - set( NETLIB_INCLUDE_DIR ${VXL_ROOT_SOURCE_DIR}/v3p/netlib ) - set( NETLIB_INSTALL_INCLUDE_DIR ${CMAKE_INSTALL_PREFIX}/include/vxl/v3p/netlib ) --set( NETLIB_LIBRARIES ${VXL_LIB_PREFIX}netlib ${VXL_LIB_PREFIX}v3p_netlib ) -+set( NETLIB_LIBRARIES ${VXL_LIB_PREFIX}v3p_netlib ) -diff --git a/Modules/ThirdParty/VNL/src/vxl/v3p/netlib/CMakeLists.txt b/Modules/ThirdParty/VNL/src/vxl/v3p/netlib/CMakeLists.txt -index 726a25a834..310a47597c 100644 ---- a/Modules/ThirdParty/VNL/src/vxl/v3p/netlib/CMakeLists.txt -+++ b/Modules/ThirdParty/VNL/src/vxl/v3p/netlib/CMakeLists.txt -@@ -2,6 +2,8 @@ - - project( netlib C ) - -+# Incompatible with ITK's License -+if(0) - set(netlib_sources - # The "Triangle" program of Jonathan Richard Shewchuk - triangle.c triangle.h -@@ -13,6 +15,8 @@ vxl_add_library(LIBRARY_NAME ${VXL_LIB_PREFIX}netlib - if(UNIX) - target_link_libraries( ${VXL_LIB_PREFIX}netlib m ) - endif() -+# Incompatible with ITK's License -+endif() - - # Allow sources in subdirectories to see the include files. - include_directories(${netlib_SOURCE_DIR}) -diff --git a/Modules/ThirdParty/VNL/src/vxl/v3p/netlib/examples/showme.c b/Modules/ThirdParty/VNL/src/vxl/v3p/netlib/examples/showme.c -deleted file mode 100644 -index 815d63a0fd..0000000000 ---- a/Modules/ThirdParty/VNL/src/vxl/v3p/netlib/examples/showme.c -+++ /dev/null -@@ -1,3392 +0,0 @@ --/*****************************************************************************/ --/* */ --/* ,d88^^o 888 o o */ --/* 8888 888o^88, o88^^o Y88b o / d8b d8b o88^^8o */ --/* "Y88b 888 888 d888 b Y88b d8b / d888bdY88b d888 88b */ --/* "Y88b, 888 888 8888 8 Y888/Y88b/ / Y88Y Y888b 8888oo888 */ --/* o 8888 888 888 q888 p Y8/ Y8/ / YY Y888b q888 */ --/* "oo88P" 888 888 "88oo" Y Y / Y888b "88oooo" */ --/* */ --/* A Display Program for Meshes and More. */ --/* (showme.c) */ --/* */ --/* Version 1.3 */ --/* July 20, 1996 */ --/* */ --/* Copyright 1996 */ --/* Jonathan Richard Shewchuk */ --/* School of Computer Science */ --/* Carnegie Mellon University */ --/* 5000 Forbes Avenue */ --/* Pittsburgh, Pennsylvania 15213-3891 */ --/* jrs@cs.cmu.edu */ --/* */ --/* This program may be freely redistributed under the condition that the */ --/* copyright notices (including this entire header and the copyright */ --/* notice printed when the `-h' switch is selected) are not removed, and */ --/* no compensation is received. Private, research, and institutional */ --/* use is free. You may distribute modified versions of this code UNDER */ --/* THE CONDITION THAT THIS CODE AND ANY MODIFICATIONS MADE TO IT IN THE */ --/* SAME FILE REMAIN UNDER COPYRIGHT OF THE ORIGINAL AUTHOR, BOTH SOURCE */ --/* AND OBJECT CODE ARE MADE FREELY AVAILABLE WITHOUT CHARGE, AND CLEAR */ --/* NOTICE IS GIVEN OF THE MODIFICATIONS. Distribution of this code as */ --/* part of a commercial system is permissible ONLY BY DIRECT ARRANGEMENT */ --/* WITH THE AUTHOR. (If you are not directly supplying this code to a */ --/* customer, and you are instead telling them how they can obtain it for */ --/* free, then you are not required to make any arrangement with me.) */ --/* */ --/* Hypertext instructions for Triangle are available on the Web at */ --/* */ --/* http://www.cs.cmu.edu/~quake/showme.html */ --/* */ --/* Show Me was created as part of the Archimedes project in the School of */ --/* Computer Science at Carnegie Mellon University. Archimedes is a */ --/* system for compiling parallel finite element solvers. For further */ --/* information, see Anja Feldmann, Omar Ghattas, John R. Gilbert, Gary L. */ --/* Miller, David R. O'Hallaron, Eric J. Schwabe, Jonathan R. Shewchuk, */ --/* and Shang-Hua Teng. "Automated Parallel Solution of Unstructured PDE */ --/* Problems." To appear in Communications of the ACM, we hope. */ --/* */ --/* If you make any improvements to this code, please please please let me */ --/* know, so that I may obtain the improvements. Even if you don't change */ --/* the code, I'd still love to hear what it's being used for. */ --/* */ --/* Disclaimer: Neither I nor Carnegie Mellon warrant this code in any way */ --/* whatsoever. Use at your own risk. */ --/* */ --/*****************************************************************************/ -- --/* For single precision (which will save some memory and reduce paging), */ --/* write "#define SINGLE" below. */ --/* */ --/* For double precision (which will allow you to display triangulations of */ --/* a finer resolution), leave SINGLE undefined. */ -- --/* #define SINGLE */ -- --#ifdef SINGLE --#define REAL float --#else --#define REAL double --#endif -- --/* Maximum number of characters in a file name (including the null). */ -- --#define FILENAMESIZE 1024 -- --/* Maximum number of characters in a line read from a file (including the */ --/* null). */ -- --#define INPUTLINESIZE 512 -- --#define STARTWIDTH 414 --#define STARTHEIGHT 414 --#define MINWIDTH 50 --#define MINHEIGHT 50 --#define BUTTONHEIGHT 21 --#define BUTTONROWS 3 --#define PANELHEIGHT (BUTTONHEIGHT * BUTTONROWS) --#define MAXCOLORS 64 -- --#define IMAGE_TYPES 7 --#define NOTHING -1 --#define NODE 0 --#define POLY 1 --#define ELE 2 --#define EDGE 3 --#define PART 4 --#define ADJ 5 --#define VORO 6 -- --#define STARTEXPLOSION 0.5 -- --#include --#include --#include --#include --#include --#include -- --/* The following obscenity seems to be necessary to ensure that this program */ --/* will port to Dec Alphas running OSF/1, because their stdio.h file commits */ --/* the unpardonable sin of including stdlib.h. Hence, malloc(), free(), and */ --/* exit() may or may not already be defined at this point. I declare these */ --/* functions explicitly because some non-ANSI C compilers lack stdlib.h. */ -- --#if !defined(_STDLIB_H_) && !defined(_STDLIB_H) && defined(__need_malloc_and_calloc) --extern char *malloc(); --extern void free(); --extern void exit(); --extern double strtod(); --extern long strtol(); --#endif -- --/* A necessary forward declaration. */ -- --int load_image(); -- --Display *display; --int screen; --Window rootwindow; --Window mainwindow; --Window quitwin; --Window leftwin; --Window rightwin; --Window upwin; --Window downwin; --Window resetwin; --Window pswin; --Window epswin; --Window expwin; --Window exppluswin; --Window expminuswin; --Window widthpluswin; --Window widthminuswin; --Window versionpluswin; --Window versionminuswin; --Window fillwin; --Window nodewin[2]; --Window polywin[2]; --Window elewin[2]; --Window edgewin[2]; --Window partwin[2]; --Window adjwin[2]; --Window voronoiwin[2]; -- --int windowdepth; --XEvent event; --Colormap rootmap; --XFontStruct *font; --int width, height; --int black, white; --int showme_foreground; --GC fontgc; --GC blackfontgc; --GC linegc; --GC trianglegc; --int colors[MAXCOLORS]; --XColor rgb[MAXCOLORS]; --int color; -- --int start_image, current_image; --int start_inc, current_inc; --int loweriteration; --int line_width; --int loaded[2][IMAGE_TYPES]; --REAL xlo[2][IMAGE_TYPES], ylo[2][IMAGE_TYPES]; --REAL xhi[2][IMAGE_TYPES], yhi[2][IMAGE_TYPES]; --REAL xscale, yscale; --REAL xoffset, yoffset; --int zoom; -- --int nodes[2], node_dim[2]; --REAL *nodeptr[2]; --int polynodes[2], poly_dim[2], polyedges[2], polyholes[2]; --REAL *polynodeptr[2], *polyholeptr[2]; --int *polyedgeptr[2]; --int elems[2], ele_corners[2]; --int *eleptr[2]; --int edges[2]; --int *edgeptr[2]; --REAL *normptr[2]; --int subdomains[2]; --int *partpart[2]; --REAL *partcenter[2], *partshift[2]; --int adjsubdomains[2]; --int *adjptr[2]; --int vnodes[2], vnode_dim[2]; --REAL *vnodeptr[2]; --int vedges[2]; --int *vedgeptr[2]; --REAL *vnormptr[2]; --int firstnumber[2]; -- --int quiet, fillelem, bw_ps, explode; --REAL explosion; -- --char filename[FILENAMESIZE]; --char nodefilename[2][FILENAMESIZE]; --char polyfilename[2][FILENAMESIZE]; --char elefilename[2][FILENAMESIZE]; --char edgefilename[2][FILENAMESIZE]; --char partfilename[2][FILENAMESIZE]; --char adjfilename[2][FILENAMESIZE]; --char vnodefilename[2][FILENAMESIZE]; --char vedgefilename[2][FILENAMESIZE]; -- --const --char *colorname[] = {"aquamarine", "red", "green yellow", "magenta", -- "yellow", "green", "orange", "blue", -- "white", "sandy brown", "cyan", "moccasin", -- "cadet blue", "coral", "cornflower blue", "sky blue", -- "firebrick", "forest green", "gold", "goldenrod", -- "gray", "hot pink", "chartreuse", "pale violet red", -- "indian red", "khaki", "lavender", "light blue", -- "light gray", "light steel blue", "lime green", "azure", -- "maroon", "medium aquamarine", "dodger blue", "honeydew", -- "medium orchid", "medium sea green", "moccasin", -- "medium slate blue", "medium spring green", -- "medium turquoise", "medium violet red", -- "orange red", "chocolate", "light goldenrod", -- "orchid", "pale green", "pink", "plum", -- "purple", "salmon", "sea green", -- "sienna", "slate blue", "spring green", -- "steel blue", "tan", "thistle", "turquoise", -- "violet", "violet red", "wheat", -- "yellow green"}; -- --void syntax() --{ -- printf("showme [-bfw_Qh] input_file\n"); -- printf(" -b Black and white PostScript (default is color).\n"); -- printf(" -f Fill triangles of partitioned mesh with color.\n"); -- printf(" -w Set line width to some specified number.\n"); -- printf(" -Q Quiet: No terminal output except errors.\n"); -- printf(" -h Help: Detailed instructions for Show Me.\n"); -- exit(0); --} -- --void info() --{ -- printf("Show Me\n"); -- printf("A Display Program for Meshes and More.\n"); -- printf("Version 1.3\n\n"); -- printf( --"Copyright 1996 Jonathan Richard Shewchuk (bugs/comments to jrs@cs.cmu.edu)\n" --); -- printf("School of Computer Science / Carnegie Mellon University\n"); -- printf("5000 Forbes Avenue / Pittsburgh, Pennsylvania 15213-3891\n"); -- printf( --"Created as part of the Archimedes project (tools for parallel FEM).\n"); -- printf( --"Supported in part by NSF Grant CMS-9318163 and an NSERC 1967 Scholarship.\n"); -- printf("There is no warranty whatsoever. Use at your own risk.\n"); --#ifdef SINGLE -- printf("This executable is compiled for single precision arithmetic.\n\n\n"); --#else -- printf("This executable is compiled for double precision arithmetic.\n\n\n"); --#endif -- printf( --"Show Me graphically displays the contents of geometric files, especially\n"); -- printf( --"those generated by Triangle, my two-dimensional quality mesh generator and\n" --); -- printf( --"Delaunay triangulator. Show Me can also write images in PostScript form.\n"); -- printf( --"Show Me is also useful for checking the consistency of the files you create\n" --); -- printf( --"as input to Triangle; Show Me does these checks more thoroughly than\n"); -- printf("Triangle does. The command syntax is:\n\n"); -- printf("showme [-bfw_Qh] input_file\n\n"); -- printf( --"The underscore indicates that a number should follow the -w switch.\n"); -- printf( --"input_file may be one of several types of file. It must have extension\n"); -- printf( --".node, .poly, .ele, .edge, .part, or .adj. If no extension is provided,\n"); -- printf( --"Show Me will assume the extension .ele. A .node file represents a set of\n"); -- printf( --"points; a .poly file represents a Planar Straight Line Graph; an .ele file\n" --); -- printf( --"(coupled with a .node file) represents the elements of a mesh or the\n"); -- printf( --"triangles of a triangulation; an .edge file (coupled with a .node file)\n"); -- printf( --"represents a set of edges; a .part file specifies a partition of a mesh;\n"); -- printf( --"and a .adj file represents the adjacency graph defined by a partition.\n"); -- printf("\n"); -- printf("Command Line Switches:\n"); -- printf("\n"); -- printf( --" -b Makes all PostScript output black and white. If this switch is not\n" --); -- printf( --" selected, color PostScript is used for partitioned meshes and\n"); -- printf(" adjacency graphs (.part and .adj files).\n"); -- printf( --" -f On color displays and in color PostScript, displays partitioned\n"); -- printf( --" meshes by filling triangles with color, rather than by coloring the\n" --); -- printf( --" edges. This switch will result in a clearer picture if all\n"); -- printf( --" triangles are reasonably large, and a less clear picture if small\n"); -- printf( --" triangles are present. (There is also a button to toggle this\n"); -- printf(" behavior.)\n"); -- printf( --" -w Followed by an integer, specifies the line width used in all\n"); -- printf( --" images. (There are also buttons to change the line width.)\n"); -- printf( --" -Q Quiet: Suppresses all explanation of what Show Me is doing, unless\n" --); -- printf(" an error occurs.\n"); -- printf(" -h Help: Displays these instructions.\n"); -- printf("\n"); -- printf("Controls:\n"); -- printf("\n"); -- printf( --" To zoom in on an image, point at the location where you want a closer\n"); -- printf( --" look, and click the left mouse button. To zoom out, click the right\n"); -- printf( --" mouse button. In either case, the point you click on will be centered in\n" --); -- printf( --" the window. If you want to know the coordinates of a point, click the\n"); -- printf( --" middle mouse button; the coordinates will be printed on the terminal you\n" --); -- printf(" invoked Show Me from.\n\n"); -- printf( --" If you resize the window, the image will grow or shrink to match.\n"); -- printf("\n"); -- printf( --" There is a panel of control buttons at the bottom of the Show Me window:\n" --); -- printf("\n"); -- printf(" Quit: Shuts down Show Me.\n"); -- printf(" <, >, ^, v: Moves the image in the indicated direction.\n"); -- printf( --" Reset: Unzooms and centers the image in the window. When you switch from\n" --); -- printf( --" one image to another, the viewing region does not change, so you may\n"); -- printf( --" need to reset the new image to make it fully visible. This often is\n"); -- printf( --" the case when switching between Delaunay triangulations and their\n"); -- printf( --" corresponding Voronoi diagrams, as Voronoi vertices can be far from the\n" --); -- printf(" initial point set.\n"); -- printf( --" Width+, -: Increases or decreases the width of all lines and points.\n"); -- printf( --" Exp, +, -: These buttons appear only when you are viewing a partitioned\n" --); -- printf( --" mesh (.part file). `Exp' toggles between an exploded and non-exploded\n" --); -- printf( --" image of the mesh. The non-exploded image will not show the partition\n" --); -- printf( --" on a black and white monitor. `+' and `-' allow you to adjust the\n"); -- printf( --" spacing between pieces of the mesh to better distinguish them.\n"); -- printf( --" Fill: This button appears only when you are viewing a partitioned mesh\n"); -- printf( --" (.part file). It toggles between color-filled triangles and colored\n"); -- printf( --" edges (as the -f switch does). Filled triangles look better when all\n"); -- printf( --" triangles are reasonably large; colored edges look better when there\n"); -- printf(" are very small triangles present.\n"); -- printf( --" PS: Creates a PostScript file containing the image you are viewing. If\n" --); -- printf( --" the -b switch is selected, all PostScript output will be black and\n"); -- printf( --" white; otherwise, .part.ps and .adj.ps files will be color, independent\n" --); -- printf( --" of whether you are using a color monitor. Normally the output will\n"); -- printf( --" preserve the properties of the image you see on the screen, including\n"); -- printf( --" zoom and line width; however, if black and white output is selected (-b\n" --); -- printf( --" switch), partitioned meshes will always be drawn exploded. The output\n" --); -- printf( --" file name depends on the image being viewed. If you want several\n"); -- printf( --" different snapshots (zooming in on different parts) of the same object,\n" --); -- printf( --" you'll have to rename each file after Show Me creates it so that it\n"); -- printf(" isn't overwritten by the next snapshot.\n"); -- printf( --" EPS: Creates an encapsulated PostScript file, suitable for inclusion in\n" --); -- printf( --" documents. Otherwise, this button is just like the PS button. (The\n"); -- printf( --" main difference is that .eps files lack a `showpage' command at the\n"); -- printf(" end.)\n\n"); -- printf( --" There are two nearly-identical rows of buttons that load different images\n" --); -- printf(" from disk. Each row contains the following buttons:\n\n"); -- printf(" node: Loads a .node file.\n"); -- printf( --" poly: Loads a .poly file (and possibly an associated .node file).\n"); -- printf(" ele: Loads an .ele file (and associated .node file).\n"); -- printf(" edge: Loads an .edge file (and associated .node file).\n"); -- printf( --" part: Loads a .part file (and associated .node and .ele files).\n"); -- printf( --" adj: Loads an .adj file (and associated .node, .ele, and .part files).\n"); -- printf(" voro: Loads a .v.node and .v.edge file for a Voronoi diagram.\n"); -- printf("\n"); -- printf( --" Each row represents a different iteration number of the geometry files.\n"); -- printf( --" For a full explanation of iteration numbers, read the instructions for\n"); -- printf( --" Triangle. Briefly, iteration numbers are used to allow a user to easily\n" --); -- printf( --" represent a sequence of related triangulations. Iteration numbers are\n"); -- printf( --" used in the names of geometry files; for instance, mymesh.3.ele is a\n"); -- printf( --" triangle file with iteration number three, and mymesh.ele has an implicit\n" --); -- printf(" iteration number of zero.\n\n"); -- printf( --" The control buttons at the right end of each row display the two\n"); -- printf( --" iterations currently under view. These buttons can be clicked to\n"); -- printf( --" increase or decrease the iteration numbers, and thus conveniently view\n"); -- printf(" a sequence of meshes.\n\n"); -- printf( --" Show Me keeps each file in memory after loading it, but you can force\n"); -- printf( --" Show Me to reread a set of files (for one iteration number) by reclicking\n" --); -- printf( --" the button that corresponds to the current image. This is convenient if\n" --); -- printf(" you have changed a geometry file.\n\n"); -- printf("File Formats:\n\n"); -- printf( --" All files may contain comments prefixed by the character '#'. Points,\n"); -- printf( --" segments, holes, triangles, edges, and subdomains must be numbered\n"); -- printf( --" consecutively, starting from either 1 or 0. Whichever you choose, all\n"); -- printf( --" input files must be consistent (for any single iteration number); if the\n" --); -- printf( --" nodes are numbered from 1, so must be all other objects. Show Me\n"); -- printf( --" automatically detects your choice while reading a .node (or .poly) file.\n" --); -- printf(" Examples of these file formats are given below.\n\n"); -- printf(" .node files:\n"); -- printf( --" First line: <# of points> <# of attributes>\n"); -- printf( --" <# of boundary markers (0 or 1)>\n" --); -- printf( --" Remaining lines: [attributes] [boundary marker]\n"); -- printf("\n"); -- printf( --" The attributes, which are typically floating-point values of physical\n"); -- printf( --" quantities (such as mass or conductivity) associated with the nodes of\n" --); -- printf( --" a finite element mesh, are ignored by Show Me. Show Me also ignores\n"); -- printf( --" boundary markers. See the instructions for Triangle to find out what\n"); -- printf(" attributes and boundary markers are.\n\n"); -- printf(" .poly files:\n"); -- printf( --" First line: <# of points> <# of attributes>\n"); -- printf( --" <# of boundary markers (0 or 1)>\n" --); -- printf( --" Following lines: [attributes] [boundary marker]\n"); -- printf(" One line: <# of segments> <# of boundary markers (0 or 1)>\n"); -- printf( --" Following lines: [boundary marker]\n"); -- printf(" One line: <# of holes>\n"); -- printf(" Following lines: \n"); -- printf(" [Optional additional lines that are ignored]\n\n"); -- printf( --" A .poly file represents a Planar Straight Line Graph (PSLG), an idea\n"); -- printf( --" familiar to computational geometers. By definition, a PSLG is just a\n"); -- printf( --" list of points and edges. A .poly file also contains some additional\n"); -- printf(" information.\n\n"); -- printf( --" The first section lists all the points, and is identical to the format\n" --); -- printf( --" of .node files. <# of points> may be set to zero to indicate that the\n" --); -- printf( --" points are listed in a separate .node file; .poly files produced by\n"); -- printf( --" Triangle always have this format. When Show Me reads such a file, it\n"); -- printf(" also reads the corresponding .node file.\n\n"); -- printf( --" The second section lists the segments. Segments are edges whose\n"); -- printf( --" presence in a triangulation produced from the PSLG is enforced. Each\n"); -- printf( --" segment is specified by listing the indices of its two endpoints. This\n" --); -- printf( --" means that its endpoints must be included in the point list. Each\n"); -- printf( --" segment, like each point, may have a boundary marker, which is ignored\n" --); -- printf(" by Show Me.\n\n"); -- printf( --" The third section lists holes and concavities that are desired in any\n"); -- printf( --" triangulation generated from the PSLG. Holes are specified by\n"); -- printf(" identifying a point inside each hole.\n\n"); -- printf(" .ele files:\n"); -- printf( --" First line: <# of triangles> <# of attributes>\n"); -- printf( --" Remaining lines: ... [attributes]\n" --); -- printf("\n"); -- printf( --" Points are indices into the corresponding .node file. Show Me ignores\n" --); -- printf( --" all but the first three points of each triangle; these should be the\n"); -- printf( --" corners listed in counterclockwise order around the triangle. The\n"); -- printf(" attributes are ignored by Show Me.\n\n"); -- printf(" .edge files:\n"); -- printf(" First line: <# of edges> <# of boundary markers (0 or 1)>\n"); -- printf( --" Following lines: [boundary marker]\n"); -- printf("\n"); -- printf( --" Endpoints are indices into the corresponding .node file. The boundary\n" --); -- printf(" markers are ignored by Show Me.\n\n"); -- printf( --" In Voronoi diagrams, one also finds a special kind of edge that is an\n"); -- printf( --" infinite ray with only one endpoint. For these edges, a different\n"); -- printf(" format is used:\n\n"); -- printf(" -1 \n\n"); -- printf( --" The `direction' is a floating-point vector that indicates the direction\n" --); -- printf(" of the infinite ray.\n\n"); -- printf(" .part files:\n"); -- printf(" First line: <# of triangles> <# of subdomains>\n"); -- printf(" Remaining lines: \n\n"); -- printf( --" The set of triangles is partitioned by a .part file; each triangle is\n"); -- printf(" mapped to a subdomain.\n\n"); -- printf(" .adj files:\n"); -- printf(" First line: <# of subdomains>\n"); -- printf(" Remaining lines: \n\n"); -- printf( --" An .adj file represents adjacencies between subdomains (presumably\n"); -- printf(" computed by a partitioner). The first line is followed by\n"); -- printf( --" (subdomains X subdomains) lines, each containing one entry of the\n"); -- printf( --" adjacency matrix. A nonzero entry indicates that two subdomains are\n"); -- printf(" adjacent (share a point).\n\n"); -- printf("Example:\n\n"); -- printf( --" Here is a sample file `box.poly' describing a square with a square hole:\n" --); -- printf("\n"); -- printf( --" # A box with eight points in 2D, no attributes, no boundary marker.\n"); -- printf(" 8 2 0 0\n"); -- printf(" # Outer box has these vertices:\n"); -- printf(" 1 0 0\n"); -- printf(" 2 0 3\n"); -- printf(" 3 3 0\n"); -- printf(" 4 3 3\n"); -- printf(" # Inner square has these vertices:\n"); -- printf(" 5 1 1\n"); -- printf(" 6 1 2\n"); -- printf(" 7 2 1\n"); -- printf(" 8 2 2\n"); -- printf(" # Five segments without boundary markers.\n"); -- printf(" 5 0\n"); -- printf(" 1 1 2 # Left side of outer box.\n"); -- printf(" 2 5 7 # Segments 2 through 5 enclose the hole.\n"); -- printf(" 3 7 8\n"); -- printf(" 4 8 6\n"); -- printf(" 5 6 5\n"); -- printf(" # One hole in the middle of the inner square.\n"); -- printf(" 1\n"); -- printf(" 1 1.5 1.5\n\n"); -- printf( --" After this PSLG is triangulated by Triangle, the resulting triangulation\n" --); -- printf( --" consists of a .node and .ele file. Here is the former, `box.1.node',\n"); -- printf(" which duplicates the points of the PSLG:\n\n"); -- printf(" 8 2 0 0\n"); -- printf(" 1 0 0\n"); -- printf(" 2 0 3\n"); -- printf(" 3 3 0\n"); -- printf(" 4 3 3\n"); -- printf(" 5 1 1\n"); -- printf(" 6 1 2\n"); -- printf(" 7 2 1\n"); -- printf(" 8 2 2\n"); -- printf(" # Generated by triangle -pcBev box\n"); -- printf("\n"); -- printf(" Here is the triangulation file, `box.1.ele'.\n"); -- printf("\n"); -- printf(" 8 3 0\n"); -- printf(" 1 1 5 6\n"); -- printf(" 2 5 1 3\n"); -- printf(" 3 2 6 8\n"); -- printf(" 4 6 2 1\n"); -- printf(" 5 7 3 4\n"); -- printf(" 6 3 7 5\n"); -- printf(" 7 8 4 2\n"); -- printf(" 8 4 8 7\n"); -- printf(" # Generated by triangle -pcBev box\n\n"); -- printf(" Here is the edge file for the triangulation, `box.1.edge'.\n\n"); -- printf(" 16 0\n"); -- printf(" 1 1 5\n"); -- printf(" 2 5 6\n"); -- printf(" 3 6 1\n"); -- printf(" 4 1 3\n"); -- printf(" 5 3 5\n"); -- printf(" 6 2 6\n"); -- printf(" 7 6 8\n"); -- printf(" 8 8 2\n"); -- printf(" 9 2 1\n"); -- printf(" 10 7 3\n"); -- printf(" 11 3 4\n"); -- printf(" 12 4 7\n"); -- printf(" 13 7 5\n"); -- printf(" 14 8 4\n"); -- printf(" 15 4 2\n"); -- printf(" 16 8 7\n"); -- printf(" # Generated by triangle -pcBev box\n"); -- printf("\n"); -- printf( --" Here's a file `box.1.part' that partitions the mesh into four subdomains.\n" --); -- printf("\n"); -- printf(" 8 4\n"); -- printf(" 1 3\n"); -- printf(" 2 3\n"); -- printf(" 3 4\n"); -- printf(" 4 4\n"); -- printf(" 5 1\n"); -- printf(" 6 1\n"); -- printf(" 7 2\n"); -- printf(" 8 2\n"); -- printf(" # Generated by slice -s4 box.1\n\n"); -- printf( --" Here's a file `box.1.adj' that represents the resulting adjacencies.\n"); -- printf("\n"); -- printf(" 4\n"); -- printf(" 9\n"); -- printf(" 2\n"); -- printf(" 2\n"); -- printf(" 0\n"); -- printf(" 2\n"); -- printf(" 9\n"); -- printf(" 0\n"); -- printf(" 2\n"); -- printf(" 2\n"); -- printf(" 0\n"); -- printf(" 9\n"); -- printf(" 2\n"); -- printf(" 0\n"); -- printf(" 2\n"); -- printf(" 2\n"); -- printf(" 9\n"); -- printf("\n"); -- printf("Display Speed:\n"); -- printf("\n"); -- printf( --" It is worthwhile to note that .edge files typically plot and print twice\n" --); -- printf( --" as quickly as .ele files, because .ele files cause each internal edge to\n" --); -- printf( --" be drawn twice. For the same reason, PostScript files created from edge\n" --); -- printf(" sets are smaller than those created from triangulations.\n\n"); -- printf("Show Me on the Web:\n\n"); -- printf( --" To see an illustrated, updated version of these instructions, check out\n"); -- printf("\n"); -- printf(" http://www.cs.cmu.edu/~quake/showme.html\n"); -- printf("\n"); -- printf("A Brief Plea:\n"); -- printf("\n"); -- printf( --" If you use Show Me (or Triangle), and especially if you use it to\n"); -- printf( --" accomplish real work, I would like very much to hear from you. A short\n"); -- printf( --" letter or email (to jrs@cs.cmu.edu) describing how you use Show Me (and\n"); -- printf( --" its sister programs) will mean a lot to me. The more people I know\n"); -- printf( --" are using my programs, the more easily I can justify spending time on\n"); -- printf( --" improvements, which in turn will benefit you. Also, I can put you\n"); -- printf( --" on a list to receive email whenever new versions are available.\n"); -- printf("\n"); -- printf( --" If you use a PostScript file generated by Show Me in a publication,\n"); -- printf(" please include an acknowledgment as well.\n\n"); -- exit(0); --} -- --void set_filenames(filename, lowermeshnumber) --char *filename; --int lowermeshnumber; --{ -- char numberstring[100]; -- int i; -- -- for (i = 0; i < 2; i++) { -- strcpy(nodefilename[i], filename); -- strcpy(polyfilename[i], filename); -- strcpy(elefilename[i], filename); -- strcpy(edgefilename[i], filename); -- strcpy(partfilename[i], filename); -- strcpy(adjfilename[i], filename); -- strcpy(vnodefilename[i], filename); -- strcpy(vedgefilename[i], filename); -- -- if (lowermeshnumber + i > 0) { -- sprintf(numberstring, ".%d", lowermeshnumber + i); -- strcat(nodefilename[i], numberstring); -- strcat(polyfilename[i], numberstring); -- strcat(elefilename[i], numberstring); -- strcat(edgefilename[i], numberstring); -- strcat(partfilename[i], numberstring); -- strcat(adjfilename[i], numberstring); -- strcat(vnodefilename[i], numberstring); -- strcat(vedgefilename[i], numberstring); -- } -- -- strcat(nodefilename[i], ".node"); -- strcat(polyfilename[i], ".poly"); -- strcat(elefilename[i], ".ele"); -- strcat(edgefilename[i], ".edge"); -- strcat(partfilename[i], ".part"); -- strcat(adjfilename[i], ".adj"); -- strcat(vnodefilename[i], ".v.node"); -- strcat(vedgefilename[i], ".v.edge"); -- } --} -- --#if 1 /* This function is already in netlib.lib, see triangle.c */ --void parsecommandline(int argc, char **argv); --#else --void parsecommandline(argc, argv) --int argc; --char **argv; --{ -- int increment; -- int meshnumber; -- int i, j; -- -- quiet = 0; -- fillelem = 0; -- line_width = 1; -- bw_ps = 0; -- start_image = ELE; -- filename[0] = '\0'; -- for (i = 1; i < argc; i++) { -- if (argv[i][0] == '-') { -- for (j = 1; argv[i][j] != '\0'; j++) { -- if (argv[i][j] == 'f') { -- fillelem = 1; -- } -- if (argv[i][j] == 'w') { -- if ((argv[i][j + 1] >= '1') && (argv[i][j + 1] <= '9')) { -- line_width = 0; -- while ((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) { -- j++; -- line_width = line_width * 10 + (int) (argv[i][j] - '0'); -- } -- if (line_width > 100) { -- printf("Error: Line width cannot exceed 100.\n"); -- line_width = 1; -- } -- } -- } -- if (argv[i][j] == 'b') { -- bw_ps = 1; -- } -- if (argv[i][j] == 'Q') { -- quiet = 1; -- } -- if ((argv[i][j] == 'h') || (argv[i][j] == 'H') || -- (argv[i][j] == '?')) { -- info(); -- } -- } -- } else { -- strcpy(filename, argv[i]); -- } -- } -- if (filename[0] == '\0') { -- syntax(); -- } -- if (!strcmp(&filename[strlen(filename) - 5], ".node")) { -- filename[strlen(filename) - 5] = '\0'; -- start_image = NODE; -- } -- if (!strcmp(&filename[strlen(filename) - 5], ".poly")) { -- filename[strlen(filename) - 5] = '\0'; -- start_image = POLY; -- } -- if (!strcmp(&filename[strlen(filename) - 4], ".ele")) { -- filename[strlen(filename) - 4] = '\0'; -- start_image = ELE; -- } -- if (!strcmp(&filename[strlen(filename) - 5], ".edge")) { -- filename[strlen(filename) - 5] = '\0'; -- start_image = EDGE; -- } -- if (!strcmp(&filename[strlen(filename) - 5], ".part")) { -- filename[strlen(filename) - 5] = '\0'; -- start_image = PART; -- } -- if (!strcmp(&filename[strlen(filename) - 4], ".adj")) { -- filename[strlen(filename) - 4] = '\0'; -- start_image = ADJ; -- } -- -- increment = 0; -- j = 1; -- while (filename[j] != '\0') { -- if ((filename[j] == '.') && (filename[j + 1] != '\0')) { -- increment = j + 1; -- } -- j++; -- } -- meshnumber = 0; -- if (increment > 0) { -- j = increment; -- do { -- if ((filename[j] >= '0') && (filename[j] <= '9')) { -- meshnumber = meshnumber * 10 + (int) (filename[j] - '0'); -- } else { -- increment = 0; -- } -- j++; -- } while (filename[j] != '\0'); -- } -- if (increment > 0) { -- filename[increment - 1] = '\0'; -- } -- -- if (meshnumber == 0) { -- start_inc = 0; -- loweriteration = 0; -- } else { -- start_inc = 1; -- loweriteration = meshnumber - 1; -- } -- set_filenames(filename, loweriteration); --} --#endif /* 0 */ -- --void free_inc(inc) --int inc; --{ -- if (loaded[inc][NODE]) { -- free(nodeptr[inc]); -- } -- if (loaded[inc][POLY]) { -- if (polynodes[inc] > 0) { -- free(polynodeptr[inc]); -- } -- free(polyedgeptr[inc]); -- free(polyholeptr[inc]); -- } -- if (loaded[inc][ELE]) { -- free(eleptr[inc]); -- } -- if (loaded[inc][PART]) { -- free(partpart[inc]); -- free(partcenter[inc]); -- free(partshift[inc]); -- } -- if (loaded[inc][EDGE]) { -- free(edgeptr[inc]); -- free(normptr[inc]); -- } -- if (loaded[inc][ADJ]) { -- free(adjptr[inc]); -- } -- if (loaded[inc][VORO]) { -- free(vnodeptr[inc]); -- free(vedgeptr[inc]); -- free(vnormptr[inc]); -- } --} -- --void move_inc(inc) --int inc; --{ -- int i; -- -- free_inc(1 - inc); -- for (i = 0; i < IMAGE_TYPES; i++) { -- loaded[1 - inc][i] = loaded[inc][i]; -- loaded[inc][i] = 0; -- xlo[1 - inc][i] = xlo[inc][i]; -- ylo[1 - inc][i] = ylo[inc][i]; -- xhi[1 - inc][i] = xhi[inc][i]; -- yhi[1 - inc][i] = yhi[inc][i]; -- } -- nodes[1 - inc] = nodes[inc]; -- node_dim[1 - inc] = node_dim[inc]; -- nodeptr[1 - inc] = nodeptr[inc]; -- polynodes[1 - inc] = polynodes[inc]; -- poly_dim[1 - inc] = poly_dim[inc]; -- polyedges[1 - inc] = polyedges[inc]; -- polyholes[1 - inc] = polyholes[inc]; -- polynodeptr[1 - inc] = polynodeptr[inc]; -- polyedgeptr[1 - inc] = polyedgeptr[inc]; -- polyholeptr[1 - inc] = polyholeptr[inc]; -- elems[1 - inc] = elems[inc]; -- ele_corners[1 - inc] = ele_corners[inc]; -- eleptr[1 - inc] = eleptr[inc]; -- edges[1 - inc] = edges[inc]; -- edgeptr[1 - inc] = edgeptr[inc]; -- normptr[1 - inc] = normptr[inc]; -- subdomains[1 - inc] = subdomains[inc]; -- partpart[1 - inc] = partpart[inc]; -- partcenter[1 - inc] = partcenter[inc]; -- partshift[1 - inc] = partshift[inc]; -- adjsubdomains[1 - inc] = adjsubdomains[inc]; -- adjptr[1 - inc] = adjptr[inc]; -- vnodes[1 - inc] = vnodes[inc]; -- vnode_dim[1 - inc] = vnode_dim[inc]; -- vnodeptr[1 - inc] = vnodeptr[inc]; -- vedges[1 - inc] = vedges[inc]; -- vedgeptr[1 - inc] = vedgeptr[inc]; -- vnormptr[1 - inc] = vnormptr[inc]; -- firstnumber[1 - inc] = firstnumber[inc]; -- firstnumber[inc] = -1; --} -- --void unload_inc(inc) --int inc; --{ -- int i; -- -- current_image = NOTHING; -- for (i = 0; i < IMAGE_TYPES; i++) { -- loaded[inc][i] = 0; -- firstnumber[inc] = -1; -- } --} -- --void showme_init() --{ -- current_image = NOTHING; -- current_inc = 0; -- explosion = STARTEXPLOSION; -- unload_inc(0); -- unload_inc(1); --} -- --char *readline(string, infile, infilename) --char *string; --FILE *infile; --char *infilename; --{ -- char *result; -- -- do { -- result = fgets(string, INPUTLINESIZE, infile); -- if (result == (char *) NULL) { -- printf(" Error: Unexpected end of file in %s.\n", -- infilename); -- exit(1); -- } -- while ((*result != '\0') && (*result != '#') -- && (*result != '.') && (*result != '+') && (*result != '-') -- && ((*result < '0') || (*result > '9'))) { -- result++; -- } -- } while ((*result == '#') || (*result == '\0')); -- return result; --} -- --char *findfield(string) --char *string; --{ -- char *result; -- -- result = string; -- while ((*result != '\0') && (*result != '#') -- && (*result != ' ') && (*result != '\t')) { -- result++; -- } -- while ((*result != '\0') && (*result != '#') -- && (*result != '.') && (*result != '+') && (*result != '-') -- && ((*result < '0') || (*result > '9'))) { -- result++; -- } -- if (*result == '#') { -- *result = '\0'; -- } -- return result; --} -- --int load_node(fname, firstnumber, nodes, dim, ptr, xmin, ymin, xmax, ymax) --char *fname; --int *firstnumber; --int *nodes; --int *dim; --REAL **ptr; --REAL *xmin; --REAL *ymin; --REAL *xmax; --REAL *ymax; --{ -- FILE *infile; -- char inputline[INPUTLINESIZE]; -- char *stringptr; -- int extras; -- int nodemarks; -- int index; -- int nodenumber; -- int i, j; -- int smallerr; -- REAL x, y; -- -- *xmin = *ymin = 0.0; -- *xmax = *ymax = 1.0; -- if (!quiet) { -- printf("Opening %s.\n", fname); -- } -- infile = fopen(fname, "r"); -- if (infile == (FILE *) NULL) { -- printf(" Error: Cannot access file %s.\n", fname); -- return 1; -- } -- stringptr = readline(inputline, infile, fname); -- *nodes = (int) strtol (stringptr, &stringptr, 0); -- if (*nodes < 3) { -- printf(" Error: %s contains %d points.\n", fname, *nodes); -- return 1; -- } -- stringptr = findfield(stringptr); -- if (*stringptr == '\0') { -- *dim = 2; -- } else { -- *dim = (int) strtol (stringptr, &stringptr, 0); -- } -- if (*dim < 1) { -- printf(" Error: %s has dimensionality %d.\n", fname, *dim); -- return 1; -- } -- if (*dim != 2) { -- printf(" I only understand two-dimensional meshes.\n"); -- return 1; -- } -- stringptr = findfield(stringptr); -- if (*stringptr == '\0') { -- extras = 0; -- } else { -- extras = (int) strtol (stringptr, &stringptr, 0); -- } -- if (extras < 0) { -- printf(" Error: %s has negative value for number of attributes.\n", -- fname); -- return 1; -- } -- stringptr = findfield(stringptr); -- if (*stringptr == '\0') { -- nodemarks = 0; -- } else { -- nodemarks = (int) strtol (stringptr, &stringptr, 0); -- } -- if (nodemarks < 0) { -- printf(" Warning: %s has negative value for number of point markers.\n", -- fname); -- } -- if (nodemarks > 1) { -- printf( -- " Warning: %s has value greater than one for number of point markers.\n", -- fname); -- } -- *ptr = (REAL *) malloc((*nodes + 1) * *dim * sizeof(REAL)); -- if (*ptr == (REAL *) NULL) { -- printf(" Out of memory.\n"); -- return 1; -- } -- index = *dim; -- smallerr = 1; -- for (i = 0; i < *nodes; i++) { -- stringptr = readline(inputline, infile, fname); -- nodenumber = (int) strtol (stringptr, &stringptr, 0); -- if ((i == 0) && (*firstnumber == -1)) { -- if (nodenumber == 0) { -- *firstnumber = 0; -- } else { -- *firstnumber = 1; -- } -- } -- if ((nodenumber != *firstnumber + i) && (smallerr)) { -- printf(" Warning: Points in %s are not numbered correctly\n", fname); -- printf(" (starting with point %d).\n", *firstnumber + i); -- smallerr = 0; -- } -- for (j = 0; j < *dim; j++) { -- stringptr = findfield(stringptr); -- if (*stringptr == '\0') { -- printf("Error: Point %d is missing a coordinate in %s.\n", -- *firstnumber + i, fname); -- free(*ptr); -- return 1; -- } -- (*ptr)[index++] = (REAL) strtod(stringptr, &stringptr); -- } -- } -- fclose(infile); -- index = *dim; -- *xmin = *xmax = (*ptr)[index]; -- *ymin = *ymax = (*ptr)[index + 1]; -- for (i = 2; i <= *nodes; i++) { -- index += *dim; -- x = (*ptr)[index]; -- y = (*ptr)[index + 1]; -- if (x < *xmin) { -- *xmin = x; -- } -- if (y < *ymin) { -- *ymin = y; -- } -- if (x > *xmax) { -- *xmax = x; -- } -- if (y > *ymax) { -- *ymax = y; -- } -- } -- if (*xmin == *xmax) { -- *xmin -= 0.5; -- *xmax += 0.5; -- } -- if (*ymin == *ymax) { -- *ymin -= 0.5; -- *ymax += 0.5; -- } -- return 0; --} -- --int load_poly(inc, fname, firstnumber, pnodes, dim, edges, holes, nodeptr, -- edgeptr, holeptr, xmin, ymin, xmax, ymax) --int inc; --char *fname; --int *firstnumber; --int *pnodes; --int *dim; --int *edges; --int *holes; --REAL **nodeptr; --int **edgeptr; --REAL **holeptr; --REAL *xmin; --REAL *ymin; --REAL *xmax; --REAL *ymax; --{ -- FILE *infile; -- char inputline[INPUTLINESIZE]; -- char *stringptr; -- int extras; -- int nodemarks; -- int segmentmarks; -- int index; -- int nodenumber, edgenumber, holenumber; -- int maxnode; -- int i, j; -- int smallerr; -- REAL x, y; -- -- if (!quiet) { -- printf("Opening %s.\n", fname); -- } -- infile = fopen(fname, "r"); -- if (infile == (FILE *) NULL) { -- printf(" Error: Cannot access file %s.\n", fname); -- return 1; -- } -- stringptr = readline(inputline, infile, fname); -- *pnodes = (int) strtol (stringptr, &stringptr, 0); -- if (*pnodes == 0) { -- if (!loaded[inc][NODE]) { -- if (load_image(inc, NODE)) { -- return 1; -- } -- } -- maxnode = nodes[inc]; -- *xmin = xlo[inc][NODE]; -- *ymin = ylo[inc][NODE]; -- *xmax = xhi[inc][NODE]; -- *ymax = yhi[inc][NODE]; -- } else { -- if (*pnodes < 1) { -- printf(" Error: %s contains %d points.\n", fname, *pnodes); -- return 1; -- } -- maxnode = *pnodes; -- } -- stringptr = findfield(stringptr); -- if (*stringptr == '\0') { -- *dim = 2; -- } else { -- *dim = (int) strtol (stringptr, &stringptr, 0); -- } -- if (*dim < 1) { -- printf(" Error: %s has dimensionality %d.\n", fname, *dim); -- return 1; -- } -- if (*dim != 2) { -- printf(" I only understand two-dimensional meshes.\n"); -- return 1; -- } -- stringptr = findfield(stringptr); -- if (*stringptr == '\0') { -- extras = 0; -- } else { -- extras = (int) strtol (stringptr, &stringptr, 0); -- } -- if (extras < 0) { -- printf(" Error: %s has negative value for number of attributes.\n", -- fname); -- return 1; -- } -- stringptr = findfield(stringptr); -- if (*stringptr == '\0') { -- nodemarks = 0; -- } else { -- nodemarks = (int) strtol (stringptr, &stringptr, 0); -- } -- if (nodemarks < 0) { -- printf(" Warning: %s has negative value for number of point markers.\n", -- fname); -- } -- if (nodemarks > 1) { -- printf( -- " Warning: %s has value greater than one for number of point markers.\n", -- fname); -- } -- if (*pnodes > 0) { -- *nodeptr = (REAL *) malloc((*pnodes + 1) * *dim * sizeof(REAL)); -- if (*nodeptr == (REAL *) NULL) { -- printf(" Out of memory.\n"); -- return 1; -- } -- index = *dim; -- smallerr = 1; -- for (i = 0; i < *pnodes; i++) { -- stringptr = readline(inputline, infile, fname); -- nodenumber = (int) strtol (stringptr, &stringptr, 0); -- if ((i == 0) && (*firstnumber == -1)) { -- if (nodenumber == 0) { -- *firstnumber = 0; -- } else { -- *firstnumber = 1; -- } -- } -- if ((nodenumber != *firstnumber + i) && (smallerr)) { -- printf(" Warning: Points in %s are not numbered correctly.\n", -- fname); -- printf(" (starting with point %d).\n", *firstnumber + i); -- smallerr = 0; -- } -- for (j = 0; j < *dim; j++) { -- stringptr = findfield(stringptr); -- if (*stringptr == '\0') { -- printf("Error: Point %d is missing a coordinate in %s.\n", -- *firstnumber + i, fname); -- free(*nodeptr); -- return 1; -- } -- (*nodeptr)[index++] = (REAL) strtod(stringptr, &stringptr); -- } -- } -- } -- stringptr = readline(inputline, infile, fname); -- *edges = (int) strtol (stringptr, &stringptr, 0); -- if (*edges < 0) { -- printf(" Error: %s contains %d segments.\n", fname, *edges); -- free(*nodeptr); -- return 1; -- } -- stringptr = findfield(stringptr); -- if (*stringptr == '\0') { -- segmentmarks = 0; -- } else { -- segmentmarks = (int) strtol (stringptr, &stringptr, 0); -- } -- if (segmentmarks < 0) { -- printf(" Error: %s has negative value for number of segment markers.\n", -- fname); -- free(*nodeptr); -- return 1; -- } -- if (segmentmarks > 1) { -- printf( -- " Error: %s has value greater than one for number of segment markers.\n", -- fname); -- free(*nodeptr); -- return 1; -- } -- *edgeptr = (int *) malloc(((*edges + 1) << 1) * sizeof(int)); -- if (*edgeptr == (int *) NULL) { -- printf(" Out of memory.\n"); -- free(*nodeptr); -- return 1; -- } -- index = 2; -- smallerr = 1; -- for (i = *firstnumber; i < *firstnumber + *edges; i++) { -- stringptr = readline(inputline, infile, fname); -- edgenumber = (int) strtol (stringptr, &stringptr, 0); -- if ((edgenumber != i) && (smallerr)) { -- printf(" Warning: Segments in %s are not numbered correctly.\n", -- fname); -- printf(" (starting with segment %d).\n", i); -- smallerr = 0; -- } -- stringptr = findfield(stringptr); -- if (*stringptr == '\0') { -- printf("Error: Segment %d is missing its endpoints in %s.\n", i, fname); -- free(*nodeptr); -- free(*edgeptr); -- return 1; -- } -- (*edgeptr)[index] = (int) strtol (stringptr, &stringptr, 0) + 1 - -- *firstnumber; -- if (((*edgeptr)[index] < 1) || ((*edgeptr)[index] > maxnode)) { -- printf("Error: Segment %d has invalid endpoint in %s.\n", i, fname); -- return 1; -- } -- stringptr = findfield(stringptr); -- if (*stringptr == '\0') { -- printf("Error: Segment %d is missing an endpoint in %s.\n", i, fname); -- free(*nodeptr); -- free(*edgeptr); -- return 1; -- } -- (*edgeptr)[index + 1] = (int) strtol (stringptr, &stringptr, 0) + 1 - -- *firstnumber; -- if (((*edgeptr)[index + 1] < 1) || ((*edgeptr)[index + 1] > maxnode)) { -- printf("Error: Segment %d has invalid endpoint in %s.\n", i, fname); -- return 1; -- } -- index += 2; -- } -- stringptr = readline(inputline, infile, fname); -- *holes = (int) strtol (stringptr, &stringptr, 0); -- if (*holes < 0) { -- printf(" Error: %s contains %d holes.\n", fname, *holes); -- free(*nodeptr); -- free(*edgeptr); -- return 1; -- } -- *holeptr = (REAL *) malloc((*holes + 1) * *dim * sizeof(REAL)); -- if (*holeptr == (REAL *) NULL) { -- printf(" Out of memory.\n"); -- free(*nodeptr); -- free(*edgeptr); -- return 1; -- } -- index = *dim; -- smallerr = 1; -- for (i = *firstnumber; i < *firstnumber + *holes; i++) { -- stringptr = readline(inputline, infile, fname); -- holenumber = (int) strtol (stringptr, &stringptr, 0); -- if ((holenumber != i) && (smallerr)) { -- printf(" Warning: Holes in %s are not numbered correctly.\n", fname); -- printf(" (starting with hole %d).\n", i); -- smallerr = 0; -- } -- for (j = 0; j < *dim; j++) { -- stringptr = findfield(stringptr); -- if (*stringptr == '\0') { -- printf("Error: Hole %d is missing a coordinate in %s.\n", i, -- fname); -- free(*nodeptr); -- free(*edgeptr); -- free(*holeptr); -- return 1; -- } -- (*holeptr)[index++] = (REAL) strtod(stringptr, &stringptr); -- } -- } -- fclose(infile); -- if (*pnodes > 0) { -- index = *dim; -- *xmin = *xmax = (*nodeptr)[index]; -- *ymin = *ymax = (*nodeptr)[index + 1]; -- for (i = 2; i <= *pnodes; i++) { -- index += *dim; -- x = (*nodeptr)[index]; -- y = (*nodeptr)[index + 1]; -- if (x < *xmin) { -- *xmin = x; -- } -- if (y < *ymin) { -- *ymin = y; -- } -- if (x > *xmax) { -- *xmax = x; -- } -- if (y > *ymax) { -- *ymax = y; -- } -- } -- } -- index = *dim; -- for (i = 1; i <= *holes; i++) { -- x = (*holeptr)[index]; -- y = (*holeptr)[index + 1]; -- if (x < *xmin) { -- *xmin = x; -- } -- if (y < *ymin) { -- *ymin = y; -- } -- if (x > *xmax) { -- *xmax = x; -- } -- if (y > *ymax) { -- *ymax = y; -- } -- index += *dim; -- } -- return 0; --} -- --int load_ele(fname, firstnumber, nodes, elems, corners, ptr) --char *fname; --int firstnumber; --int nodes; --int *elems; --int *corners; --int **ptr; --{ -- FILE *infile; -- char inputline[INPUTLINESIZE]; -- char *stringptr; -- int extras; -- int index; -- int elemnumber; -- int i, j; -- int smallerr; -- -- if (!quiet) { -- printf("Opening %s.\n", fname); -- } -- infile = fopen(fname, "r"); -- if (infile == (FILE *) NULL) { -- printf(" Error: Cannot access file %s.\n", fname); -- return 1; -- } -- stringptr = readline(inputline, infile, fname); -- *elems = (int) strtol (stringptr, &stringptr, 0); -- if (*elems < 1) { -- printf(" Error: %s contains %d triangles.\n", fname, *elems); -- return 1; -- } -- stringptr = findfield(stringptr); -- if (*stringptr == '\0') { -- *corners = 3; -- } else { -- *corners = (int) strtol (stringptr, &stringptr, 0); -- } -- if (*corners < 3) { -- printf(" Error: Triangles in %s have only %d corners.\n", fname, -- *corners); -- return 1; -- } -- stringptr = findfield(stringptr); -- if (*stringptr == '\0') { -- extras = 0; -- } else { -- extras = (int) strtol (stringptr, &stringptr, 0); -- } -- if (extras < 0) { -- printf(" Error: %s has negative value for extra fields.\n", fname); -- return 1; -- } -- *ptr = (int *) malloc((*elems + 1) * 3 * sizeof(int)); -- if (*ptr == (int *) NULL) { -- printf(" Out of memory.\n"); -- return 1; -- } -- index = 3; -- smallerr = 1; -- for (i = firstnumber; i < firstnumber + *elems; i++) { -- stringptr = readline(inputline, infile, fname); -- elemnumber = (int) strtol (stringptr, &stringptr, 0); -- if ((elemnumber != i) && (smallerr)) { -- printf(" Warning: Triangles in %s are not numbered correctly.\n", -- fname); -- printf(" (starting with triangle %d).\n", i); -- smallerr = 0; -- } -- for (j = 0; j < 3; j++) { -- stringptr = findfield(stringptr); -- if (*stringptr == '\0') { -- printf("Error: Triangle %d is missing a corner in %s.\n", i, fname); -- free(*ptr); -- return 1; -- } -- (*ptr)[index] = (int) strtol (stringptr, &stringptr, 0) + 1 - -- firstnumber; -- if (((*ptr)[index] < 1) || ((*ptr)[index] > nodes)) { -- printf("Error: Triangle %d has invalid corner in %s.\n", i, fname); -- return 1; -- } -- index++; -- } -- } -- fclose(infile); -- return 0; --} -- --int load_edge(fname, firstnumber, nodes, edges, edgeptr, normptr) --char *fname; --int firstnumber; --int nodes; --int *edges; --int **edgeptr; --REAL **normptr; --{ -- FILE *infile; -- char inputline[INPUTLINESIZE]; -- char *stringptr; -- int index; -- int edgenumber; -- int edgemarks; -- int i; -- int smallerr; -- -- if (!quiet) { -- printf("Opening %s.\n", fname); -- } -- infile = fopen(fname, "r"); -- if (infile == (FILE *) NULL) { -- printf(" Error: Cannot access file %s.\n", fname); -- return 1; -- } -- stringptr = readline(inputline, infile, fname); -- *edges = (int) strtol (stringptr, &stringptr, 0); -- if (*edges < 1) { -- printf(" Error: %s contains %d edges.\n", fname, *edges); -- return 1; -- } -- stringptr = findfield(stringptr); -- if (*stringptr == '\0') { -- edgemarks = 0; -- } else { -- edgemarks = (int) strtol (stringptr, &stringptr, 0); -- } -- if (edgemarks < 0) { -- printf(" Error: %s has negative value for number of edge markers.\n", -- fname); -- return 1; -- } -- if (edgemarks > 1) { -- printf( -- " Error: %s has value greater than one for number of edge markers.\n", -- fname); -- return 1; -- } -- *edgeptr = (int *) malloc(((*edges + 1) << 1) * sizeof(int)); -- if (*edgeptr == (int *) NULL) { -- printf(" Out of memory.\n"); -- return 1; -- } -- *normptr = (REAL *) malloc(((*edges + 1) << 1) * sizeof(REAL)); -- if (*normptr == (REAL *) NULL) { -- printf(" Out of memory.\n"); -- free(*edgeptr); -- return 1; -- } -- index = 2; -- smallerr = 1; -- for (i = firstnumber; i < firstnumber + *edges; i++) { -- stringptr = readline(inputline, infile, fname); -- edgenumber = (int) strtol (stringptr, &stringptr, 0); -- if ((edgenumber != i) && (smallerr)) { -- printf(" Warning: Edges in %s are not numbered correctly.\n", fname); -- printf(" (starting with edge %d).\n", i); -- smallerr = 0; -- } -- stringptr = findfield(stringptr); -- if (*stringptr == '\0') { -- printf("Error: Edge %d is missing its endpoints in %s.\n", i, fname); -- free(*edgeptr); -- free(*normptr); -- return 1; -- } -- (*edgeptr)[index] = (int) strtol (stringptr, &stringptr, 0) + 1 - -- firstnumber; -- if (((*edgeptr)[index] < 1) || ((*edgeptr)[index] > nodes)) { -- printf("Error: Edge %d has invalid endpoint in %s.\n", i, fname); -- return 1; -- } -- stringptr = findfield(stringptr); -- if (*stringptr == '\0') { -- printf("Error: Edge %d is missing an endpoint in %s.\n", i, fname); -- free(*edgeptr); -- free(*normptr); -- return 1; -- } -- (*edgeptr)[index + 1] = (int) strtol (stringptr, &stringptr, 0); -- if ((*edgeptr)[index + 1] == -1) { -- stringptr = findfield(stringptr); -- if (*stringptr == '\0') { -- printf("Error: Edge %d is missing its direction in %s.\n", i, fname); -- free(*edgeptr); -- free(*normptr); -- return 1; -- } -- (*normptr)[index] = (REAL) strtod(stringptr, &stringptr); -- stringptr = findfield(stringptr); -- if (*stringptr == '\0') { -- printf("Error: Edge %d is missing a direction coordinate in %s.\n", -- i, fname); -- free(*edgeptr); -- free(*normptr); -- return 1; -- } -- (*normptr)[index + 1] = (REAL) strtod(stringptr, &stringptr); -- } else { -- (*edgeptr)[index + 1] += 1 - firstnumber; -- if (((*edgeptr)[index + 1] < 1) || ((*edgeptr)[index + 1] > nodes)) { -- printf("Error: Edge %d has invalid endpoint in %s.\n", i, fname); -- return 1; -- } -- } -- index += 2; -- } -- fclose(infile); -- return 0; --} -- --int load_part(fname, dim, firstnumber, elems, nodeptr, eleptr, parts, -- partition, partcenter, partshift) --char *fname; --int dim; --int firstnumber; --int elems; --REAL *nodeptr; --int *eleptr; --int *parts; --int **partition; --REAL **partcenter; --REAL **partshift; --{ -- FILE *infile; -- char inputline[INPUTLINESIZE]; -- char *stringptr; -- int partelems; -- int index; -- int elemnumber; -- int i, j; -- int smallerr; -- int *partsize; -- -- if (!quiet) { -- printf("Opening %s.\n", fname); -- } -- infile = fopen(fname, "r"); -- if (infile == (FILE *) NULL) { -- printf(" Error: Cannot access file %s.\n", fname); -- return 1; -- } -- stringptr = readline(inputline, infile, fname); -- partelems = (int) strtol (stringptr, &stringptr, 0); -- if (partelems != elems) { -- printf( -- " Error: .ele and .part files do not agree on number of triangles.\n"); -- return 1; -- } -- stringptr = findfield(stringptr); -- if (*stringptr == '\0') { -- *parts = 1; -- } else { -- *parts = (int) strtol (stringptr, &stringptr, 0); -- } -- if (*parts < 1) { -- printf(" Error: %s specifies %d subdomains.\n", fname, *parts); -- return 1; -- } -- *partition = (int *) malloc((elems + 1) * sizeof(int)); -- if (*partition == (int *) NULL) { -- printf(" Out of memory.\n"); -- return 1; -- } -- smallerr = 1; -- for (i = firstnumber; i < firstnumber + partelems; i++) { -- stringptr = readline(inputline, infile, fname); -- elemnumber = (int) strtol (stringptr, &stringptr, 0); -- if ((elemnumber != i) && (smallerr)) { -- printf(" Warning: Triangles in %s are not numbered correctly.\n", -- fname); -- printf(" (starting with triangle %d).\n", i); -- smallerr = 0; -- } -- stringptr = findfield(stringptr); -- if (*stringptr == '\0') { -- printf("Error: Triangle %d has no subdomain in %s.\n", i, fname); -- free(*partition); -- return 1; -- } -- (*partition)[i] = (int) strtol (stringptr, &stringptr, 0) - firstnumber; -- if (((*partition)[i] >= *parts) || ((*partition)[i] < 0)) { -- printf(" Error: Triangle %d of %s has an invalid subdomain.\n", -- i, fname); -- free(*partition); -- return 1; -- } -- } -- fclose(infile); -- *partcenter = (REAL *) malloc(((*parts + 1) << 1) * sizeof(REAL)); -- if (*partcenter == (REAL *) NULL) { -- printf("Error: Out of memory.\n"); -- free(*partition); -- return 1; -- } -- *partshift = (REAL *) malloc((*parts << 1) * sizeof(REAL)); -- if (*partshift == (REAL *) NULL) { -- printf("Error: Out of memory.\n"); -- free(*partition); -- free(*partcenter); -- return 1; -- } -- partsize = (int *) malloc((*parts + 1) * sizeof(int)); -- if (partsize == (int *) NULL) { -- printf("Error: Out of memory.\n"); -- free(*partition); -- free(*partcenter); -- free(*partshift); -- return 1; -- } -- index = 3; -- for (i = 0; i <= *parts; i++) { -- partsize[i] = 0; -- (*partcenter)[i << 1] = 0.0; -- (*partcenter)[(i << 1) + 1] = 0.0; -- } -- for (i = 1; i <= elems; i++) { -- partsize[(*partition)[i]] += 3; -- for (j = 0; j < 3; j++) { -- (*partcenter)[(*partition)[i] << 1] += -- nodeptr[eleptr[index] * dim]; -- (*partcenter)[((*partition)[i] << 1) + 1] += -- nodeptr[eleptr[index++] * dim + 1]; -- } -- } -- for (i = 0; i < *parts; i++) { -- (*partcenter)[i << 1] /= (REAL) partsize[i]; -- (*partcenter)[(i << 1) + 1] /= (REAL) partsize[i]; -- (*partcenter)[*parts << 1] += (*partcenter)[i << 1]; -- (*partcenter)[(*parts << 1) + 1] += (*partcenter)[(i << 1) + 1]; -- } -- (*partcenter)[*parts << 1] /= (REAL) *parts; -- (*partcenter)[(*parts << 1) + 1] /= (REAL) *parts; -- free(partsize); -- return 0; --} -- --int load_adj(fname, subdomains, ptr) --char *fname; --int *subdomains; --int **ptr; --{ -- FILE *infile; -- char inputline[INPUTLINESIZE]; -- char *stringptr; -- int i, j; -- -- if (!quiet) { -- printf("Opening %s.\n", fname); -- } -- infile = fopen(fname, "r"); -- if (infile == (FILE *) NULL) { -- printf(" Error: Cannot access file %s.\n", fname); -- return 1; -- } -- stringptr = readline(inputline, infile, fname); -- *subdomains = (int) strtol (stringptr, &stringptr, 0); -- if (*subdomains < 1) { -- printf(" Error: %s contains %d subdomains.\n", fname, *subdomains); -- return 1; -- } -- *ptr = (int *) malloc(*subdomains * *subdomains * sizeof(int)); -- if (*ptr == (int *) NULL) { -- printf(" Out of memory.\n"); -- return 1; -- } -- for (i = 0; i < *subdomains; i++) { -- for (j = 0; j < *subdomains; j++) { -- stringptr = readline(inputline, infile, fname); -- (*ptr)[i * *subdomains + j] = (int) strtol (stringptr, &stringptr, 0); -- } -- } -- return 0; --} -- --void findpartshift(parts, explosion, partcenter, partshift) --int parts; --REAL explosion; --REAL *partcenter; --REAL *partshift; --{ -- int i; -- -- for (i = 0; i < parts; i++) { -- partshift[i << 1] = explosion * -- (partcenter[i << 1] - partcenter[parts << 1]); -- partshift[(i << 1) + 1] = explosion * -- (partcenter[(i << 1) + 1] - partcenter[(parts << 1) + 1]); -- } --} -- --int load_image(inc, image) --int inc; --int image; --{ -- int error; -- -- switch (image) { -- case NODE: -- error = load_node(nodefilename[inc], &firstnumber[inc], &nodes[inc], -- &node_dim[inc], &nodeptr[inc], &xlo[inc][NODE], -- &ylo[inc][NODE], &xhi[inc][NODE], &yhi[inc][NODE]); -- break; -- case POLY: -- error = load_poly(inc, polyfilename[inc], &firstnumber[inc], -- &polynodes[inc], &poly_dim[inc], &polyedges[inc], -- &polyholes[inc], &polynodeptr[inc], &polyedgeptr[inc], -- &polyholeptr[inc], -- &xlo[inc][POLY], &ylo[inc][POLY], -- &xhi[inc][POLY], &yhi[inc][POLY]); -- break; -- case ELE: -- error = load_ele(elefilename[inc], firstnumber[inc], nodes[inc], -- &elems[inc], &ele_corners[inc], &eleptr[inc]); -- xlo[inc][ELE] = xlo[inc][NODE]; -- ylo[inc][ELE] = ylo[inc][NODE]; -- xhi[inc][ELE] = xhi[inc][NODE]; -- yhi[inc][ELE] = yhi[inc][NODE]; -- break; -- case EDGE: -- error = load_edge(edgefilename[inc], firstnumber[inc], nodes[inc], -- &edges[inc], &edgeptr[inc], &normptr[inc]); -- xlo[inc][EDGE] = xlo[inc][NODE]; -- ylo[inc][EDGE] = ylo[inc][NODE]; -- xhi[inc][EDGE] = xhi[inc][NODE]; -- yhi[inc][EDGE] = yhi[inc][NODE]; -- break; -- case PART: -- error = load_part(partfilename[inc], node_dim[inc], firstnumber[inc], -- elems[inc], nodeptr[inc], eleptr[inc], -- &subdomains[inc], &partpart[inc], &partcenter[inc], -- &partshift[inc]); -- if (!error) { -- findpartshift(subdomains[inc], explosion, partcenter[inc], -- partshift[inc]); -- } -- xlo[inc][PART] = xlo[inc][NODE]; -- ylo[inc][PART] = ylo[inc][NODE]; -- xhi[inc][PART] = xhi[inc][NODE]; -- yhi[inc][PART] = yhi[inc][NODE]; -- break; -- case ADJ: -- error = load_adj(adjfilename[inc], &adjsubdomains[inc], &adjptr[inc]); -- xlo[inc][ADJ] = xlo[inc][NODE]; -- ylo[inc][ADJ] = ylo[inc][NODE]; -- xhi[inc][ADJ] = xhi[inc][NODE]; -- yhi[inc][ADJ] = yhi[inc][NODE]; -- break; -- case VORO: -- error = load_node(vnodefilename[inc], &firstnumber[inc], &vnodes[inc], -- &vnode_dim[inc], &vnodeptr[inc], &xlo[inc][VORO], -- &ylo[inc][VORO], &xhi[inc][VORO], &yhi[inc][VORO]); -- if (!error) { -- error = load_edge(vedgefilename[inc], firstnumber[inc], vnodes[inc], -- &vedges[inc], &vedgeptr[inc], &vnormptr[inc]); -- } -- break; -- default: -- error = 1; -- } -- if (!error) { -- loaded[inc][image] = 1; -- } -- return error; --} -- --void choose_image(inc, image) --int inc; --int image; --{ -- if (!loaded[inc][image]) { -- if ((image == ELE) || (image == EDGE) || (image == PART) -- || (image == ADJ)) { -- if (!loaded[inc][NODE]) { -- if (load_image(inc, NODE)) { -- return; -- } -- } -- } -- if ((image == PART) || (image == ADJ)) { -- if (!loaded[inc][ELE]) { -- if (load_image(inc, ELE)) { -- return; -- } -- } -- } -- if (image == ADJ) { -- if (!loaded[inc][PART]) { -- if (load_image(inc, PART)) { -- return; -- } -- } -- } -- if (load_image(inc, image)) { -- return; -- } -- } -- current_inc = inc; -- current_image = image; --} -- --Window make_button(name, x, y, width) --char *name; --int x; --int y; --int width; --{ -- XSetWindowAttributes attr; -- XSizeHints hints; -- Window button; -- -- attr.background_pixel = black; -- attr.border_pixel = white; -- attr.backing_store = NotUseful; -- attr.event_mask = ExposureMask | ButtonReleaseMask | ButtonPressMask; -- attr.bit_gravity = SouthWestGravity; -- attr.win_gravity = SouthWestGravity; -- attr.save_under = False; -- button = XCreateWindow(display, mainwindow, x, y, width, BUTTONHEIGHT - 4, -- 2, 0, InputOutput, CopyFromParent, -- CWBackPixel | CWBorderPixel | CWEventMask | -- CWBitGravity | CWWinGravity | CWBackingStore | -- CWSaveUnder, &attr); -- hints.width = width; -- hints.height = BUTTONHEIGHT - 4; -- hints.min_width = 0; -- hints.min_height = BUTTONHEIGHT - 4; -- hints.max_width = width; -- hints.max_height = BUTTONHEIGHT - 4; -- hints.width_inc = 1; -- hints.height_inc = 1; -- hints.flags = PMinSize | PMaxSize | PSize | PResizeInc; -- XSetStandardProperties(display, button, name, "showme", None, (char **) NULL, -- 0, &hints); -- return button; --} -- --void make_buttons(y) --int y; --{ -- int i; -- -- for (i = 1; i >= 0; i--) { -- nodewin[i] = make_button("node", 0, y + (1 - i) * BUTTONHEIGHT, 42); -- XMapWindow(display, nodewin[i]); -- polywin[i] = make_button("poly", 44, y + (1 - i) * BUTTONHEIGHT, 42); -- XMapWindow(display, polywin[i]); -- elewin[i] = make_button("ele", 88, y + (1 - i) * BUTTONHEIGHT, 33); -- XMapWindow(display, elewin[i]); -- edgewin[i] = make_button("edge", 123, y + (1 - i) * BUTTONHEIGHT, 42); -- XMapWindow(display, edgewin[i]); -- partwin[i] = make_button("part", 167, y + (1 - i) * BUTTONHEIGHT, 42); -- XMapWindow(display, partwin[i]); -- adjwin[i] = make_button("adj", 211, y + (1 - i) * BUTTONHEIGHT, 33); -- XMapWindow(display, adjwin[i]); -- voronoiwin[i] = make_button("voro", 246, y + (1 - i) * BUTTONHEIGHT, 42); -- XMapWindow(display, voronoiwin[i]); -- } -- versionpluswin = make_button(" +", 290, y, 52); -- XMapWindow(display, versionpluswin); -- versionminuswin = make_button(" -", 290, y + BUTTONHEIGHT, 52); -- XMapWindow(display, versionminuswin); -- -- quitwin = make_button("Quit", 0, y + 2 * BUTTONHEIGHT, 42); -- XMapWindow(display, quitwin); -- leftwin = make_button("<", 44, y + 2 * BUTTONHEIGHT, 14); -- XMapWindow(display, leftwin); -- rightwin = make_button(">", 60, y + 2 * BUTTONHEIGHT, 14); -- XMapWindow(display, rightwin); -- upwin = make_button("^", 76, y + 2 * BUTTONHEIGHT, 14); -- XMapWindow(display, upwin); -- downwin = make_button("v", 92, y + 2 * BUTTONHEIGHT, 14); -- XMapWindow(display, downwin); -- resetwin = make_button("Reset", 108, y + 2 * BUTTONHEIGHT, 52); -- XMapWindow(display, resetwin); -- widthpluswin = make_button("Width+", 162, y + 2 * BUTTONHEIGHT, 61); -- XMapWindow(display, widthpluswin); -- widthminuswin = make_button("-", 225, y + 2 * BUTTONHEIGHT, 14); -- XMapWindow(display, widthminuswin); -- expwin = make_button("Exp", 241, y + 2 * BUTTONHEIGHT, 33); -- XMapWindow(display, expwin); -- exppluswin = make_button("+", 276, y + 2 * BUTTONHEIGHT, 14); -- XMapWindow(display, exppluswin); -- expminuswin = make_button("-", 292, y + 2 * BUTTONHEIGHT, 14); -- XMapWindow(display, expminuswin); -- fillwin = make_button("Fill", 308, y + 2 * BUTTONHEIGHT, 41); -- XMapWindow(display, fillwin); -- pswin = make_button("PS", 351, y + 2 * BUTTONHEIGHT, 24); -- XMapWindow(display, pswin); -- epswin = make_button("EPS", 377, y + 2 * BUTTONHEIGHT, 33); -- XMapWindow(display, epswin); --} -- --void fill_button(button) --Window button; --{ -- int x, y; -- unsigned int w, h, d, b; -- Window rootw; -- -- XGetGeometry(display, button, &rootw, &x, &y, &w, &h, &d, &b); -- XFillRectangle(display, button, fontgc, 0, 0, w, h); --} -- --void draw_buttons() --{ -- char numberstring[32]; -- char buttonstring[6]; -- int i; -- -- for (i = 1; i >= 0; i--) { -- if ((current_image == NODE) && (current_inc == i)) { -- fill_button(nodewin[i]); -- XDrawString(display, nodewin[i], blackfontgc, 2, 13, "node", 4); -- } else { -- XClearWindow(display, nodewin[i]); -- XDrawString(display, nodewin[i], fontgc, 2, 13, "node", 4); -- } -- if ((current_image == POLY) && (current_inc == i)) { -- fill_button(polywin[i]); -- XDrawString(display, polywin[i], blackfontgc, 2, 13, "poly", 4); -- } else { -- XClearWindow(display, polywin[i]); -- XDrawString(display, polywin[i], fontgc, 2, 13, "poly", 4); -- } -- if ((current_image == ELE) && (current_inc == i)) { -- fill_button(elewin[i]); -- XDrawString(display, elewin[i], blackfontgc, 2, 13, "ele", 3); -- } else { -- XClearWindow(display, elewin[i]); -- XDrawString(display, elewin[i], fontgc, 2, 13, "ele", 3); -- } -- if ((current_image == EDGE) && (current_inc == i)) { -- fill_button(edgewin[i]); -- XDrawString(display, edgewin[i], blackfontgc, 2, 13, "edge", 4); -- } else { -- XClearWindow(display, edgewin[i]); -- XDrawString(display, edgewin[i], fontgc, 2, 13, "edge", 4); -- } -- if ((current_image == PART) && (current_inc == i)) { -- fill_button(partwin[i]); -- XDrawString(display, partwin[i], blackfontgc, 2, 13, "part", 4); -- } else { -- XClearWindow(display, partwin[i]); -- XDrawString(display, partwin[i], fontgc, 2, 13, "part", 4); -- } -- if ((current_image == ADJ) && (current_inc == i)) { -- fill_button(adjwin[i]); -- XDrawString(display, adjwin[i], blackfontgc, 2, 13, "adj", 3); -- } else { -- XClearWindow(display, adjwin[i]); -- XDrawString(display, adjwin[i], fontgc, 2, 13, "adj", 3); -- } -- if ((current_image == VORO) && (current_inc == i)) { -- fill_button(voronoiwin[i]); -- XDrawString(display, voronoiwin[i], blackfontgc, 2, 13, "voro", 4); -- } else { -- XClearWindow(display, voronoiwin[i]); -- XDrawString(display, voronoiwin[i], fontgc, 2, 13, "voro", 4); -- } -- } -- -- XClearWindow(display, versionpluswin); -- sprintf(numberstring, "%d", loweriteration + 1); -- sprintf(buttonstring, "%-4.4s+", numberstring); -- XDrawString(display, versionpluswin, fontgc, 2, 13, buttonstring, 5); -- XClearWindow(display, versionminuswin); -- sprintf(numberstring, "%d", loweriteration); -- if (loweriteration == 0) { -- sprintf(buttonstring, "%-4.4s", numberstring); -- } else { -- sprintf(buttonstring, "%-4.4s-", numberstring); -- } -- XDrawString(display, versionminuswin, fontgc, 2, 13, buttonstring, 5); -- -- XClearWindow(display, quitwin); -- XDrawString(display, quitwin, fontgc, 2, 13, "Quit", 4); -- XClearWindow(display, leftwin); -- XDrawString(display, leftwin, fontgc, 2, 13, "<", 1); -- XClearWindow(display, rightwin); -- XDrawString(display, rightwin, fontgc, 2, 13, ">", 1); -- XClearWindow(display, upwin); -- XDrawString(display, upwin, fontgc, 2, 13, "^", 1); -- XClearWindow(display, downwin); -- XDrawString(display, downwin, fontgc, 2, 13, "v", 1); -- XClearWindow(display, resetwin); -- XDrawString(display, resetwin, fontgc, 2, 13, "Reset", 6); -- XClearWindow(display, widthpluswin); -- if (line_width < 100) { -- XDrawString(display, widthpluswin, fontgc, 2, 13, "Width+", 6); -- } else { -- XDrawString(display, widthpluswin, fontgc, 2, 13, "Width ", 6); -- } -- XClearWindow(display, widthminuswin); -- if (line_width > 1) { -- XDrawString(display, widthminuswin, fontgc, 2, 13, "-", 1); -- } -- XClearWindow(display, expwin); -- XClearWindow(display, exppluswin); -- XClearWindow(display, expminuswin); -- XClearWindow(display, fillwin); -- if (current_image == PART) { -- if (explode) { -- fill_button(expwin); -- XDrawString(display, expwin, blackfontgc, 2, 13, "Exp", 3); -- } else { -- XDrawString(display, expwin, fontgc, 2, 13, "Exp", 3); -- } -- XDrawString(display, exppluswin, fontgc, 2, 13, "+", 1); -- XDrawString(display, expminuswin, fontgc, 2, 13, "-", 1); -- if (fillelem) { -- fill_button(fillwin); -- XDrawString(display, fillwin, blackfontgc, 2, 13, "Fill", 4); -- } else { -- XDrawString(display, fillwin, fontgc, 2, 13, "Fill", 4); -- } -- } -- XClearWindow(display, pswin); -- XDrawString(display, pswin, fontgc, 2, 13, "PS", 2); -- XClearWindow(display, epswin); -- XDrawString(display, epswin, fontgc, 2, 13, "EPS", 3); --} -- --void showme_window(argc, argv) --int argc; --char **argv; --{ -- XSetWindowAttributes attr; -- XSizeHints hints; -- XGCValues fontvalues, linevalues; -- XColor alloc_color, exact_color; -- int i; -- -- display = XOpenDisplay((char *) NULL); -- if (!display) { -- printf("Error: Cannot open display.\n"); -- exit(1); -- } -- screen = DefaultScreen(display); -- rootwindow = DefaultRootWindow(display); -- black = BlackPixel(display, screen); -- white = WhitePixel(display, screen); -- windowdepth = DefaultDepth(display, screen); -- rootmap = DefaultColormap(display, screen); -- width = STARTWIDTH; -- height = STARTHEIGHT; -- attr.background_pixel = black; -- attr.border_pixel = white; -- attr.backing_store = NotUseful; -- attr.event_mask = ExposureMask | ButtonReleaseMask | ButtonPressMask | -- StructureNotifyMask; -- attr.bit_gravity = NorthWestGravity; -- attr.win_gravity = NorthWestGravity; -- attr.save_under = False; -- mainwindow = XCreateWindow(display, rootwindow, 0, 0, width, -- height + PANELHEIGHT, 3, 0, -- InputOutput, CopyFromParent, -- CWBackPixel | CWBorderPixel | CWEventMask | -- CWBitGravity | CWWinGravity | CWBackingStore | -- CWSaveUnder, &attr); -- hints.width = width; -- hints.height = height + PANELHEIGHT; -- hints.min_width = MINWIDTH; -- hints.min_height = MINHEIGHT + PANELHEIGHT; -- hints.width_inc = 1; -- hints.height_inc = 1; -- hints.flags = PMinSize | PSize | PResizeInc; -- XSetStandardProperties(display, mainwindow, "Show Me", "showme", None, -- argv, argc, &hints); -- -- static const unsigned char temp_show_me_achimedes_local[18] = {'s','h','o','w','m','e','\0','A','r','c','h','i','m','e','d','e','s','\0'}; -- XChangeProperty(display, mainwindow, XA_WM_CLASS, XA_STRING, 8, -- PropModeReplace, temp_show_me_achimedes_local, 18U); -- XClearWindow(display, mainwindow); -- XMapWindow(display, mainwindow); -- if ((windowdepth > 1) && -- XAllocNamedColor(display, rootmap, "yellow", &alloc_color, -- &exact_color)) { -- color = 1; -- explode = bw_ps; -- fontvalues.foreground = alloc_color.pixel; -- linevalues.foreground = alloc_color.pixel; -- showme_foreground = alloc_color.pixel; -- for (i = 0; i < 64; i++) { -- if (XAllocNamedColor(display, rootmap, colorname[i], &alloc_color, -- &rgb[i])) { -- colors[i] = alloc_color.pixel; -- } else { -- colors[i] = white; -- rgb[i].red = alloc_color.red; -- rgb[i].green = alloc_color.green; -- rgb[i].blue = alloc_color.blue; -- if (!quiet) { -- printf("Warning: I could not allocate %s.\n", colorname[i]); -- } -- } -- } -- } else { -- color = 0; -- fillelem = 0; -- explode = 1; -- fontvalues.foreground = white; -- linevalues.foreground = white; -- showme_foreground = white; -- } -- font = XLoadQueryFont(display, "9x15"); -- fontvalues.background = black; -- fontvalues.font = font->fid; -- fontvalues.fill_style = FillSolid; -- fontvalues.line_width = 2; -- fontgc = XCreateGC(display, rootwindow, GCForeground | GCBackground | -- GCFont | GCLineWidth | GCFillStyle, &fontvalues); -- fontvalues.foreground = black; -- blackfontgc = XCreateGC(display, rootwindow, GCForeground | GCBackground | -- GCFont | GCLineWidth | GCFillStyle, &fontvalues); -- linevalues.background = black; -- linevalues.line_width = line_width; -- linevalues.cap_style = CapRound; -- linevalues.join_style = JoinRound; -- linevalues.fill_style = FillSolid; -- linegc = XCreateGC(display, rootwindow, GCForeground | GCBackground | -- GCLineWidth | GCCapStyle | GCJoinStyle | GCFillStyle, -- &linevalues); -- trianglegc = XCreateGC(display, rootwindow, GCForeground | GCBackground | -- GCLineWidth | GCCapStyle | GCJoinStyle | GCFillStyle, -- &linevalues); -- make_buttons(height); -- XFlush(display); --} -- --void draw_node(nodes, dim, ptr, xscale, yscale, xoffset, yoffset) --int nodes; --int dim; --REAL *ptr; --REAL xscale; --REAL yscale; --REAL xoffset; --REAL yoffset; --{ -- int i; -- int index; -- -- index = dim; -- for (i = 1; i <= nodes; i++) { -- XFillRectangle(display, mainwindow, linegc, -- (int) (ptr[index] * xscale + xoffset) - (line_width >> 1), -- (int) (ptr[index + 1] * yscale + yoffset) - -- (line_width >> 1), line_width, line_width); -- index += dim; -- } --} -- --void draw_poly(nodes, dim, edges, holes, nodeptr, edgeptr, holeptr, -- xscale, yscale, xoffset, yoffset) --int nodes; --int dim; --int edges; --int holes; --REAL *nodeptr; --int *edgeptr; --REAL *holeptr; --REAL xscale; --REAL yscale; --REAL xoffset; --REAL yoffset; --{ -- int i; -- int index; -- REAL *point1, *point2; -- int x1, y1, x2, y2; -- -- index = dim; -- for (i = 1; i <= nodes; i++) { -- XFillRectangle(display, mainwindow, linegc, -- (int) (nodeptr[index] * xscale + xoffset) - -- (line_width >> 1), -- (int) (nodeptr[index + 1] * yscale + yoffset) - -- (line_width >> 1), line_width, line_width); -- index += dim; -- } -- index = 2; -- for (i = 1; i <= edges; i++) { -- point1 = &nodeptr[edgeptr[index++] * dim]; -- point2 = &nodeptr[edgeptr[index++] * dim]; -- XDrawLine(display, mainwindow, linegc, -- (int) (point1[0] * xscale + xoffset), -- (int) (point1[1] * yscale + yoffset), -- (int) (point2[0] * xscale + xoffset), -- (int) (point2[1] * yscale + yoffset)); -- } -- index = dim; -- if (color) { -- XSetForeground(display, linegc, colors[0]); -- } -- for (i = 1; i <= holes; i++) { -- x1 = (int) (holeptr[index] * xscale + xoffset) - 3; -- y1 = (int) (holeptr[index + 1] * yscale + yoffset) - 3; -- x2 = x1 + 6; -- y2 = y1 + 6; -- XDrawLine(display, mainwindow, linegc, x1, y1, x2, y2); -- XDrawLine(display, mainwindow, linegc, x1, y2, x2, y1); -- index += dim; -- } -- XSetForeground(display, linegc, showme_foreground); --} -- --void draw_ele(inc, elems, corners, ptr, partition, shift, -- xscale, yscale, xoffset, yoffset) --int inc; --int elems; --int corners; /* unused */ --int *ptr; --int *partition; --REAL *shift; --REAL xscale; --REAL yscale; --REAL xoffset; --REAL yoffset; --{ -- int i, j; -- int index; -- REAL shiftx = 0.0, shifty = 0.0; -- REAL *prevpoint, *nowpoint; -- XPoint *vertices = (XPoint *) NULL; -- -- if (color && fillelem && (partition != (int *) NULL)) { -- vertices = (XPoint *) malloc(3 * sizeof(XPoint)); -- if (vertices == (XPoint *) NULL) { -- printf("Error: Out of memory.\n"); -- exit(1); -- } -- } -- index = 3; -- for (i = 1; i <= elems; i++) { -- if ((partition != (int *) NULL) && explode) { -- shiftx = shift[partition[i] << 1]; -- shifty = shift[(partition[i] << 1) + 1]; -- } -- if (color && (partition != (int *) NULL)) { -- if (fillelem) { -- XSetForeground(display, trianglegc, colors[partition[i] & 63]); -- } else { -- XSetForeground(display, linegc, colors[partition[i] & 63]); -- } -- } -- if (color && fillelem && (partition != (int *) NULL)) { -- if ((partition != (int *) NULL) && explode) { -- for (j = 0; j < 3; j++) { -- nowpoint = &nodeptr[inc][ptr[index + j] * node_dim[inc]]; -- vertices[j].x = (nowpoint[0] + shiftx) * xscale + xoffset; -- vertices[j].y = (nowpoint[1] + shifty) * yscale + yoffset; -- } -- } else { -- for (j = 0; j < 3; j++) { -- nowpoint = &nodeptr[inc][ptr[index + j] * node_dim[inc]]; -- vertices[j].x = nowpoint[0] * xscale + xoffset; -- vertices[j].y = nowpoint[1] * yscale + yoffset; -- } -- } -- XFillPolygon(display, mainwindow, trianglegc, vertices, 3, -- Convex, CoordModeOrigin); -- } -- prevpoint = &nodeptr[inc][ptr[index + 2] * node_dim[inc]]; -- if ((partition != (int *) NULL) && explode) { -- for (j = 0; j < 3; j++) { -- nowpoint = &nodeptr[inc][ptr[index++] * node_dim[inc]]; -- XDrawLine(display, mainwindow, linegc, -- (int) ((prevpoint[0] + shiftx) * xscale + xoffset), -- (int) ((prevpoint[1] + shifty) * yscale + yoffset), -- (int) ((nowpoint[0] + shiftx) * xscale + xoffset), -- (int) ((nowpoint[1] + shifty) * yscale + yoffset)); -- prevpoint = nowpoint; -- } -- } else { -- for (j = 0; j < 3; j++) { -- nowpoint = &nodeptr[inc][ptr[index++] * node_dim[inc]]; -- XDrawLine(display, mainwindow, linegc, -- (int) (prevpoint[0] * xscale + xoffset), -- (int) (prevpoint[1] * yscale + yoffset), -- (int) (nowpoint[0] * xscale + xoffset), -- (int) (nowpoint[1] * yscale + yoffset)); -- prevpoint = nowpoint; -- } -- } -- } -- if (color && fillelem && (partition != (int *) NULL)) { -- free(vertices); -- } -- XSetForeground(display, linegc, showme_foreground); --} -- --void draw_edge(nodes, dim, edges, nodeptr, edgeptr, normptr, -- xscale, yscale, xoffset, yoffset) --int nodes; /* unused */ --int dim; --int edges; --REAL *nodeptr; --int *edgeptr; --REAL *normptr; --REAL xscale; --REAL yscale; --REAL xoffset; --REAL yoffset; --{ -- int i; -- int index; -- REAL *point1, *point2; -- REAL normx, normy; -- REAL normmult, normmultx, normmulty; -- REAL windowxmin, windowymin, windowxmax, windowymax; -- -- index = 2; -- for (i = 1; i <= edges; i++) { -- point1 = &nodeptr[edgeptr[index++] * dim]; -- if (edgeptr[index] == -1) { -- normx = normptr[index - 1]; -- normy = normptr[index++]; -- normmultx = 0.0; -- if (normx > 0) { -- windowxmax = (width - 1 - xoffset) / xscale; -- normmultx = (windowxmax - point1[0]) / normx; -- } else if (normx < 0) { -- windowxmin = -xoffset / xscale; -- normmultx = (windowxmin - point1[0]) / normx; -- } -- normmulty = 0.0; -- if (normy > 0) { -- windowymax = -yoffset / yscale; -- normmulty = (windowymax - point1[1]) / normy; -- } else if (normy < 0) { -- windowymin = (height - 1 - yoffset) / yscale; -- normmulty = (windowymin - point1[1]) / normy; -- } -- if (normmultx == 0.0) { -- normmult = normmulty; -- } else if (normmulty == 0.0) { -- normmult = normmultx; -- } else if (normmultx < normmulty) { -- normmult = normmultx; -- } else { -- normmult = normmulty; -- } -- if (normmult > 0.0) { -- XDrawLine(display, mainwindow, linegc, -- (int) (point1[0] * xscale + xoffset), -- (int) (point1[1] * yscale + yoffset), -- (int) ((point1[0] + normmult * normx) * xscale + xoffset), -- (int) ((point1[1] + normmult * normy) * yscale + yoffset)); -- } -- } else { -- point2 = &nodeptr[edgeptr[index++] * dim]; -- XDrawLine(display, mainwindow, linegc, -- (int) (point1[0] * xscale + xoffset), -- (int) (point1[1] * yscale + yoffset), -- (int) (point2[0] * xscale + xoffset), -- (int) (point2[1] * yscale + yoffset)); -- } -- } --} -- --void draw_adj(dim, subdomains, ptr, center, xscale, yscale, -- xoffset, yoffset) --int dim; --int subdomains; --int *ptr; --REAL *center; --REAL xscale; --REAL yscale; --REAL xoffset; --REAL yoffset; --{ -- int i, j; -- REAL *point1, *point2; -- -- for (i = 0; i < subdomains; i++) { -- for (j = i + 1; j < subdomains; j++) { -- if (ptr[i * subdomains + j]) { -- point1 = ¢er[i * dim]; -- point2 = ¢er[j * dim]; -- XDrawLine(display, mainwindow, linegc, -- (int) (point1[0] * xscale + xoffset), -- (int) (point1[1] * yscale + yoffset), -- (int) (point2[0] * xscale + xoffset), -- (int) (point2[1] * yscale + yoffset)); -- } -- } -- } -- for (i = 0; i < subdomains; i++) { -- point1 = ¢er[i * dim]; -- if (color) { -- XSetForeground(display, linegc, colors[i & 63]); -- } -- XFillArc(display, mainwindow, linegc, -- (int) (point1[0] * xscale + xoffset) - 5 - (line_width >> 1), -- (int) (point1[1] * yscale + yoffset) - 5 - (line_width >> 1), -- line_width + 10, line_width + 10, 0, 23040); -- } -- XSetForeground(display, linegc, showme_foreground); --} -- --void draw(inc, image, xmin, ymin, xmax, ymax) --int inc; --int image; --REAL xmin; --REAL ymin; --REAL xmax; --REAL ymax; --{ -- draw_buttons(); -- XClearWindow(display, mainwindow); -- if (image == NOTHING) { -- return; -- } -- if (!loaded[inc][image]) { -- return; -- } -- if ((image == PART) && explode) { -- xmin += (xmin - partcenter[inc][subdomains[inc] << 1]) * explosion; -- xmax += (xmax - partcenter[inc][subdomains[inc] << 1]) * explosion; -- ymin += (ymin - partcenter[inc][(subdomains[inc] << 1) + 1]) * explosion; -- ymax += (ymax - partcenter[inc][(subdomains[inc] << 1) + 1]) * explosion; -- } -- xscale = (REAL) (width - line_width - 4) / (xmax - xmin); -- yscale = (REAL) (height - line_width - 4) / (ymax - ymin); -- if (xscale > yscale) { -- xscale = yscale; -- } else { -- yscale = xscale; -- } -- xoffset = 0.5 * ((REAL) width - xscale * (xmax - xmin)) - -- xscale * xmin; -- yoffset = (REAL) height - 0.5 * ((REAL) height - yscale * (ymax - ymin)) + -- yscale * ymin; -- yscale = - yscale; -- switch(image) { -- case NODE: -- draw_node(nodes[inc], node_dim[inc], nodeptr[inc], -- xscale, yscale, xoffset, yoffset); -- break; -- case POLY: -- if (polynodes[inc] > 0) { -- draw_poly(polynodes[inc], poly_dim[inc], polyedges[inc], -- polyholes[inc], polynodeptr[inc], polyedgeptr[inc], -- polyholeptr[inc], -- xscale, yscale, xoffset, yoffset); -- } else { -- draw_poly(nodes[inc], node_dim[inc], polyedges[inc], -- polyholes[inc], nodeptr[inc], polyedgeptr[inc], -- polyholeptr[inc], -- xscale, yscale, xoffset, yoffset); -- } -- break; -- case ELE: -- draw_ele(inc, elems[inc], ele_corners[inc], eleptr[inc], -- (int *) NULL, (REAL *) NULL, -- xscale, yscale, xoffset, yoffset); -- break; -- case EDGE: -- draw_edge(nodes[inc], node_dim[inc], edges[inc], -- nodeptr[inc], edgeptr[inc], normptr[inc], -- xscale, yscale, xoffset, yoffset); -- break; -- case PART: -- draw_ele(inc, elems[inc], ele_corners[inc], eleptr[inc], -- partpart[inc], partshift[inc], -- xscale, yscale, xoffset, yoffset); -- break; -- case ADJ: -- draw_adj(node_dim[inc], adjsubdomains[inc], adjptr[inc], partcenter[inc], -- xscale, yscale, xoffset, yoffset); -- break; -- case VORO: -- if (loaded[inc][NODE]) { -- draw_node(nodes[inc], node_dim[inc], nodeptr[inc], -- xscale, yscale, xoffset, yoffset); -- } -- draw_edge(vnodes[inc], vnode_dim[inc], vedges[inc], -- vnodeptr[inc], vedgeptr[inc], vnormptr[inc], -- xscale, yscale, xoffset, yoffset); -- break; -- default: -- break; -- } --} -- --void addps(instring, outstring, eps) --char *instring; --char *outstring; --int eps; --{ -- strcpy(outstring, instring); -- if (eps) { -- strcat(outstring, ".eps"); -- } else { -- strcat(outstring, ".ps"); -- } --} -- --int print_head(fname, file, llcornerx, llcornery, eps) --char *fname; --FILE **file; --int llcornerx; --int llcornery; --int eps; --{ -- if (!quiet) { -- printf("Writing %s\n", fname); -- } -- *file = fopen(fname, "w"); -- if (*file == (FILE *) NULL) { -- printf(" Error: Could not open %s\n", fname); -- return 1; -- } -- if (eps) { -- fprintf(*file, "%%!PS-Adobe-2.0 EPSF-2.0\n"); -- } else { -- fprintf(*file, "%%!PS-Adobe-2.0\n"); -- } -- fprintf(*file, "%%%%BoundingBox: %d %d %d %d\n", llcornerx, llcornery, -- 612 - llcornerx, 792 - llcornery); -- fprintf(*file, "%%%%Creator: Show Me\n"); -- fprintf(*file, "%%%%EndComments\n\n"); -- fprintf(*file, "1 setlinecap\n"); -- fprintf(*file, "1 setlinejoin\n"); -- fprintf(*file, "%d setlinewidth\n", line_width); -- fprintf(*file, "%d %d moveto\n", llcornerx, llcornery); -- fprintf(*file, "%d %d lineto\n", 612 - llcornerx, llcornery); -- fprintf(*file, "%d %d lineto\n", 612 - llcornerx, 792 - llcornery); -- fprintf(*file, "%d %d lineto\n", llcornerx, 792 - llcornery); -- fprintf(*file, "closepath\nclip\nnewpath\n"); -- return 0; --} -- --void print_node(nodefile, nodes, dim, ptr, xscale, yscale, -- xoffset, yoffset) --FILE *nodefile; --int nodes; --int dim; --REAL *ptr; --REAL xscale; --REAL yscale; --REAL xoffset; --REAL yoffset; --{ -- int i; -- int index; -- -- index = dim; -- for (i = 1; i <= nodes; i++) { -- fprintf(nodefile, "%d %d %d 0 360 arc\nfill\n", -- (int) (ptr[index] * xscale + xoffset), -- (int) (ptr[index + 1] * yscale + yoffset), -- 1 + (line_width >> 1)); -- index += dim; -- } --} -- --void print_poly(polyfile, nodes, dim, edges, holes, nodeptr, edgeptr, holeptr, -- xscale, yscale, xoffset, yoffset) --FILE *polyfile; --int nodes; --int dim; --int edges; --int holes; /* unused */ --REAL *nodeptr; --int *edgeptr; --REAL *holeptr; /* unused */ --REAL xscale; --REAL yscale; --REAL xoffset; --REAL yoffset; --{ -- int i; -- int index; -- REAL *point1, *point2; -- -- index = dim; -- for (i = 1; i <= nodes; i++) { -- fprintf(polyfile, "%d %d %d 0 360 arc\nfill\n", -- (int) (nodeptr[index] * xscale + xoffset), -- (int) (nodeptr[index + 1] * yscale + yoffset), -- 1 + (line_width >> 1)); -- index += dim; -- } -- index = 2; -- for (i = 1; i <= edges; i++) { -- point1 = &nodeptr[edgeptr[index++] * dim]; -- point2 = &nodeptr[edgeptr[index++] * dim]; -- fprintf(polyfile, "%d %d moveto\n", -- (int) (point1[0] * xscale + xoffset), -- (int) (point1[1] * yscale + yoffset)); -- fprintf(polyfile, "%d %d lineto\nstroke\n", -- (int) (point2[0] * xscale + xoffset), -- (int) (point2[1] * yscale + yoffset)); -- } --} -- --void print_ele(elefile, nodes, dim, elems, corners, nodeptr, eleptr, -- partition, shift, -- xscale, yscale, xoffset, yoffset, llcornerx, llcornery) --FILE *elefile; --int nodes; /* unused */ --int dim; --int elems; --int corners; /* unused */ --REAL *nodeptr; --int *eleptr; --int *partition; --REAL *shift; --REAL xscale; --REAL yscale; --REAL xoffset; --REAL yoffset; --int llcornerx; --int llcornery; --{ -- int i, j; -- int index, colorindex; -- REAL shiftx, shifty; -- REAL *nowpoint; -- -- index = 3; -- if ((partition != (int *) NULL) && !bw_ps) { -- fprintf(elefile, "0 0 0 setrgbcolor\n"); -- fprintf(elefile, "%d %d moveto\n", llcornerx, llcornery); -- fprintf(elefile, "%d %d lineto\n", 612 - llcornerx, llcornery); -- fprintf(elefile, "%d %d lineto\n", 612 - llcornerx, 792 - llcornery); -- fprintf(elefile, "%d %d lineto\n", llcornerx, 792 - llcornery); -- fprintf(elefile, "fill\n"); -- } -- for (i = 1; i <= elems; i++) { -- if ((partition != (int *) NULL) && !bw_ps) { -- colorindex = partition[i] & 63; -- fprintf(elefile, "%6.3f %6.3f %6.3f setrgbcolor\n", -- (REAL) rgb[colorindex].red / 65535.0, -- (REAL) rgb[colorindex].green / 65535.0, -- (REAL) rgb[colorindex].blue / 65535.0); -- } -- nowpoint = &nodeptr[eleptr[index + 2] * dim]; -- if ((partition != (int *) NULL) && (explode || bw_ps)) { -- shiftx = shift[partition[i] << 1]; -- shifty = shift[(partition[i] << 1) + 1]; -- fprintf(elefile, "%d %d moveto\n", -- (int) ((nowpoint[0] + shiftx) * xscale + xoffset), -- (int) ((nowpoint[1] + shifty) * yscale + yoffset)); -- for (j = 0; j < 3; j++) { -- nowpoint = &nodeptr[eleptr[index++] * dim]; -- fprintf(elefile, "%d %d lineto\n", -- (int) ((nowpoint[0] + shiftx) * xscale + xoffset), -- (int) ((nowpoint[1] + shifty) * yscale + yoffset)); -- } -- } else { -- fprintf(elefile, "%d %d moveto\n", -- (int) (nowpoint[0] * xscale + xoffset), -- (int) (nowpoint[1] * yscale + yoffset)); -- for (j = 0; j < 3; j++) { -- nowpoint = &nodeptr[eleptr[index++] * dim]; -- fprintf(elefile, "%d %d lineto\n", -- (int) (nowpoint[0] * xscale + xoffset), -- (int) (nowpoint[1] * yscale + yoffset)); -- } -- } -- if (fillelem && !bw_ps) { -- fprintf(elefile, "gsave\nfill\ngrestore\n1 1 0 setrgbcolor\n"); -- } -- fprintf(elefile, "stroke\n"); -- } --} -- --void print_edge(edgefile, nodes, dim, edges, nodeptr, edgeptr, normptr, -- xscale, yscale, xoffset, yoffset, llcornerx, llcornery) --FILE *edgefile; --int nodes; /* unused */ --int dim; --int edges; --REAL *nodeptr; --int *edgeptr; --REAL *normptr; --REAL xscale; --REAL yscale; --REAL xoffset; --REAL yoffset; --int llcornerx; --int llcornery; --{ -- int i; -- int index; -- REAL *point1, *point2; -- REAL normx, normy; -- REAL normmult, normmultx, normmulty; -- REAL windowxmin, windowymin, windowxmax, windowymax; -- -- index = 2; -- for (i = 1; i <= edges; i++) { -- point1 = &nodeptr[edgeptr[index++] * dim]; -- if (edgeptr[index] == -1) { -- normx = normptr[index - 1]; -- normy = normptr[index++]; -- normmultx = 0.0; -- if (normx > 0) { -- windowxmax = ((REAL) (612 - llcornerx) - xoffset) / xscale; -- normmultx = (windowxmax - point1[0]) / normx; -- } else if (normx < 0) { -- windowxmin = ((REAL) llcornerx - xoffset) / xscale; -- normmultx = (windowxmin - point1[0]) / normx; -- } -- normmulty = 0.0; -- if (normy > 0) { -- windowymax = ((REAL) (792 - llcornery) - yoffset) / yscale; -- normmulty = (windowymax - point1[1]) / normy; -- } else if (normy < 0) { -- windowymin = ((REAL) llcornery - yoffset) / yscale; -- normmulty = (windowymin - point1[1]) / normy; -- } -- if (normmultx == 0.0) { -- normmult = normmulty; -- } else if (normmulty == 0.0) { -- normmult = normmultx; -- } else if (normmultx < normmulty) { -- normmult = normmultx; -- } else { -- normmult = normmulty; -- } -- if (normmult > 0.0) { -- fprintf(edgefile, "%d %d moveto\n", -- (int) (point1[0] * xscale + xoffset), -- (int) (point1[1] * yscale + yoffset)); -- fprintf(edgefile, "%d %d lineto\nstroke\n", -- (int) ((point1[0] + normmult * normx) * xscale + xoffset), -- (int) ((point1[1] + normmult * normy) * yscale + yoffset)); -- } -- } else { -- point2 = &nodeptr[edgeptr[index++] * dim]; -- fprintf(edgefile, "%d %d moveto\n", -- (int) (point1[0] * xscale + xoffset), -- (int) (point1[1] * yscale + yoffset)); -- fprintf(edgefile, "%d %d lineto\nstroke\n", -- (int) (point2[0] * xscale + xoffset), -- (int) (point2[1] * yscale + yoffset)); -- } -- } --} -- --void print_adj(adjfile, dim, subdomains, ptr, center, xscale, yscale, -- xoffset, yoffset, llcornerx, llcornery) --FILE *adjfile; --int dim; --int subdomains; --int *ptr; --REAL *center; --REAL xscale; --REAL yscale; --REAL xoffset; --REAL yoffset; --int llcornerx; --int llcornery; --{ -- int i, j; -- REAL *point1, *point2; -- int colorindex; -- -- if (!bw_ps) { -- fprintf(adjfile, "0 0 0 setrgbcolor\n"); -- fprintf(adjfile, "%d %d moveto\n", llcornerx, llcornery); -- fprintf(adjfile, "%d %d lineto\n", 612 - llcornerx, llcornery); -- fprintf(adjfile, "%d %d lineto\n", 612 - llcornerx, 792 - llcornery); -- fprintf(adjfile, "%d %d lineto\n", llcornerx, 792 - llcornery); -- fprintf(adjfile, "fill\n"); -- fprintf(adjfile, "1 1 0 setrgbcolor\n"); -- } -- for (i = 0; i < subdomains; i++) { -- for (j = i + 1; j < subdomains; j++) { -- if (ptr[i * subdomains + j]) { -- point1 = ¢er[i * dim]; -- point2 = ¢er[j * dim]; -- fprintf(adjfile, "%d %d moveto\n", -- (int) (point1[0] * xscale + xoffset), -- (int) (point1[1] * yscale + yoffset)); -- fprintf(adjfile, "%d %d lineto\nstroke\n", -- (int) (point2[0] * xscale + xoffset), -- (int) (point2[1] * yscale + yoffset)); -- } -- } -- } -- for (i = 0; i < subdomains; i++) { -- point1 = ¢er[i * dim]; -- if (!bw_ps) { -- colorindex = i & 63; -- fprintf(adjfile, "%6.3f %6.3f %6.3f setrgbcolor\n", -- (REAL) rgb[colorindex].red / 65535.0, -- (REAL) rgb[colorindex].green / 65535.0, -- (REAL) rgb[colorindex].blue / 65535.0); -- fprintf(adjfile, "%d %d %d 0 360 arc\nfill\n", -- (int) (point1[0] * xscale + xoffset), -- (int) (point1[1] * yscale + yoffset), -- 5 + (line_width >> 1)); -- } else { -- fprintf(adjfile, "%d %d %d 0 360 arc\nfill\n", -- (int) (point1[0] * xscale + xoffset), -- (int) (point1[1] * yscale + yoffset), -- 3 + (line_width >> 1)); -- } -- } --} -- --void print(inc, image, xmin, ymin, xmax, ymax, eps) --int inc; --int image; --REAL xmin; --REAL ymin; --REAL xmax; --REAL ymax; --int eps; --{ -- REAL xxscale, yyscale, xxoffset, yyoffset; -- char psfilename[FILENAMESIZE]; -- int llcornerx, llcornery; -- FILE *psfile; -- -- if (image == NOTHING) { -- return; -- } -- if (!loaded[inc][image]) { -- return; -- } -- if ((image == PART) && (explode || bw_ps)) { -- xmin += (xmin - partcenter[inc][subdomains[inc] << 1]) * explosion; -- xmax += (xmax - partcenter[inc][subdomains[inc] << 1]) * explosion; -- ymin += (ymin - partcenter[inc][(subdomains[inc] << 1) + 1]) * explosion; -- ymax += (ymax - partcenter[inc][(subdomains[inc] << 1) + 1]) * explosion; -- } -- xxscale = (460.0 - (REAL) line_width) / (xmax - xmin); -- yyscale = (640.0 - (REAL) line_width) / (ymax - ymin); -- if (xxscale > yyscale) { -- xxscale = yyscale; -- llcornerx = (604 - (int) (yyscale * (xmax - xmin)) - line_width) >> 1; -- llcornery = 72; -- } else { -- yyscale = xxscale; -- llcornerx = 72; -- llcornery = (784 - (int) (xxscale * (ymax - ymin)) - line_width) >> 1; -- } -- xxoffset = 0.5 * (612.0 - xxscale * (xmax - xmin)) - xxscale * xmin + -- (line_width >> 1); -- yyoffset = 0.5 * (792.0 - yyscale * (ymax - ymin)) - yyscale * ymin + -- (line_width >> 1); -- switch(image) { -- case NODE: -- addps(nodefilename[inc], psfilename, eps); -- break; -- case POLY: -- addps(polyfilename[inc], psfilename, eps); -- break; -- case ELE: -- addps(elefilename[inc], psfilename, eps); -- break; -- case EDGE: -- addps(edgefilename[inc], psfilename, eps); -- break; -- case PART: -- addps(partfilename[inc], psfilename, eps); -- break; -- case ADJ: -- addps(adjfilename[inc], psfilename, eps); -- break; -- case VORO: -- addps(vedgefilename[inc], psfilename, eps); -- break; -- default: -- break; -- } -- if (print_head(psfilename, &psfile, llcornerx, llcornery, eps)) { -- return; -- } -- switch (image) { -- case NODE: -- print_node(psfile, nodes[inc], node_dim[inc], nodeptr[inc], -- xxscale, yyscale, xxoffset, yyoffset); -- break; -- case POLY: -- if (polynodes[inc] > 0) { -- print_poly(psfile, polynodes[inc], poly_dim[inc], polyedges[inc], -- polyholes[inc], polynodeptr[inc], polyedgeptr[inc], -- polyholeptr[inc], xxscale, yyscale, xxoffset, yyoffset); -- } else { -- print_poly(psfile, nodes[inc], node_dim[inc], polyedges[inc], -- polyholes[inc], nodeptr[inc], polyedgeptr[inc], -- polyholeptr[inc], xxscale, yyscale, xxoffset, yyoffset); -- } -- break; -- case ELE: -- print_ele(psfile, nodes[inc], node_dim[inc], elems[inc], -- ele_corners[inc], nodeptr[inc], eleptr[inc], -- (int *) NULL, (REAL *) NULL, -- xxscale, yyscale, xxoffset, yyoffset, llcornerx, llcornery); -- break; -- case EDGE: -- print_edge(psfile, nodes[inc], node_dim[inc], edges[inc], -- nodeptr[inc], edgeptr[inc], normptr[inc], -- xxscale, yyscale, xxoffset, yyoffset, llcornerx, llcornery); -- break; -- case PART: -- print_ele(psfile, nodes[inc], node_dim[inc], elems[inc], -- ele_corners[inc], nodeptr[inc], eleptr[inc], -- partpart[inc], partshift[inc], -- xxscale, yyscale, xxoffset, yyoffset, llcornerx, llcornery); -- break; -- case ADJ: -- print_adj(psfile, node_dim[inc], adjsubdomains[inc], adjptr[inc], -- partcenter[inc], -- xxscale, yyscale, xxoffset, yyoffset, llcornerx, llcornery); -- break; -- case VORO: -- print_edge(psfile, vnodes[inc], vnode_dim[inc], vedges[inc], -- vnodeptr[inc], vedgeptr[inc], vnormptr[inc], -- xxscale, yyscale, xxoffset, yyoffset, llcornerx, llcornery); -- break; -- default: -- break; -- } -- if (!eps) { -- fprintf(psfile, "showpage\n"); -- } -- fclose(psfile); --} -- --int main(argc, argv) --int argc; --char **argv; --{ -- REAL xmin = 0.0, ymin = 0.0, xmax = 0.0, ymax = 0.0; -- REAL xptr, yptr, xspan, yspan; -- int past_image; -- int new_image = 0; -- int new_inc = 0; -- -- parsecommandline(argc, argv); -- showme_init(); -- choose_image(start_inc, start_image); -- showme_window(argc, argv); -- -- if (current_image != NOTHING) { -- xmin = xlo[current_inc][current_image]; -- ymin = ylo[current_inc][current_image]; -- xmax = xhi[current_inc][current_image]; -- ymax = yhi[current_inc][current_image]; -- zoom = 0; -- } -- -- XMaskEvent(display, ExposureMask, &event); -- while (1) { -- switch (event.type) { -- case ButtonRelease: -- if (event.xany.window == quitwin) { -- XDestroyWindow(display, mainwindow); -- XCloseDisplay(display); -- return 0; -- } else if (event.xany.window == leftwin) { -- xspan = 0.25 * (xmax - xmin); -- xmin += xspan; -- xmax += xspan; -- draw(current_inc, current_image, xmin, ymin, xmax, ymax); -- } else if (event.xany.window == rightwin) { -- xspan = 0.25 * (xmax - xmin); -- xmin -= xspan; -- xmax -= xspan; -- draw(current_inc, current_image, xmin, ymin, xmax, ymax); -- } else if (event.xany.window == upwin) { -- yspan = 0.25 * (ymax - ymin); -- ymin -= yspan; -- ymax -= yspan; -- draw(current_inc, current_image, xmin, ymin, xmax, ymax); -- } else if (event.xany.window == downwin) { -- yspan = 0.25 * (ymax - ymin); -- ymin += yspan; -- ymax += yspan; -- draw(current_inc, current_image, xmin, ymin, xmax, ymax); -- } else if (event.xany.window == resetwin) { -- xmin = xlo[current_inc][current_image]; -- ymin = ylo[current_inc][current_image]; -- xmax = xhi[current_inc][current_image]; -- ymax = yhi[current_inc][current_image]; -- zoom = 0; -- draw(current_inc, current_image, xmin, ymin, xmax, ymax); -- } else if (event.xany.window == widthpluswin) { -- if (line_width < 100) { -- line_width++; -- XSetLineAttributes(display, linegc, line_width, LineSolid, -- CapRound, JoinRound); -- XSetLineAttributes(display, trianglegc, line_width, LineSolid, -- CapRound, JoinRound); -- draw(current_inc, current_image, xmin, ymin, xmax, ymax); -- } -- } else if (event.xany.window == widthminuswin) { -- if (line_width > 1) { -- line_width--; -- XSetLineAttributes(display, linegc, line_width, LineSolid, -- CapRound, JoinRound); -- XSetLineAttributes(display, trianglegc, line_width, LineSolid, -- CapRound, JoinRound); -- draw(current_inc, current_image, xmin, ymin, xmax, ymax); -- } -- } else if (event.xany.window == expwin) { -- if ((current_image == PART) && loaded[current_inc][PART]) { -- explode = !explode; -- draw(current_inc, current_image, xmin, ymin, xmax, ymax); -- } -- } else if (event.xany.window == exppluswin) { -- if ((current_image == PART) && loaded[current_inc][PART] && explode) { -- explosion += 0.125; -- findpartshift(subdomains[current_inc], explosion, -- partcenter[current_inc], partshift[current_inc]); -- draw(current_inc, current_image, xmin, ymin, xmax, ymax); -- } -- } else if (event.xany.window == expminuswin) { -- if ((current_image == PART) && loaded[current_inc][PART] && explode && -- (explosion >= 0.125)) { -- explosion -= 0.125; -- findpartshift(subdomains[current_inc], explosion, -- partcenter[current_inc], partshift[current_inc]); -- draw(current_inc, current_image, xmin, ymin, xmax, ymax); -- } -- } else if (event.xany.window == fillwin) { -- if ((current_image == PART) && loaded[current_inc][PART]) { -- fillelem = !fillelem; -- draw(current_inc, current_image, xmin, ymin, xmax, ymax); -- } -- } else if (event.xany.window == pswin) { -- fill_button(pswin); -- XFlush(display); -- print(current_inc, current_image, xmin, ymin, xmax, ymax, 0); -- XClearWindow(display, pswin); -- XDrawString(display, pswin, fontgc, 2, 13, "PS", 2); -- } else if (event.xany.window == epswin) { -- fill_button(epswin); -- XFlush(display); -- print(current_inc, current_image, xmin, ymin, xmax, ymax, 1); -- XClearWindow(display, epswin); -- XDrawString(display, epswin, fontgc, 2, 13, "EPS", 3); -- } else if (event.xany.window == versionpluswin) { -- move_inc(1); -- loweriteration++; -- set_filenames(filename, loweriteration); -- if (current_inc == 1) { -- current_inc = 0; -- } else { -- current_image = NOTHING; -- XClearWindow(display, mainwindow); -- } -- draw_buttons(); -- } else if (event.xany.window == versionminuswin) { -- if (loweriteration > 0) { -- move_inc(0); -- loweriteration--; -- set_filenames(filename, loweriteration); -- if (current_inc == 0) { -- current_inc = 1; -- } else { -- current_image = NOTHING; -- XClearWindow(display, mainwindow); -- } -- draw_buttons(); -- } -- } else if ((event.xany.window == nodewin[0]) || -- (event.xany.window == polywin[0]) || -- (event.xany.window == elewin[0]) || -- (event.xany.window == edgewin[0]) || -- (event.xany.window == partwin[0]) || -- (event.xany.window == adjwin[0]) || -- (event.xany.window == voronoiwin[0]) || -- (event.xany.window == nodewin[1]) || -- (event.xany.window == polywin[1]) || -- (event.xany.window == elewin[1]) || -- (event.xany.window == edgewin[1]) || -- (event.xany.window == partwin[1]) || -- (event.xany.window == adjwin[1]) || -- (event.xany.window == voronoiwin[1])) { -- if (event.xany.window == nodewin[0]) { -- new_inc = 0; -- new_image = NODE; -- } -- if (event.xany.window == polywin[0]) { -- new_inc = 0; -- new_image = POLY; -- } -- if (event.xany.window == elewin[0]) { -- new_inc = 0; -- new_image = ELE; -- } -- if (event.xany.window == edgewin[0]) { -- new_inc = 0; -- new_image = EDGE; -- } -- if (event.xany.window == partwin[0]) { -- new_inc = 0; -- new_image = PART; -- } -- if (event.xany.window == adjwin[0]) { -- new_inc = 0; -- new_image = ADJ; -- } -- if (event.xany.window == voronoiwin[0]) { -- new_inc = 0; -- new_image = VORO; -- } -- if (event.xany.window == nodewin[1]) { -- new_inc = 1; -- new_image = NODE; -- } -- if (event.xany.window == polywin[1]) { -- new_inc = 1; -- new_image = POLY; -- } -- if (event.xany.window == elewin[1]) { -- new_inc = 1; -- new_image = ELE; -- } -- if (event.xany.window == edgewin[1]) { -- new_inc = 1; -- new_image = EDGE; -- } -- if (event.xany.window == partwin[1]) { -- new_inc = 1; -- new_image = PART; -- } -- if (event.xany.window == adjwin[1]) { -- new_inc = 1; -- new_image = ADJ; -- } -- if (event.xany.window == voronoiwin[1]) { -- new_inc = 1; -- new_image = VORO; -- } -- past_image = current_image; -- if ((current_inc == new_inc) && (current_image == new_image)) { -- free_inc(new_inc); -- unload_inc(new_inc); -- } -- choose_image(new_inc, new_image); -- if ((past_image == NOTHING) && (current_image != NOTHING)) { -- xmin = xlo[current_inc][current_image]; -- ymin = ylo[current_inc][current_image]; -- xmax = xhi[current_inc][current_image]; -- ymax = yhi[current_inc][current_image]; -- zoom = 0; -- } -- draw(current_inc, current_image, xmin, ymin, xmax, ymax); -- } else { -- xptr = ((REAL) event.xbutton.x - xoffset) / xscale; -- yptr = ((REAL) event.xbutton.y - yoffset) / yscale; -- if ((current_image == PART) && loaded[current_inc][PART] && explode) { -- xptr = (xptr + partcenter[current_inc] -- [subdomains[current_inc] << 1] -- * explosion) / (1.0 + explosion); -- yptr = (yptr + partcenter[current_inc] -- [(subdomains[current_inc] << 1) + 1] -- * explosion) / (1.0 + explosion); -- } -- if ((event.xbutton.button == Button1) -- || (event.xbutton.button == Button3)) { -- if (event.xbutton.button == Button1) { -- xspan = 0.25 * (xmax - xmin); -- yspan = 0.25 * (ymax - ymin); -- zoom++; -- } else { -- xspan = xmax - xmin; -- yspan = ymax - ymin; -- zoom--; -- } -- xmin = xptr - xspan; -- ymin = yptr - yspan; -- xmax = xptr + xspan; -- ymax = yptr + yspan; -- draw(current_inc, current_image, xmin, ymin, xmax, ymax); -- } else if (event.xbutton.button == Button2) { -- printf("x = %.4g, y = %.4g\n", xptr, yptr); -- } -- } -- break; -- case DestroyNotify: -- XDestroyWindow(display, mainwindow); -- XCloseDisplay(display); -- return 0; -- case ConfigureNotify: -- if ((width != event.xconfigure.width) || -- (height != event.xconfigure.height - PANELHEIGHT)) { -- width = event.xconfigure.width; -- height = event.xconfigure.height - PANELHEIGHT; -- draw(current_inc, current_image, xmin, ymin, xmax, ymax); -- while (XCheckMaskEvent(display, ExposureMask, &event)); -- } -- break; -- case Expose: -- draw(current_inc, current_image, xmin, ymin, xmax, ymax); -- while (XCheckMaskEvent(display, ExposureMask, &event)); -- break; -- default: -- break; -- } -- XNextEvent(display, &event); -- } --} -diff --git a/Modules/ThirdParty/VNL/src/vxl/v3p/netlib/tests/CMakeLists.txt b/Modules/ThirdParty/VNL/src/vxl/v3p/netlib/tests/CMakeLists.txt -index d23be0c165..3b858454c2 100644 ---- a/Modules/ThirdParty/VNL/src/vxl/v3p/netlib/tests/CMakeLists.txt -+++ b/Modules/ThirdParty/VNL/src/vxl/v3p/netlib/tests/CMakeLists.txt -@@ -24,9 +24,13 @@ if(BUILD_TESTING) - add_test( NAME netlib_test_slamch COMMAND netlib_slamch_test ) - target_link_libraries(netlib_slamch_test ${VXL_LIB_PREFIX}v3p_netlib) - # test -+# Incompatibly with ITK's License -+if(0) - add_executable( netlib_tricall tricall.c ) - add_test( NAME netlib_test_tricall COMMAND netlib_tricall ) - target_link_libraries(netlib_tricall ${VXL_LIB_PREFIX}netlib) -+# Incompatible with ITK's License -+endif() - # test - add_executable( netlib_integral_test integral-test.c ) - add_test( NAME netlib_test_integral COMMAND netlib_integral_test ) -diff --git a/Modules/ThirdParty/VNL/src/vxl/v3p/netlib/triangle.README b/Modules/ThirdParty/VNL/src/vxl/v3p/netlib/triangle.README -deleted file mode 100644 -index b33ea00948..0000000000 ---- a/Modules/ThirdParty/VNL/src/vxl/v3p/netlib/triangle.README -+++ /dev/null -@@ -1,198 +0,0 @@ --Triangle --A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator. --Version 1.6 -- --Show Me --A Display Program for Meshes and More. --Version 1.6 -- --Copyright 1993, 1995, 1997, 1998, 2002, 2005 Jonathan Richard Shewchuk --2360 Woolsey #H --Berkeley, California 94705-1927 --Please send bugs and comments to jrs@cs.berkeley.edu -- --Created as part of the Quake project (tools for earthquake simulation). --Supported in part by NSF Grant CMS-9318163 and an NSERC 1967 Scholarship. --There is no warranty whatsoever. Use at your own risk. -- -- --Triangle generates exact Delaunay triangulations, constrained Delaunay --triangulations, conforming Delaunay triangulations, Voronoi diagrams, and --high-quality triangular meshes. The latter can be generated with no small --or large angles, and are thus suitable for finite element analysis. --Show Me graphically displays the contents of the geometric files used by --Triangle. Show Me can also write images in PostScript form. -- --Information on the algorithms used by Triangle, including complete --references, can be found in the comments at the beginning of the triangle.c --source file. Another listing of these references, with PostScript copies --of some of the papers, is available from the Web page -- -- http://www.cs.cmu.edu/~quake/triangle.research.html -- -------------------------------------------------------------------------------- -- --These programs may be freely redistributed under the condition that the --copyright notices (including the copy of this notice in the code comments --and the copyright notice printed when the `-h' switch is selected) are --not removed, and no compensation is received. Private, research, and --institutional use is free. You may distribute modified versions of this --code UNDER THE CONDITION THAT THIS CODE AND ANY MODIFICATIONS MADE TO IT --IN THE SAME FILE REMAIN UNDER COPYRIGHT OF THE ORIGINAL AUTHOR, BOTH --SOURCE AND OBJECT CODE ARE MADE FREELY AVAILABLE WITHOUT CHARGE, AND --CLEAR NOTICE IS GIVEN OF THE MODIFICATIONS. Distribution of this code as --part of a commercial system is permissible ONLY BY DIRECT ARRANGEMENT --WITH THE AUTHOR. (If you are not directly supplying this code to a --customer, and you are instead telling them how they can obtain it for --free, then you are not required to make any arrangement with me.) -- -------------------------------------------------------------------------------- -- --The files included in this distribution are: -- -- README The file you're reading now. -- triangle.c Complete C source code for Triangle. -- showme.c Complete C source code for Show Me. -- triangle.h Include file for calling Triangle from another program. -- tricall.c Sample program that calls Triangle. -- makefile Makefile for compiling Triangle and Show Me. -- A.poly A sample input file. -- --Each of Triangle and Show Me is a single portable C file. The easiest way --to compile them is to edit and use the included makefile. Before --compiling, read the makefile, which describes your options, and edit it --accordingly. You should specify: -- -- The source and binary directories. -- -- The C compiler and level of optimization. -- -- The "correct" directories for include files (especially X include files), -- if necessary. -- -- Do you want single precision or double? (The default is double.) Do you -- want to leave out some of Triangle's features to reduce the size of the -- executable file? Investigate the SINGLE, REDUCED, and CDT_ONLY symbols. -- -- If yours is not a Unix system, define the NO_TIMER symbol to remove the -- Unix-specific timing code. Also, don't try to compile Show Me; it only -- works with X Windows. -- -- If you are compiling on an Intel x86 CPU and using gcc w/Linux or -- Microsoft C, be sure to define the LINUX or CPU86 (for Microsoft) symbol -- during compilation so that the exact arithmetic works right. -- --Once you've done this, type "make" to compile the programs. Alternatively, --the files are usually easy to compile without a makefile: -- -- cc -O -o triangle triangle.c -lm -- cc -O -o showme showme.c -lX11 -- --On some systems, the C compiler won't be able to find the X include files --or libraries, and you'll need to specify an include path or library path: -- -- cc -O -I/usr/local/include -o showme showme.c -L/usr/local/lib -lX11 -- --Some processors, including Intel x86 family and possibly Motorola 68xxx --family chips, are IEEE conformant but have extended length internal --floating-point registers that may defeat Triangle's exact arithmetic --routines by failing to cause enough roundoff error! Typically, there is a --way to set these internal registers so that they are rounded off to IEEE --single or double precision format. I believe (but I'm not certain) that --Triangle has the right incantations for x86 chips, if you have gcc running --under Linux (define the LINUX compiler symbol) or Microsoft C (define the --CPU86 compiler symbol). -- --If you have a different processor or operating system, or if I got the --incantations wrong, you should check your C compiler or system manuals to --find out how to configure these internal registers to the precision you are --using. Otherwise, the exact arithmetic routines won't be exact at all. --See http://www.cs.cmu.edu/~quake/robust.pc.html for details. Triangle's --exact arithmetic hasn't a hope of working on machines like the Cray C90 or --Y-MP, which are not IEEE conformant and have inaccurate rounding. -- --Triangle and Show Me have both text and HTML documentation. The latter is --illustrated. Find it on the Web at -- -- http://www.cs.cmu.edu/~quake/triangle.html -- http://www.cs.cmu.edu/~quake/showme.html -- --Complete text instructions are printed by invoking each program with the --`-h' switch: -- -- triangle -h -- showme -h -- --The instructions are long; you'll probably want to pipe the output to --`more' or `lpr' or redirect it to a file. -- --Both programs give a short list of command line options if they are invoked --without arguments (that is, just type `triangle' or `showme'). -- --Try out Triangle on the enclosed sample file, A.poly: -- -- triangle -p A -- showme A.poly & -- --Triangle will read the Planar Straight Line Graph defined by A.poly, and --write its constrained Delaunay triangulation to A.1.node and A.1.ele. --Show Me will display the figure defined by A.poly. There are two buttons --marked "ele" in the Show Me window; click on the top one. This will cause --Show Me to load and display the triangulation. -- --For contrast, try running -- -- triangle -pq A -- --Now, click on the same "ele" button. A new triangulation will be loaded; --this one having no angles smaller than 20 degrees. -- --To see a Voronoi diagram, try this: -- -- cp A.poly A.node -- triangle -v A -- --Click the "ele" button again. You will see the Delaunay triangulation of --the points in A.poly, without the segments. Now click the top "voro" button. --You will see the Voronoi diagram corresponding to that Delaunay triangulation. --Click the "Reset" button to see the full extent of the diagram. -- -------------------------------------------------------------------------------- -- --If you wish to call Triangle from another program, instructions for doing --so are contained in the file `triangle.h' (but read Triangle's regular --instructions first!). Also look at `tricall.c', which provides an example --of how to call Triangle. -- --Type "make trilibrary" to create triangle.o, a callable object file. --Alternatively, the object file is usually easy to compile without a --makefile: -- -- cc -DTRILIBRARY -O -c triangle.c -- --Type "make distclean" to remove all the object and executable files created --by make. -- -------------------------------------------------------------------------------- -- --If you use Triangle, and especially if you use it to accomplish real work, --I would like very much to hear from you. A short letter or email (to --jrs@cs.berkeley.edu) describing how you use Triangle will mean a lot to me. --The more people I know are using this program, the more easily I can --justify spending time on improvements and on the three-dimensional --successor to Triangle, which in turn will benefit you. Also, I can put you --on a list to receive email whenever a new version of Triangle is available. -- --If you use a mesh generated by Triangle or plotted by Show Me in a --publication, please include an acknowledgment as well. And please spell --Triangle with a capital `T'! If you want to include a citation, use --`Jonathan Richard Shewchuk, ``Triangle: Engineering a 2D Quality Mesh --Generator and Delaunay Triangulator,'' in Applied Computational Geometry: --Towards Geometric Engineering (Ming C. Lin and Dinesh Manocha, editors), --volume 1148 of Lecture Notes in Computer Science, pages 203-222, --Springer-Verlag, Berlin, May 1996. (From the First ACM Workshop on Applied --Computational Geometry.)' -- -- --Jonathan Richard Shewchuk --July 27, 2005 -diff --git a/Modules/ThirdParty/VNL/src/vxl/v3p/netlib/triangle.c b/Modules/ThirdParty/VNL/src/vxl/v3p/netlib/triangle.c -deleted file mode 100644 -index 017dbe1fae..0000000000 ---- a/Modules/ThirdParty/VNL/src/vxl/v3p/netlib/triangle.c -+++ /dev/null -@@ -1,16011 +0,0 @@ --/*****************************************************************************/ --/* */ --/* 888888888 ,o, / 888 */ --/* 888 88o88o " o8888o 88o8888o o88888o 888 o88888o */ --/* 888 888 888 88b 888 888 888 888 888 d888 88b */ --/* 888 888 888 o88^o888 888 888 "88888" 888 8888oo888 */ --/* 888 888 888 C888 888 888 888 / 888 q888 */ --/* 888 888 888 "88o^888 888 888 Cb 888 "88oooo" */ --/* "8oo8D */ --/* */ --/* A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator. */ --/* (triangle.c) */ --/* */ --/* Version 1.6 */ --/* July 28, 2005 */ --/* */ --/* Copyright 1993, 1995, 1997, 1998, 2002, 2005 */ --/* Jonathan Richard Shewchuk */ --/* 2360 Woolsey #H */ --/* Berkeley, California 94705-1927 */ --/* jrs@cs.berkeley.edu */ --/* */ --/* This program may be freely redistributed under the condition that the */ --/* copyright notices (including this entire header and the copyright */ --/* notice printed when the `-h' switch is selected) are not removed, and */ --/* no compensation is received. Private, research, and institutional */ --/* use is free. You may distribute modified versions of this code UNDER */ --/* THE CONDITION THAT THIS CODE AND ANY MODIFICATIONS MADE TO IT IN THE */ --/* SAME FILE REMAIN UNDER COPYRIGHT OF THE ORIGINAL AUTHOR, BOTH SOURCE */ --/* AND OBJECT CODE ARE MADE FREELY AVAILABLE WITHOUT CHARGE, AND CLEAR */ --/* NOTICE IS GIVEN OF THE MODIFICATIONS. Distribution of this code as */ --/* part of a commercial system is permissible ONLY BY DIRECT ARRANGEMENT */ --/* WITH THE AUTHOR. (If you are not directly supplying this code to a */ --/* customer, and you are instead telling them how they can obtain it for */ --/* free, then you are not required to make any arrangement with me.) */ --/* */ --/* Hypertext instructions for Triangle are available on the Web at */ --/* */ --/* http://www.cs.cmu.edu/~quake/triangle.html */ --/* */ --/* Disclaimer: Neither I nor Carnegie Mellon warrant this code in any way */ --/* whatsoever. This code is provided "as-is". Use at your own risk. */ --/* */ --/* Some of the references listed below are marked with an asterisk. [*] */ --/* These references are available for downloading from the Web page */ --/* */ --/* http://www.cs.cmu.edu/~quake/triangle.research.html */ --/* */ --/* Three papers discussing aspects of Triangle are available. A short */ --/* overview appears in "Triangle: Engineering a 2D Quality Mesh */ --/* Generator and Delaunay Triangulator," in Applied Computational */ --/* Geometry: Towards Geometric Engineering, Ming C. Lin and Dinesh */ --/* Manocha, editors, Lecture Notes in Computer Science volume 1148, */ --/* pages 203-222, Springer-Verlag, Berlin, May 1996 (from the First ACM */ --/* Workshop on Applied Computational Geometry). [*] */ --/* */ --/* The algorithms are discussed in the greatest detail in "Delaunay */ --/* Refinement Algorithms for Triangular Mesh Generation," Computational */ --/* Geometry: Theory and Applications 22(1-3):21-74, May 2002. [*] */ --/* */ --/* More detail about the data structures may be found in my dissertation: */ --/* "Delaunay Refinement Mesh Generation," Ph.D. thesis, Technical Report */ --/* CMU-CS-97-137, School of Computer Science, Carnegie Mellon University, */ --/* Pittsburgh, Pennsylvania, 18 May 1997. [*] */ --/* */ --/* Triangle was created as part of the Quake Project in the School of */ --/* Computer Science at Carnegie Mellon University. For further */ --/* information, see Hesheng Bao, Jacobo Bielak, Omar Ghattas, Loukas F. */ --/* Kallivokas, David R. O'Hallaron, Jonathan R. Shewchuk, and Jifeng Xu, */ --/* "Large-scale Simulation of Elastic Wave Propagation in Heterogeneous */ --/* Media on Parallel Computers," Computer Methods in Applied Mechanics */ --/* and Engineering 152(1-2):85-102, 22 January 1998. */ --/* */ --/* Triangle's Delaunay refinement algorithm for quality mesh generation is */ --/* a hybrid of one due to Jim Ruppert, "A Delaunay Refinement Algorithm */ --/* for Quality 2-Dimensional Mesh Generation," Journal of Algorithms */ --/* 18(3):548-585, May 1995 [*], and one due to L. Paul Chew, "Guaranteed- */ --/* Quality Mesh Generation for Curved Surfaces," Proceedings of the Ninth */ --/* Annual Symposium on Computational Geometry (San Diego, California), */ --/* pages 274-280, Association for Computing Machinery, May 1993, */ --/* http://portal.acm.org/citation.cfm?id=161150 . */ --/* */ --/* The Delaunay refinement algorithm has been modified so that it meshes */ --/* domains with small input angles well, as described in Gary L. Miller, */ --/* Steven E. Pav, and Noel J. Walkington, "When and Why Ruppert's */ --/* Algorithm Works," Twelfth International Meshing Roundtable, pages */ --/* 91-102, Sandia National Laboratories, September 2003. [*] */ --/* */ --/* My implementation of the divide-and-conquer and incremental Delaunay */ --/* triangulation algorithms follows closely the presentation of Guibas */ --/* and Stolfi, even though I use a triangle-based data structure instead */ --/* of their quad-edge data structure. (In fact, I originally implemented */ --/* Triangle using the quad-edge data structure, but the switch to a */ --/* triangle-based data structure sped Triangle by a factor of two.) The */ --/* mesh manipulation primitives and the two aforementioned Delaunay */ --/* triangulation algorithms are described by Leonidas J. Guibas and Jorge */ --/* Stolfi, "Primitives for the Manipulation of General Subdivisions and */ --/* the Computation of Voronoi Diagrams," ACM Transactions on Graphics */ --/* 4(2):74-123, April 1985, http://portal.acm.org/citation.cfm?id=282923 .*/ --/* */ --/* Their O(n log n) divide-and-conquer algorithm is adapted from Der-Tsai */ --/* Lee and Bruce J. Schachter, "Two Algorithms for Constructing the */ --/* Delaunay Triangulation," International Journal of Computer and */ --/* Information Science 9(3):219-242, 1980. Triangle's improvement of the */ --/* divide-and-conquer algorithm by alternating between vertical and */ --/* horizontal cuts was introduced by Rex A. Dwyer, "A Faster Divide-and- */ --/* Conquer Algorithm for Constructing Delaunay Triangulations," */ --/* Algorithmica 2(2):137-151, 1987. */ --/* */ --/* The incremental insertion algorithm was first proposed by C. L. Lawson, */ --/* "Software for C1 Surface Interpolation," in Mathematical Software III, */ --/* John R. Rice, editor, Academic Press, New York, pp. 161-194, 1977. */ --/* For point location, I use the algorithm of Ernst P. Mucke, Isaac */ --/* Saias, and Binhai Zhu, "Fast Randomized Point Location Without */ --/* Preprocessing in Two- and Three-Dimensional Delaunay Triangulations," */ --/* Proceedings of the Twelfth Annual Symposium on Computational Geometry, */ --/* ACM, May 1996. [*] If I were to randomize the order of vertex */ --/* insertion (I currently don't bother), their result combined with the */ --/* result of Kenneth L. Clarkson and Peter W. Shor, "Applications of */ --/* Random Sampling in Computational Geometry II," Discrete & */ --/* Computational Geometry 4(1):387-421, 1989, would yield an expected */ --/* O(n^{4/3}) bound on running time. */ --/* */ --/* The O(n log n) sweepline Delaunay triangulation algorithm is taken from */ --/* Steven Fortune, "A Sweepline Algorithm for Voronoi Diagrams", */ --/* Algorithmica 2(2):153-174, 1987. A random sample of edges on the */ --/* boundary of the triangulation are maintained in a splay tree for the */ --/* purpose of point location. Splay trees are described by Daniel */ --/* Dominic Sleator and Robert Endre Tarjan, "Self-Adjusting Binary Search */ --/* Trees," Journal of the ACM 32(3):652-686, July 1985, */ --/* http://portal.acm.org/citation.cfm?id=3835 . */ --/* */ --/* The algorithms for exact computation of the signs of determinants are */ --/* described in Jonathan Richard Shewchuk, "Adaptive Precision Floating- */ --/* Point Arithmetic and Fast Robust Geometric Predicates," Discrete & */ --/* Computational Geometry 18(3):305-363, October 1997. (Also available */ --/* as Technical Report CMU-CS-96-140, School of Computer Science, */ --/* Carnegie Mellon University, Pittsburgh, Pennsylvania, May 1996.) [*] */ --/* An abbreviated version appears as Jonathan Richard Shewchuk, "Robust */ --/* Adaptive Floating-Point Geometric Predicates," Proceedings of the */ --/* Twelfth Annual Symposium on Computational Geometry, ACM, May 1996. [*] */ --/* Many of the ideas for my exact arithmetic routines originate with */ --/* Douglas M. Priest, "Algorithms for Arbitrary Precision Floating Point */ --/* Arithmetic," Tenth Symposium on Computer Arithmetic, pp. 132-143, IEEE */ --/* Computer Society Press, 1991. [*] Many of the ideas for the correct */ --/* evaluation of the signs of determinants are taken from Steven Fortune */ --/* and Christopher J. Van Wyk, "Efficient Exact Arithmetic for Computa- */ --/* tional Geometry," Proceedings of the Ninth Annual Symposium on */ --/* Computational Geometry, ACM, pp. 163-172, May 1993, and from Steven */ --/* Fortune, "Numerical Stability of Algorithms for 2D Delaunay Triangu- */ --/* lations," International Journal of Computational Geometry & Applica- */ --/* tions 5(1-2):193-213, March-June 1995. */ --/* */ --/* The method of inserting new vertices off-center (not precisely at the */ --/* circumcenter of every poor-quality triangle) is from Alper Ungor, */ --/* "Off-centers: A New Type of Steiner Points for Computing Size-Optimal */ --/* Quality-Guaranteed Delaunay Triangulations," Proceedings of LATIN */ --/* 2004 (Buenos Aires, Argentina), April 2004. */ --/* */ --/* For definitions of and results involving Delaunay triangulations, */ --/* constrained and conforming versions thereof, and other aspects of */ --/* triangular mesh generation, see the excellent survey by Marshall Bern */ --/* and David Eppstein, "Mesh Generation and Optimal Triangulation," in */ --/* Computing and Euclidean Geometry, Ding-Zhu Du and Frank Hwang, */ --/* editors, World Scientific, Singapore, pp. 23-90, 1992. [*] */ --/* */ --/* The time for incrementally adding PSLG (planar straight line graph) */ --/* segments to create a constrained Delaunay triangulation is probably */ --/* O(t^2) per segment in the worst case and O(t) per segment in the */ --/* common case, where t is the number of triangles that intersect the */ --/* segment before it is inserted. This doesn't count point location, */ --/* which can be much more expensive. I could improve this to O(d log d) */ --/* time, but d is usually quite small, so it's not worth the bother. */ --/* (This note does not apply when the -s switch is used, invoking a */ --/* different method is used to insert segments.) */ --/* */ --/* The time for deleting a vertex from a Delaunay triangulation is O(d^2) */ --/* in the worst case and O(d) in the common case, where d is the degree */ --/* of the vertex being deleted. I could improve this to O(d log d) time, */ --/* but d is usually quite small, so it's not worth the bother. */ --/* */ --/* Ruppert's Delaunay refinement algorithm typically generates triangles */ --/* at a linear rate (constant time per triangle) after the initial */ --/* triangulation is formed. There may be pathological cases where */ --/* quadratic time is required, but these never arise in practice. */ --/* */ --/* The geometric predicates (circumcenter calculations, segment */ --/* intersection formulae, etc.) appear in my "Lecture Notes on Geometric */ --/* Robustness" at http://www.cs.berkeley.edu/~jrs/mesh . */ --/* */ --/* If you make any improvements to this code, please please please let me */ --/* know, so that I may obtain the improvements. Even if you don't change */ --/* the code, I'd still love to hear what it's being used for. */ --/* */ --/*****************************************************************************/ -- --/* For single precision (which will save some memory and reduce paging), */ --/* define the symbol SINGLE by using the -DSINGLE compiler switch or by */ --/* writing "#define SINGLE" below. */ --/* */ --/* For double precision (which will allow you to refine meshes to a smaller */ --/* edge length), leave SINGLE undefined. */ --/* */ --/* Double precision uses more memory, but improves the resolution of the */ --/* meshes you can generate with Triangle. It also reduces the likelihood */ --/* of a floating exception due to overflow. Finally, it is much faster */ --/* than single precision on 64-bit architectures like the DEC Alpha. I */ --/* recommend double precision unless you want to generate a mesh for which */ --/* you do not have enough memory. */ -- --/* #define SINGLE */ -- --#ifdef SINGLE --#define REAL float --#else /* not SINGLE */ --#define REAL double --#endif /* not SINGLE */ -- --#define TRIANGLE_PTRINT size_t -- --/* If yours is not a Unix system, define the NO_TIMER compiler switch to */ --/* remove the Unix-specific timing code. */ -- --#define NO_TIMER -- --/* To insert lots of self-checks for internal errors, define the SELF_CHECK */ --/* symbol. This will slow down the program significantly. It is best to */ --/* define the symbol using the -DSELF_CHECK compiler switch, but you could */ --/* write "#define SELF_CHECK" below. If you are modifying this code, I */ --/* recommend you turn self-checks on until your work is debugged. */ -- --/* #define SELF_CHECK */ -- --/* To compile Triangle as a callable object library (triangle.o), define the */ --/* TRILIBRARY symbol. Read the file triangle.h for details on how to call */ --/* the procedure triangulate() that results. */ -- --#define TRILIBRARY -- --/* It is possible to generate a smaller version of Triangle using one or */ --/* both of the following symbols. Define the REDUCED symbol to eliminate */ --/* all features that are primarily of research interest; specifically, the */ --/* -i, -F, -s, and -C switches. Define the CDT_ONLY symbol to eliminate */ --/* all meshing algorithms above and beyond constrained Delaunay */ --/* triangulation; specifically, the -r, -q, -a, -u, -D, -S, and -s */ --/* switches. These reductions are most likely to be useful when */ --/* generating an object library (triangle.o) by defining the TRILIBRARY */ --/* symbol. */ -- --/* #define REDUCED */ --/* #define CDT_ONLY */ -- --/* On some machines, my exact arithmetic routines might be defeated by the */ --/* use of internal extended precision floating-point registers. The best */ --/* way to solve this problem is to set the floating-point registers to use */ --/* single or double precision internally. On 80x86 processors, this may */ --/* be accomplished by setting the CPU86 symbol for the Microsoft C */ --/* compiler, or the LINUX symbol for the gcc compiler running on Linux. */ --/* */ --/* An inferior solution is to declare certain values as `volatile', thus */ --/* forcing them to be stored to memory and rounded off. Unfortunately, */ --/* this solution might slow Triangle down quite a bit. To use volatile */ --/* values, write "#define INEXACT volatile" below. Normally, however, */ --/* INEXACT should be defined to be nothing. ("#define INEXACT".) */ --/* */ --/* For more discussion, see http://www.cs.cmu.edu/~quake/robust.pc.html . */ --/* For yet more discussion, see Section 5 of my paper, "Adaptive Precision */ --/* Floating-Point Arithmetic and Fast Robust Geometric Predicates" (also */ --/* available as Section 6.6 of my dissertation). */ -- --/* #define CPU86 */ --/* #define LINUX */ -- --#define INEXACT /* Nothing */ --/* #define INEXACT volatile */ -- --/* Maximum number of characters in a file name (including the null). */ -- --#define FILENAMESIZE 2048 -- --/* Maximum number of characters in a line read from a file (including the */ --/* null). */ -- --#define INPUTLINESIZE 4096 -- --/* For efficiency, a variety of data structures are allocated in bulk. The */ --/* following constants determine how many of each structure is allocated */ --/* at once. */ -- --#define TRIPERBLOCK 4092 /* Number of triangles allocated at once. */ --#define SUBSEGPERBLOCK 508 /* Number of subsegments allocated at once. */ --#define VERTEXPERBLOCK 4092 /* Number of vertices allocated at once. */ --#define VIRUSPERBLOCK 1020 /* Number of virus triangles allocated at once. */ --/* Number of encroached subsegments allocated at once. */ --#define BADSUBSEGPERBLOCK 252 --/* Number of skinny triangles allocated at once. */ --#define BADTRIPERBLOCK 4092 --/* Number of flipped triangles allocated at once. */ --#define FLIPSTACKERPERBLOCK 252 --/* Number of splay tree nodes allocated at once. */ --#define SPLAYNODEPERBLOCK 508 -- --/* The vertex types. A DEADVERTEX has been deleted entirely. An */ --/* UNDEADVERTEX is not part of the mesh, but is written to the output */ --/* .node file and affects the node indexing in the other output files. */ -- --#define INPUTVERTEX 0 --#define SEGMENTVERTEX 1 --#define FREEVERTEX 2 --#define DEADVERTEX -32768 --#define UNDEADVERTEX -32767 -- --/* The next line is used to outsmart some very stupid compilers. If your */ --/* compiler is smarter, feel free to replace the "int" with "void". */ --/* Not that it matters. */ -- --/*#define void int */ -- --/* Two constants for algorithms based on random sampling. Both constants */ --/* have been chosen empirically to optimize their respective algorithms. */ -- --/* Used for the point location scheme of Mucke, Saias, and Zhu, to decide */ --/* how large a random sample of triangles to inspect. */ -- --#define SAMPLEFACTOR 11 -- --/* Used in Fortune's sweepline Delaunay algorithm to determine what fraction */ --/* of boundary edges should be maintained in the splay tree for point */ --/* location on the front. */ -- --#define SAMPLERATE 10 -- --/* A number that speaks for itself, every kissable digit. */ -- --#define PI 3.141592653589793238462643383279502884197169399375105820974944592308 -- --/* Another fave. */ -- --#define SQUAREROOTTWO 1.4142135623730950488016887242096980785696718753769480732 -- --/* And here's one for those of you who are intimidated by math. */ -- --#define ONETHIRD 0.333333333333333333333333333333333333333333333333333333333333 -- --#include --#include --#include --#include --#ifndef NO_TIMER --#include --#endif /* not NO_TIMER */ --#ifdef CPU86 --#include --#endif /* CPU86 */ --#ifdef LINUX --#include --#endif /* LINUX */ --#ifdef TRILIBRARY --#include "triangle.h" --#endif /* TRILIBRARY */ -- --/* A few forward declarations. */ -- --#ifndef TRILIBRARY --char *readline(); --char *findfield(); --#endif /* not TRILIBRARY */ -- --/* Labels that signify the result of point location. The result of a */ --/* search indicates that the point falls in the interior of a triangle, on */ --/* an edge, on a vertex, or outside the mesh. */ -- --enum locateresult {INTRIANGLE, ONEDGE, ONVERTEX, OUTSIDE}; -- --/* Labels that signify the result of vertex insertion. The result indicates */ --/* that the vertex was inserted with complete success, was inserted but */ --/* encroaches upon a subsegment, was not inserted because it lies on a */ --/* segment, or was not inserted because another vertex occupies the same */ --/* location. */ -- --enum insertvertexresult {SUCCESSFULVERTEX, ENCROACHINGVERTEX, VIOLATINGVERTEX, -- DUPLICATEVERTEX}; -- --/* Labels that signify the result of direction finding. The result */ --/* indicates that a segment connecting the two query points falls within */ --/* the direction triangle, along the left edge of the direction triangle, */ --/* or along the right edge of the direction triangle. */ -- --enum finddirectionresult {WITHIN, LEFTCOLLINEAR, RIGHTCOLLINEAR}; -- --/* Labels that signify the result of the circumcenter computation routine. */ --/* The return value indicates which edge of the triangle is shortest. */ -- --enum circumcenterresult {OPPOSITEORG, OPPOSITEDEST, OPPOSITEAPEX}; -- --/*****************************************************************************/ --/* */ --/* The basic mesh data structures */ --/* */ --/* There are three: vertices, triangles, and subsegments (abbreviated */ --/* `subseg'). These three data structures, linked by pointers, comprise */ --/* the mesh. A vertex simply represents a mesh vertex and its properties. */ --/* A triangle is a triangle. A subsegment is a special data structure used */ --/* to represent an impenetrable edge of the mesh (perhaps on the outer */ --/* boundary, on the boundary of a hole, or part of an internal boundary */ --/* separating two triangulated regions). Subsegments represent boundaries, */ --/* defined by the user, that triangles may not lie across. */ --/* */ --/* A triangle consists of a list of three vertices, a list of three */ --/* adjoining triangles, a list of three adjoining subsegments (when */ --/* segments exist), an arbitrary number of optional user-defined */ --/* floating-point attributes, and an optional area constraint. The latter */ --/* is an upper bound on the permissible area of each triangle in a region, */ --/* used for mesh refinement. */ --/* */ --/* For a triangle on a boundary of the mesh, some or all of the neighboring */ --/* triangles may not be present. For a triangle in the interior of the */ --/* mesh, often no neighboring subsegments are present. Such absent */ --/* triangles and subsegments are never represented by NULL pointers; they */ --/* are represented by two special records: `dummytri', the triangle that */ --/* fills "outer space", and `dummysub', the omnipresent subsegment. */ --/* `dummytri' and `dummysub' are used for several reasons; for instance, */ --/* they can be dereferenced and their contents examined without violating */ --/* protected memory. */ --/* */ --/* However, it is important to understand that a triangle includes other */ --/* information as well. The pointers to adjoining vertices, triangles, and */ --/* subsegments are ordered in a way that indicates their geometric relation */ --/* to each other. Furthermore, each of these pointers contains orientation */ --/* information. Each pointer to an adjoining triangle indicates which face */ --/* of that triangle is contacted. Similarly, each pointer to an adjoining */ --/* subsegment indicates which side of that subsegment is contacted, and how */ --/* the subsegment is oriented relative to the triangle. */ --/* */ --/* The data structure representing a subsegment may be thought to be */ --/* abutting the edge of one or two triangle data structures: either */ --/* sandwiched between two triangles, or resting against one triangle on an */ --/* exterior boundary or hole boundary. */ --/* */ --/* A subsegment consists of a list of four vertices--the vertices of the */ --/* subsegment, and the vertices of the segment it is a part of--a list of */ --/* two adjoining subsegments, and a list of two adjoining triangles. One */ --/* of the two adjoining triangles may not be present (though there should */ --/* always be one), and neighboring subsegments might not be present. */ --/* Subsegments also store a user-defined integer "boundary marker". */ --/* Typically, this integer is used to indicate what boundary conditions are */ --/* to be applied at that location in a finite element simulation. */ --/* */ --/* Like triangles, subsegments maintain information about the relative */ --/* orientation of neighboring objects. */ --/* */ --/* Vertices are relatively simple. A vertex is a list of floating-point */ --/* numbers, starting with the x, and y coordinates, followed by an */ --/* arbitrary number of optional user-defined floating-point attributes, */ --/* followed by an integer boundary marker. During the segment insertion */ --/* phase, there is also a pointer from each vertex to a triangle that may */ --/* contain it. Each pointer is not always correct, but when one is, it */ --/* speeds up segment insertion. These pointers are assigned values once */ --/* at the beginning of the segment insertion phase, and are not used or */ --/* updated except during this phase. Edge flipping during segment */ --/* insertion will render some of them incorrect. Hence, don't rely upon */ --/* them for anything. */ --/* */ --/* Other than the exception mentioned above, vertices have no information */ --/* about what triangles, subfacets, or subsegments they are linked to. */ --/* */ --/*****************************************************************************/ -- --/*****************************************************************************/ --/* */ --/* Handles */ --/* */ --/* The oriented triangle (`otri') and oriented subsegment (`osub') data */ --/* structures defined below do not themselves store any part of the mesh. */ --/* The mesh itself is made of `triangle's, `subseg's, and `vertex's. */ --/* */ --/* Oriented triangles and oriented subsegments will usually be referred to */ --/* as "handles." A handle is essentially a pointer into the mesh; it */ --/* allows you to "hold" one particular part of the mesh. Handles are used */ --/* to specify the regions in which one is traversing and modifying the mesh.*/ --/* A single `triangle' may be held by many handles, or none at all. (The */ --/* latter case is not a memory leak, because the triangle is still */ --/* connected to other triangles in the mesh.) */ --/* */ --/* An `otri' is a handle that holds a triangle. It holds a specific edge */ --/* of the triangle. An `osub' is a handle that holds a subsegment. It */ --/* holds either the left or right side of the subsegment. */ --/* */ --/* Navigation about the mesh is accomplished through a set of mesh */ --/* manipulation primitives, further below. Many of these primitives take */ --/* a handle and produce a new handle that holds the mesh near the first */ --/* handle. Other primitives take two handles and glue the corresponding */ --/* parts of the mesh together. The orientation of the handles is */ --/* important. For instance, when two triangles are glued together by the */ --/* bond() primitive, they are glued at the edges on which the handles lie. */ --/* */ --/* Because vertices have no information about which triangles they are */ --/* attached to, I commonly represent a vertex by use of a handle whose */ --/* origin is the vertex. A single handle can simultaneously represent a */ --/* triangle, an edge, and a vertex. */ --/* */ --/*****************************************************************************/ -- --/* The triangle data structure. Each triangle contains three pointers to */ --/* adjoining triangles, plus three pointers to vertices, plus three */ --/* pointers to subsegments (declared below; these pointers are usually */ --/* `dummysub'). It may or may not also contain user-defined attributes */ --/* and/or a floating-point "area constraint." It may also contain extra */ --/* pointers for nodes, when the user asks for high-order elements. */ --/* Because the size and structure of a `triangle' is not decided until */ --/* runtime, I haven't simply declared the type `triangle' as a struct. */ -- --typedef REAL **triangle; /* Really: typedef triangle *triangle */ -- --/* An oriented triangle: includes a pointer to a triangle and orientation. */ --/* The orientation denotes an edge of the triangle. Hence, there are */ --/* three possible orientations. By convention, each edge always points */ --/* counterclockwise about the corresponding triangle. */ -- --struct otri { -- triangle *tri; -- int orient; /* Ranges from 0 to 2. */ --}; -- --/* The subsegment data structure. Each subsegment contains two pointers to */ --/* adjoining subsegments, plus four pointers to vertices, plus two */ --/* pointers to adjoining triangles, plus one boundary marker, plus one */ --/* segment number. */ -- --typedef REAL **subseg; /* Really: typedef subseg *subseg */ -- --/* An oriented subsegment: includes a pointer to a subsegment and an */ --/* orientation. The orientation denotes a side of the edge. Hence, there */ --/* are two possible orientations. By convention, the edge is always */ --/* directed so that the "side" denoted is the right side of the edge. */ -- --struct osub { -- subseg *ss; -- int ssorient; /* Ranges from 0 to 1. */ --}; -- --/* The vertex data structure. Each vertex is actually an array of REALs. */ --/* The number of REALs is unknown until runtime. An integer boundary */ --/* marker, and sometimes a pointer to a triangle, is appended after the */ --/* REALs. */ -- --typedef REAL *vertex; -- --/* A queue used to store encroached subsegments. Each subsegment's vertices */ --/* are stored so that we can check whether a subsegment is still the same. */ -- --struct badsubseg { -- subseg encsubseg; /* An encroached subsegment. */ -- vertex subsegorg, subsegdest; /* Its two vertices. */ --}; -- --/* A queue used to store bad triangles. The key is the square of the cosine */ --/* of the smallest angle of the triangle. Each triangle's vertices are */ --/* stored so that one can check whether a triangle is still the same. */ -- --struct badtriang { -- triangle poortri; /* A skinny or too-large triangle. */ -- REAL key; /* cos^2 of smallest (apical) angle. */ -- vertex triangorg, triangdest, triangapex; /* Its three vertices. */ -- struct badtriang *nexttriang; /* Pointer to next bad triangle. */ --}; -- --/* A stack of triangles flipped during the most recent vertex insertion. */ --/* The stack is used to undo the vertex insertion if the vertex encroaches */ --/* upon a subsegment. */ -- --struct flipstacker { -- triangle flippedtri; /* A recently flipped triangle. */ -- struct flipstacker *prevflip; /* Previous flip in the stack. */ --}; -- --/* A node in a heap used to store events for the sweepline Delaunay */ --/* algorithm. Nodes do not point directly to their parents or children in */ --/* the heap. Instead, each node knows its position in the heap, and can */ --/* look up its parent and children in a separate array. The `eventptr' */ --/* points either to a `vertex' or to a triangle (in encoded format, so */ --/* that an orientation is included). In the latter case, the origin of */ --/* the oriented triangle is the apex of a "circle event" of the sweepline */ --/* algorithm. To distinguish site events from circle events, all circle */ --/* events are given an invalid (smaller than `xmin') x-coordinate `xkey'. */ -- --struct event { -- REAL xkey, ykey; /* Coordinates of the event. */ -- void *eventptr; /* Can be a vertex or the location of a circle event. */ -- int heapposition; /* Marks this event's position in the heap. */ --}; -- --/* A node in the splay tree. Each node holds an oriented ghost triangle */ --/* that represents a boundary edge of the growing triangulation. When a */ --/* circle event covers two boundary edges with a triangle, so that they */ --/* are no longer boundary edges, those edges are not immediately deleted */ --/* from the tree; rather, they are lazily deleted when they are next */ --/* encountered. (Since only a random sample of boundary edges are kept */ --/* in the tree, lazy deletion is faster.) `keydest' is used to verify */ --/* that a triangle is still the same as when it entered the splay tree; if */ --/* it has been rotated (due to a circle event), it no longer represents a */ --/* boundary edge and should be deleted. */ -- --struct splaynode { -- struct otri keyedge; /* Lprev of an edge on the front. */ -- vertex keydest; /* Used to verify that splay node is still live. */ -- struct splaynode *lchild, *rchild; /* Children in splay tree. */ --}; -- --/* A type used to allocate memory. firstblock is the first block of items. */ --/* nowblock is the block from which items are currently being allocated. */ --/* nextitem points to the next slab of free memory for an item. */ --/* deaditemstack is the head of a linked list (stack) of deallocated items */ --/* that can be recycled. unallocateditems is the number of items that */ --/* remain to be allocated from nowblock. */ --/* */ --/* Traversal is the process of walking through the entire list of items, and */ --/* is separate from allocation. Note that a traversal will visit items on */ --/* the "deaditemstack" stack as well as live items. pathblock points to */ --/* the block currently being traversed. pathitem points to the next item */ --/* to be traversed. pathitemsleft is the number of items that remain to */ --/* be traversed in pathblock. */ --/* */ --/* alignbytes determines how new records should be aligned in memory. */ --/* itembytes is the length of a record in bytes (after rounding up). */ --/* itemsperblock is the number of items allocated at once in a single */ --/* block. itemsfirstblock is the number of items in the first block, */ --/* which can vary from the others. items is the number of currently */ --/* allocated items. maxitems is the maximum number of items that have */ --/* been allocated at once; it is the current number of items plus the */ --/* number of records kept on deaditemstack. */ -- --struct memorypool { -- void **firstblock, **nowblock; -- void *nextitem; -- void *deaditemstack; -- void **pathblock; -- void *pathitem; -- int alignbytes; -- int itembytes; -- int itemsperblock; -- int itemsfirstblock; -- long items, maxitems; -- int unallocateditems; -- int pathitemsleft; --}; -- -- --/* Global constants. */ -- --REAL splitter; /* Used to split REAL factors for exact multiplication. */ --REAL epsilon; /* Floating-point machine epsilon. */ --REAL resulterrbound; --REAL ccwerrboundA, ccwerrboundB, ccwerrboundC; --REAL iccerrboundA, iccerrboundB, iccerrboundC; --REAL o3derrboundA, o3derrboundB, o3derrboundC; -- --/* Random number seed is not constant, but I've made it global anyway. */ -- --TRIANGLE_PTRINT randomseed; /* Current random number seed. */ -- -- --/* Mesh data structure. Triangle operates on only one mesh, but the mesh */ --/* structure is used (instead of global variables) to allow reentrancy. */ -- --struct mesh { -- --/* Variables used to allocate memory for triangles, subsegments, vertices, */ --/* viri (triangles being eaten), encroached segments, bad (skinny or too */ --/* large) triangles, and splay tree nodes. */ -- -- struct memorypool triangles; -- struct memorypool subsegs; -- struct memorypool vertices; -- struct memorypool viri; -- struct memorypool badsubsegs; -- struct memorypool badtriangles; -- struct memorypool flipstackers; -- struct memorypool splaynodes; -- --/* Variables that maintain the bad triangle queues. The queues are */ --/* ordered from 4095 (highest priority) to 0 (lowest priority). */ -- -- struct badtriang *queuefront[4096]; -- struct badtriang *queuetail[4096]; -- int nextnonemptyq[4096]; -- int firstnonemptyq; -- --/* Variable that maintains the stack of recently flipped triangles. */ -- -- struct flipstacker *lastflip; -- --/* Other variables. */ -- -- REAL xmin, xmax, ymin, ymax; /* x and y bounds. */ -- REAL xminextreme; /* Nonexistent x value used as a flag in sweepline. */ -- int invertices; /* Number of input vertices. */ -- int inelements; /* Number of input triangles. */ -- int insegments; /* Number of input segments. */ -- int holes; /* Number of input holes. */ -- int regions; /* Number of input regions. */ -- int undeads; /* Number of input vertices that don't appear in the mesh. */ -- long edges; /* Number of output edges. */ -- int mesh_dim; /* Dimension (ought to be 2). */ -- int nextras; /* Number of attributes per vertex. */ -- int eextras; /* Number of attributes per triangle. */ -- long hullsize; /* Number of edges in convex hull. */ -- int steinerleft; /* Number of Steiner points not yet used. */ -- int vertexmarkindex; /* Index to find boundary marker of a vertex. */ -- int vertex2triindex; /* Index to find a triangle adjacent to a vertex. */ -- int highorderindex; /* Index to find extra nodes for high-order elements. */ -- int elemattribindex; /* Index to find attributes of a triangle. */ -- int areaboundindex; /* Index to find area bound of a triangle. */ -- int checksegments; /* Are there segments in the triangulation yet? */ -- int checkquality; /* Has quality triangulation begun yet? */ -- int readnodefile; /* Has a .node file been read? */ -- long samples; /* Number of random samples for point location. */ -- -- long incirclecount; /* Number of incircle tests performed. */ -- long counterclockcount; /* Number of counterclockwise tests performed. */ -- long orient3dcount; /* Number of 3D orientation tests performed. */ -- long hyperbolacount; /* Number of right-of-hyperbola tests performed. */ -- long circumcentercount; /* Number of circumcenter calculations performed. */ -- long circletopcount; /* Number of circle top calculations performed. */ -- --/* Triangular bounding box vertices. */ -- -- vertex infvertex1, infvertex2, infvertex3; -- --/* Pointer to the `triangle' that occupies all of "outer space." */ -- -- triangle *dummytri; -- triangle *dummytribase; /* Keep base address so we can free() it later. */ -- --/* Pointer to the omnipresent subsegment. Referenced by any triangle or */ --/* subsegment that isn't really connected to a subsegment at that */ --/* location. */ -- -- subseg *dummysub; -- subseg *dummysubbase; /* Keep base address so we can free() it later. */ -- --/* Pointer to a recently visited triangle. Improves point location if */ --/* proximate vertices are inserted sequentially. */ -- -- struct otri recenttri; -- --}; /* End of `struct mesh'. */ -- -- --/* Data structure for command line switches and file names. This structure */ --/* is used (instead of global variables) to allow reentrancy. */ -- --struct behavior { -- --/* Switches for the triangulator. */ --/* poly: -p switch. refine: -r switch. */ --/* quality: -q switch. */ --/* minangle: minimum angle bound, specified after -q switch. */ --/* goodangle: cosine squared of minangle. */ --/* offconstant: constant used to place off-center Steiner points. */ --/* vararea: -a switch without number. */ --/* fixedarea: -a switch with number. */ --/* maxarea: maximum area bound, specified after -a switch. */ --/* usertest: -u switch. */ --/* regionattrib: -A switch. convex: -c switch. */ --/* weighted: 1 for -w switch, 2 for -W switch. jettison: -j switch */ --/* firstnumber: inverse of -z switch. All items are numbered starting */ --/* from `firstnumber'. */ --/* edgesout: -e switch. voronoi: -v switch. */ --/* neighbors: -n switch. geomview: -g switch. */ --/* nobound: -B switch. nopolywritten: -P switch. */ --/* nonodewritten: -N switch. noelewritten: -E switch. */ --/* noiterationnum: -I switch. noholes: -O switch. */ --/* noexact: -X switch. */ --/* order: element order, specified after -o switch. */ --/* nobisect: count of how often -Y switch is selected. */ --/* steiner: maximum number of Steiner points, specified after -S switch. */ --/* incremental: -i switch. sweepline: -F switch. */ --/* dwyer: inverse of -l switch. */ --/* splitseg: -s switch. */ --/* conformdel: -D switch. docheck: -C switch. */ --/* quiet: -Q switch. verbose: count of how often -V switch is selected. */ --/* usesegments: -p, -r, -q, or -c switch; determines whether segments are */ --/* used at all. */ --/* */ --/* Read the instructions to find out the meaning of these switches. */ -- -- int poly, refine, quality, vararea, fixedarea, usertest; -- int regionattrib, convex, weighted, jettison; -- int firstnumber; -- int edgesout, voronoi, neighbors, geomview; -- int nobound, nopolywritten, nonodewritten, noelewritten, noiterationnum; -- int noholes, noexact, conformdel; -- int incremental, sweepline, dwyer; -- int splitseg; -- int docheck; -- int quiet, verbose; -- int usesegments; -- int order; -- int nobisect; -- int steiner; -- REAL minangle, goodangle, offconstant; -- REAL maxarea; -- --/* Variables for file names. */ -- --#ifndef TRILIBRARY -- char innodefilename[FILENAMESIZE]; -- char inelefilename[FILENAMESIZE]; -- char inpolyfilename[FILENAMESIZE]; -- char areafilename[FILENAMESIZE]; -- char outnodefilename[FILENAMESIZE]; -- char outelefilename[FILENAMESIZE]; -- char outpolyfilename[FILENAMESIZE]; -- char edgefilename[FILENAMESIZE]; -- char vnodefilename[FILENAMESIZE]; -- char vedgefilename[FILENAMESIZE]; -- char neighborfilename[FILENAMESIZE]; -- char offfilename[FILENAMESIZE]; --#endif /* not TRILIBRARY */ -- --}; /* End of `struct behavior'. */ -- -- --/*****************************************************************************/ --/* */ --/* Mesh manipulation primitives. Each triangle contains three pointers to */ --/* other triangles, with orientations. Each pointer points not to the */ --/* first byte of a triangle, but to one of the first three bytes of a */ --/* triangle. It is necessary to extract both the triangle itself and the */ --/* orientation. To save memory, I keep both pieces of information in one */ --/* pointer. To make this possible, I assume that all triangles are aligned */ --/* to four-byte boundaries. The decode() routine below decodes a pointer, */ --/* extracting an orientation (in the range 0 to 2) and a pointer to the */ --/* beginning of a triangle. The encode() routine compresses a pointer to a */ --/* triangle and an orientation into a single pointer. My assumptions that */ --/* triangles are four-byte-aligned and that the `TRIANGLE_PTRINT' type is */ --/* long enough to hold a pointer are two of the few kludges in this program.*/ --/* */ --/* Subsegments are manipulated similarly. A pointer to a subsegment */ --/* carries both an address and an orientation in the range 0 to 1. */ --/* */ --/* The other primitives take an oriented triangle or oriented subsegment, */ --/* and return an oriented triangle or oriented subsegment or vertex; or */ --/* they change the connections in the data structure. */ --/* */ --/* Below, triangles and subsegments are denoted by their vertices. The */ --/* triangle abc has origin (org) a, destination (dest) b, and apex (apex) */ --/* c. These vertices occur in counterclockwise order about the triangle. */ --/* The handle abc may simultaneously denote vertex a, edge ab, and triangle */ --/* abc. */ --/* */ --/* Similarly, the subsegment ab has origin (sorg) a and destination (sdest) */ --/* b. If ab is thought to be directed upward (with b directly above a), */ --/* then the handle ab is thought to grasp the right side of ab, and may */ --/* simultaneously denote vertex a and edge ab. */ --/* */ --/* An asterisk (*) denotes a vertex whose identity is unknown. */ --/* */ --/* Given this notation, a partial list of mesh manipulation primitives */ --/* follows. */ --/* */ --/* */ --/* For triangles: */ --/* */ --/* sym: Find the abutting triangle; same edge. */ --/* sym(abc) -> ba* */ --/* */ --/* lnext: Find the next edge (counterclockwise) of a triangle. */ --/* lnext(abc) -> bca */ --/* */ --/* lprev: Find the previous edge (clockwise) of a triangle. */ --/* lprev(abc) -> cab */ --/* */ --/* onext: Find the next edge counterclockwise with the same origin. */ --/* onext(abc) -> ac* */ --/* */ --/* oprev: Find the next edge clockwise with the same origin. */ --/* oprev(abc) -> a*b */ --/* */ --/* dnext: Find the next edge counterclockwise with the same destination. */ --/* dnext(abc) -> *ba */ --/* */ --/* dprev: Find the next edge clockwise with the same destination. */ --/* dprev(abc) -> cb* */ --/* */ --/* rnext: Find the next edge (counterclockwise) of the adjacent triangle. */ --/* rnext(abc) -> *a* */ --/* */ --/* rprev: Find the previous edge (clockwise) of the adjacent triangle. */ --/* rprev(abc) -> b** */ --/* */ --/* org: Origin dest: Destination apex: Apex */ --/* org(abc) -> a dest(abc) -> b apex(abc) -> c */ --/* */ --/* bond: Bond two triangles together at the resepective handles. */ --/* bond(abc, bad) */ --/* */ --/* */ --/* For subsegments: */ --/* */ --/* ssym: Reverse the orientation of a subsegment. */ --/* ssym(ab) -> ba */ --/* */ --/* spivot: Find adjoining subsegment with the same origin. */ --/* spivot(ab) -> a* */ --/* */ --/* snext: Find next subsegment in sequence. */ --/* snext(ab) -> b* */ --/* */ --/* sorg: Origin sdest: Destination */ --/* sorg(ab) -> a sdest(ab) -> b */ --/* */ --/* sbond: Bond two subsegments together at the respective origins. */ --/* sbond(ab, ac) */ --/* */ --/* */ --/* For interacting tetrahedra and subfacets: */ --/* */ --/* tspivot: Find a subsegment abutting a triangle. */ --/* tspivot(abc) -> ba */ --/* */ --/* stpivot: Find a triangle abutting a subsegment. */ --/* stpivot(ab) -> ba* */ --/* */ --/* tsbond: Bond a triangle to a subsegment. */ --/* tsbond(abc, ba) */ --/* */ --/*****************************************************************************/ -- --/********* Mesh manipulation primitives begin here *********/ --/** **/ --/** **/ -- --/* Fast lookup arrays to speed some of the mesh manipulation primitives. */ -- --int plus1mod3[3] = {1, 2, 0}; --int minus1mod3[3] = {2, 0, 1}; -- --/********* Primitives for triangles *********/ --/* */ --/* */ -- --/* decode() converts a pointer to an oriented triangle. The orientation is */ --/* extracted from the two least significant bits of the pointer. */ -- --#define decode(ptr, otri) \ -- (otri).orient = (int) ((TRIANGLE_PTRINT) (ptr) & (TRIANGLE_PTRINT) 3l); \ -- (otri).tri = (triangle *) \ -- ((TRIANGLE_PTRINT) (ptr) ^ (TRIANGLE_PTRINT) (otri).orient) -- --/* encode() compresses an oriented triangle into a single pointer. It */ --/* relies on the assumption that all triangles are aligned to four-byte */ --/* boundaries, so the two least significant bits of (otri).tri are zero. */ -- --#define encode(otri) \ -- (triangle) ((TRIANGLE_PTRINT) (otri).tri | (TRIANGLE_PTRINT) (otri).orient) -- --/* The following handle manipulation primitives are all described by Guibas */ --/* and Stolfi. However, Guibas and Stolfi use an edge-based data */ --/* structure, whereas I use a triangle-based data structure. */ -- --/* sym() finds the abutting triangle, on the same edge. Note that the edge */ --/* direction is necessarily reversed, because the handle specified by an */ --/* oriented triangle is directed counterclockwise around the triangle. */ -- --#define sym(otri1, otri2) \ -- ptr = (otri1).tri[(otri1).orient]; \ -- decode(ptr, otri2); -- --#define symself(otri) \ -- ptr = (otri).tri[(otri).orient]; \ -- decode(ptr, otri); -- --/* lnext() finds the next edge (counterclockwise) of a triangle. */ -- --#define lnext(otri1, otri2) \ -- (otri2).tri = (otri1).tri; \ -- (otri2).orient = plus1mod3[(otri1).orient] -- --#define lnextself(otri) \ -- (otri).orient = plus1mod3[(otri).orient] -- --/* lprev() finds the previous edge (clockwise) of a triangle. */ -- --#define lprev(otri1, otri2) \ -- (otri2).tri = (otri1).tri; \ -- (otri2).orient = minus1mod3[(otri1).orient] -- --#define lprevself(otri) \ -- (otri).orient = minus1mod3[(otri).orient] -- --/* onext() spins counterclockwise around a vertex; that is, it finds the */ --/* next edge with the same origin in the counterclockwise direction. This */ --/* edge is part of a different triangle. */ -- --#define onext(otri1, otri2) \ -- lprev(otri1, otri2); \ -- symself(otri2); -- --#define onextself(otri) \ -- lprevself(otri); \ -- symself(otri); -- --/* oprev() spins clockwise around a vertex; that is, it finds the next edge */ --/* with the same origin in the clockwise direction. This edge is part of */ --/* a different triangle. */ -- --#define oprev(otri1, otri2) \ -- sym(otri1, otri2); \ -- lnextself(otri2); -- --#define oprevself(otri) \ -- symself(otri); \ -- lnextself(otri); -- --/* dnext() spins counterclockwise around a vertex; that is, it finds the */ --/* next edge with the same destination in the counterclockwise direction. */ --/* This edge is part of a different triangle. */ -- --#define dnext(otri1, otri2) \ -- sym(otri1, otri2); \ -- lprevself(otri2); -- --#define dnextself(otri) \ -- symself(otri); \ -- lprevself(otri); -- --/* dprev() spins clockwise around a vertex; that is, it finds the next edge */ --/* with the same destination in the clockwise direction. This edge is */ --/* part of a different triangle. */ -- --#define dprev(otri1, otri2) \ -- lnext(otri1, otri2); \ -- symself(otri2); -- --#define dprevself(otri) \ -- lnextself(otri); \ -- symself(otri); -- --/* rnext() moves one edge counterclockwise about the adjacent triangle. */ --/* (It's best understood by reading Guibas and Stolfi. It involves */ --/* changing triangles twice.) */ -- --#define rnext(otri1, otri2) \ -- sym(otri1, otri2); \ -- lnextself(otri2); \ -- symself(otri2); -- --#define rnextself(otri) \ -- symself(otri); \ -- lnextself(otri); \ -- symself(otri); -- --/* rprev() moves one edge clockwise about the adjacent triangle. */ --/* (It's best understood by reading Guibas and Stolfi. It involves */ --/* changing triangles twice.) */ -- --#define rprev(otri1, otri2) \ -- sym(otri1, otri2); \ -- lprevself(otri2); \ -- symself(otri2); -- --#define rprevself(otri) \ -- symself(otri); \ -- lprevself(otri); \ -- symself(otri); -- --/* These primitives determine or set the origin, destination, or apex of a */ --/* triangle. */ -- --#define org(otri, vertexptr) \ -- vertexptr = (vertex) (otri).tri[plus1mod3[(otri).orient] + 3] -- --#define dest(otri, vertexptr) \ -- vertexptr = (vertex) (otri).tri[minus1mod3[(otri).orient] + 3] -- --#define apex(otri, vertexptr) \ -- vertexptr = (vertex) (otri).tri[(otri).orient + 3] -- --#define setorg(otri, vertexptr) \ -- (otri).tri[plus1mod3[(otri).orient] + 3] = (triangle) vertexptr -- --#define setdest(otri, vertexptr) \ -- (otri).tri[minus1mod3[(otri).orient] + 3] = (triangle) vertexptr -- --#define setapex(otri, vertexptr) \ -- (otri).tri[(otri).orient + 3] = (triangle) vertexptr -- --/* Bond two triangles together. */ -- --#define bond(otri1, otri2) \ -- (otri1).tri[(otri1).orient] = encode(otri2); \ -- (otri2).tri[(otri2).orient] = encode(otri1) -- --/* Dissolve a bond (from one side). Note that the other triangle will still */ --/* think it's connected to this triangle. Usually, however, the other */ --/* triangle is being deleted entirely, or bonded to another triangle, so */ --/* it doesn't matter. */ -- --#define dissolve(otri) \ -- (otri).tri[(otri).orient] = (triangle) m->dummytri -- --/* Copy an oriented triangle. */ -- --#define otricopy(otri1, otri2) \ -- (otri2).tri = (otri1).tri; \ -- (otri2).orient = (otri1).orient -- --/* Test for equality of oriented triangles. */ -- --#define otriequal(otri1, otri2) \ -- (((otri1).tri == (otri2).tri) && \ -- ((otri1).orient == (otri2).orient)) -- --/* Primitives to infect or cure a triangle with the virus. These rely on */ --/* the assumption that all subsegments are aligned to four-byte boundaries.*/ -- --#define infect(otri) \ -- (otri).tri[6] = (triangle) \ -- ((TRIANGLE_PTRINT) (otri).tri[6] | (TRIANGLE_PTRINT) 2l) -- --#define uninfect(otri) \ -- (otri).tri[6] = (triangle) \ -- ((TRIANGLE_PTRINT) (otri).tri[6] & ~ (TRIANGLE_PTRINT) 2l) -- --/* Test a triangle for viral infection. */ -- --#define infected(otri) \ -- (((TRIANGLE_PTRINT) (otri).tri[6] & (TRIANGLE_PTRINT) 2l) != 0l) -- --/* Check or set a triangle's attributes. */ -- --#define elemattribute(otri, attnum) \ -- ((REAL *) (otri).tri)[m->elemattribindex + (attnum)] -- --#define setelemattribute(otri, attnum, value) \ -- ((REAL *) (otri).tri)[m->elemattribindex + (attnum)] = value -- --/* Check or set a triangle's maximum area bound. */ -- --#define areabound(otri) ((REAL *) (otri).tri)[m->areaboundindex] -- --#define setareabound(otri, value) \ -- ((REAL *) (otri).tri)[m->areaboundindex] = value -- --/* Check or set a triangle's deallocation. Its second pointer is set to */ --/* NULL to indicate that it is not allocated. (Its first pointer is used */ --/* for the stack of dead items.) Its fourth pointer (its first vertex) */ --/* is set to NULL in case a `badtriang' structure points to it. */ -- --#define deadtri(tria) ((tria)[1] == (triangle) NULL) -- --#define killtri(tria) \ -- (tria)[1] = (triangle) NULL; \ -- (tria)[3] = (triangle) NULL -- --/********* Primitives for subsegments *********/ --/* */ --/* */ -- --/* sdecode() converts a pointer to an oriented subsegment. The orientation */ --/* is extracted from the least significant bit of the pointer. The two */ --/* least significant bits (one for orientation, one for viral infection) */ --/* are masked out to produce the real pointer. */ -- --#define sdecode(sptr, osub) \ -- (osub).ssorient = (int) ((TRIANGLE_PTRINT) (sptr) & (TRIANGLE_PTRINT) 1l); \ -- (osub).ss = (subseg *) \ -- ((TRIANGLE_PTRINT) (sptr) & ~ (TRIANGLE_PTRINT) 3l) -- --/* sencode() compresses an oriented subsegment into a single pointer. It */ --/* relies on the assumption that all subsegments are aligned to two-byte */ --/* boundaries, so the least significant bit of (osub).ss is zero. */ -- --#define sencode(osub) \ -- (subseg) ((TRIANGLE_PTRINT) (osub).ss | (TRIANGLE_PTRINT) (osub).ssorient) -- --/* ssym() toggles the orientation of a subsegment. */ -- --#define ssym(osub1, osub2) \ -- (osub2).ss = (osub1).ss; \ -- (osub2).ssorient = 1 - (osub1).ssorient -- --#define ssymself(osub) \ -- (osub).ssorient = 1 - (osub).ssorient -- --/* spivot() finds the other subsegment (from the same segment) that shares */ --/* the same origin. */ -- --#define spivot(osub1, osub2) \ -- sptr = (osub1).ss[(osub1).ssorient]; \ -- sdecode(sptr, osub2) -- --#define spivotself(osub) \ -- sptr = (osub).ss[(osub).ssorient]; \ -- sdecode(sptr, osub) -- --/* snext() finds the next subsegment (from the same segment) in sequence; */ --/* one whose origin is the input subsegment's destination. */ -- --#define snext(osub1, osub2) \ -- sptr = (osub1).ss[1 - (osub1).ssorient]; \ -- sdecode(sptr, osub2) -- --#define snextself(osub) \ -- sptr = (osub).ss[1 - (osub).ssorient]; \ -- sdecode(sptr, osub) -- --/* These primitives determine or set the origin or destination of a */ --/* subsegment or the segment that includes it. */ -- --#define sorg(osub, vertexptr) \ -- vertexptr = (vertex) (osub).ss[2 + (osub).ssorient] -- --#define sdest(osub, vertexptr) \ -- vertexptr = (vertex) (osub).ss[3 - (osub).ssorient] -- --#define setsorg(osub, vertexptr) \ -- (osub).ss[2 + (osub).ssorient] = (subseg) vertexptr -- --#define setsdest(osub, vertexptr) \ -- (osub).ss[3 - (osub).ssorient] = (subseg) vertexptr -- --#define segorg(osub, vertexptr) \ -- vertexptr = (vertex) (osub).ss[4 + (osub).ssorient] -- --#define segdest(osub, vertexptr) \ -- vertexptr = (vertex) (osub).ss[5 - (osub).ssorient] -- --#define setsegorg(osub, vertexptr) \ -- (osub).ss[4 + (osub).ssorient] = (subseg) vertexptr -- --#define setsegdest(osub, vertexptr) \ -- (osub).ss[5 - (osub).ssorient] = (subseg) vertexptr -- --/* These primitives read or set a boundary marker. Boundary markers are */ --/* used to hold user-defined tags for setting boundary conditions in */ --/* finite element solvers. */ -- --#define mark(osub) (* (int *) ((osub).ss + 8)) -- --#define setmark(osub, value) \ -- * (int *) ((osub).ss + 8) = value -- --/* Bond two subsegments together. */ -- --#define sbond(osub1, osub2) \ -- (osub1).ss[(osub1).ssorient] = sencode(osub2); \ -- (osub2).ss[(osub2).ssorient] = sencode(osub1) -- --/* Dissolve a subsegment bond (from one side). Note that the other */ --/* subsegment will still think it's connected to this subsegment. */ -- --#define sdissolve(osub) \ -- (osub).ss[(osub).ssorient] = (subseg) m->dummysub -- --/* Copy a subsegment. */ -- --#define subsegcopy(osub1, osub2) \ -- (osub2).ss = (osub1).ss; \ -- (osub2).ssorient = (osub1).ssorient -- --/* Test for equality of subsegments. */ -- --#define subsegequal(osub1, osub2) \ -- (((osub1).ss == (osub2).ss) && \ -- ((osub1).ssorient == (osub2).ssorient)) -- --/* Check or set a subsegment's deallocation. Its second pointer is set to */ --/* NULL to indicate that it is not allocated. (Its first pointer is used */ --/* for the stack of dead items.) Its third pointer (its first vertex) */ --/* is set to NULL in case a `badsubseg' structure points to it. */ -- --#define deadsubseg(sub) ((sub)[1] == (subseg) NULL) -- --#define killsubseg(sub) \ -- (sub)[1] = (subseg) NULL; \ -- (sub)[2] = (subseg) NULL -- --/********* Primitives for interacting triangles and subsegments *********/ --/* */ --/* */ -- --/* tspivot() finds a subsegment abutting a triangle. */ -- --#define tspivot(otri, osub) \ -- sptr = (subseg) (otri).tri[6 + (otri).orient]; \ -- sdecode(sptr, osub) -- --/* stpivot() finds a triangle abutting a subsegment. It requires that the */ --/* variable `ptr' of type `triangle' be defined. */ -- --#define stpivot(osub, otri) \ -- ptr = (triangle) (osub).ss[6 + (osub).ssorient]; \ -- decode(ptr, otri) -- --/* Bond a triangle to a subsegment. */ -- --#define tsbond(otri, osub) \ -- (otri).tri[6 + (otri).orient] = (triangle) sencode(osub); \ -- (osub).ss[6 + (osub).ssorient] = (subseg) encode(otri) -- --/* Dissolve a bond (from the triangle side). */ -- --#define tsdissolve(otri) \ -- (otri).tri[6 + (otri).orient] = (triangle) m->dummysub -- --/* Dissolve a bond (from the subsegment side). */ -- --#define stdissolve(osub) \ -- (osub).ss[6 + (osub).ssorient] = (subseg) m->dummytri -- --/********* Primitives for vertices *********/ --/* */ --/* */ -- --#define vertexmark(vx) ((int *) (vx))[m->vertexmarkindex] -- --#define setvertexmark(vx, value) \ -- ((int *) (vx))[m->vertexmarkindex] = value -- --#define vertextype(vx) ((int *) (vx))[m->vertexmarkindex + 1] -- --#define setvertextype(vx, value) \ -- ((int *) (vx))[m->vertexmarkindex + 1] = value -- --#define vertex2tri(vx) ((triangle *) (vx))[m->vertex2triindex] -- --#define setvertex2tri(vx, value) \ -- ((triangle *) (vx))[m->vertex2triindex] = value -- --/** **/ --/** **/ --/********* Mesh manipulation primitives end here *********/ -- --/********* User-defined triangle evaluation routine begins here *********/ --/** **/ --/** **/ -- --/*****************************************************************************/ --/* */ --/* triunsuitable() Determine if a triangle is unsuitable, and thus must */ --/* be further refined. */ --/* */ --/* You may write your own procedure that decides whether or not a selected */ --/* triangle is too big (and needs to be refined). There are two ways to do */ --/* this. */ --/* */ --/* (1) Modify the procedure `triunsuitable' below, then recompile */ --/* Triangle. */ --/* */ --/* (2) Define the symbol EXTERNAL_TEST (either by adding the definition */ --/* to this file, or by using the appropriate compiler switch). This way, */ --/* you can compile triangle.c separately from your test. Write your own */ --/* `triunsuitable' procedure in a separate C file (using the same prototype */ --/* as below). Compile it and link the object code with triangle.o. */ --/* */ --/* This procedure returns 1 if the triangle is too large and should be */ --/* refined; 0 otherwise. */ --/* */ --/*****************************************************************************/ -- --#ifdef EXTERNAL_TEST -- --int triunsuitable(); -- --#else /* not EXTERNAL_TEST */ -- --#ifdef ANSI_DECLARATORS --int triunsuitable(vertex triorg, vertex tridest, vertex triapex, REAL area) --#else /* not ANSI_DECLARATORS */ --int triunsuitable(triorg, tridest, triapex, area) --vertex triorg; /* The triangle's origin vertex. */ --vertex tridest; /* The triangle's destination vertex. */ --vertex triapex; /* The triangle's apex vertex. */ --REAL area; /* The area of the triangle. */ --#endif /* not ANSI_DECLARATORS */ -- --{ -- REAL dxoa, dxda, dxod; -- REAL dyoa, dyda, dyod; -- REAL oalen, dalen, odlen; -- REAL maxlen; -- -- dxoa = triorg[0] - triapex[0]; -- dyoa = triorg[1] - triapex[1]; -- dxda = tridest[0] - triapex[0]; -- dyda = tridest[1] - triapex[1]; -- dxod = triorg[0] - tridest[0]; -- dyod = triorg[1] - tridest[1]; -- /* Find the squares of the lengths of the triangle's three edges. */ -- oalen = dxoa * dxoa + dyoa * dyoa; -- dalen = dxda * dxda + dyda * dyda; -- odlen = dxod * dxod + dyod * dyod; -- /* Find the square of the length of the longest edge. */ -- maxlen = (dalen > oalen) ? dalen : oalen; -- maxlen = (odlen > maxlen) ? odlen : maxlen; -- -- if (maxlen > 0.05 * (triorg[0] * triorg[0] + triorg[1] * triorg[1]) + 0.02) { -- return 1; -- } else { -- return 0; -- } --} -- --#endif /* not EXTERNAL_TEST */ -- --/** **/ --/** **/ --/********* User-defined triangle evaluation routine ends here *********/ -- --/********* Memory allocation and program exit wrappers begin here *********/ --/** **/ --/** **/ -- --#ifdef ANSI_DECLARATORS --void triexit(int status) --#else /* not ANSI_DECLARATORS */ --void triexit(status) --int status; --#endif /* not ANSI_DECLARATORS */ -- --{ -- exit(status); --} -- --#ifdef ANSI_DECLARATORS --void *trimalloc(int size) --#else /* not ANSI_DECLARATORS */ --void *trimalloc(size) --int size; --#endif /* not ANSI_DECLARATORS */ -- --{ -- void *memptr; -- -- memptr = (void *) malloc((unsigned int) size); -- if (memptr == (void *) NULL) { -- printf("Error: Out of memory.\n"); -- triexit(1); -- } -- return(memptr); --} -- --#ifdef ANSI_DECLARATORS --void trifree(void *memptr) --#else /* not ANSI_DECLARATORS */ --void trifree(memptr) --void *memptr; --#endif /* not ANSI_DECLARATORS */ -- --{ -- free(memptr); --} -- --/** **/ --/** **/ --/********* Memory allocation and program exit wrappers end here *********/ -- --/********* User interaction routines begin here *********/ --/** **/ --/** **/ -- --/*****************************************************************************/ --/* */ --/* syntax() Print list of command line switches. */ --/* */ --/*****************************************************************************/ -- --#ifndef TRILIBRARY -- --void syntax() --{ --#ifdef CDT_ONLY --#ifdef REDUCED -- printf("triangle [-pAcjevngBPNEIOXzo_lQVh] input_file\n"); --#else /* not REDUCED */ -- printf("triangle [-pAcjevngBPNEIOXzo_iFlCQVh] input_file\n"); --#endif /* not REDUCED */ --#else /* not CDT_ONLY */ --#ifdef REDUCED -- printf("triangle [-prq__a__uAcDjevngBPNEIOXzo_YS__lQVh] input_file\n"); --#else /* not REDUCED */ -- printf("triangle [-prq__a__uAcDjevngBPNEIOXzo_YS__iFlsCQVh] input_file\n"); --#endif /* not REDUCED */ --#endif /* not CDT_ONLY */ -- -- printf(" -p Triangulates a Planar Straight Line Graph (.poly file).\n"); --#ifndef CDT_ONLY -- printf(" -r Refines a previously generated mesh.\n"); -- printf( -- " -q Quality mesh generation. A minimum angle may be specified.\n"); -- printf(" -a Applies a maximum triangle area constraint.\n"); -- printf(" -u Applies a user-defined triangle constraint.\n"); --#endif /* not CDT_ONLY */ -- printf( -- " -A Applies attributes to identify triangles in certain regions.\n"); -- printf(" -c Encloses the convex hull with segments.\n"); --#ifndef CDT_ONLY -- printf(" -D Conforming Delaunay: all triangles are truly Delaunay.\n"); --#endif /* not CDT_ONLY */ --/* -- printf(" -w Weighted Delaunay triangulation.\n"); -- printf(" -W Regular triangulation (lower hull of a height field).\n"); --*/ -- printf(" -j Jettison unused vertices from output .node file.\n"); -- printf(" -e Generates an edge list.\n"); -- printf(" -v Generates a Voronoi diagram.\n"); -- printf(" -n Generates a list of triangle neighbors.\n"); -- printf(" -g Generates an .off file for Geomview.\n"); -- printf(" -B Suppresses output of boundary information.\n"); -- printf(" -P Suppresses output of .poly file.\n"); -- printf(" -N Suppresses output of .node file.\n"); -- printf(" -E Suppresses output of .ele file.\n"); -- printf(" -I Suppresses mesh iteration numbers.\n"); -- printf(" -O Ignores holes in .poly file.\n"); -- printf(" -X Suppresses use of exact arithmetic.\n"); -- printf(" -z Numbers all items starting from zero (rather than one).\n"); -- printf(" -o2 Generates second-order subparametric elements.\n"); --#ifndef CDT_ONLY -- printf(" -Y Suppresses boundary segment splitting.\n"); -- printf(" -S Specifies maximum number of added Steiner points.\n"); --#endif /* not CDT_ONLY */ --#ifndef REDUCED -- printf(" -i Uses incremental method, rather than divide-and-conquer.\n"); -- printf(" -F Uses Fortune's sweepline algorithm, rather than d-and-c.\n"); --#endif /* not REDUCED */ -- printf(" -l Uses vertical cuts only, rather than alternating cuts.\n"); --#ifndef REDUCED --#ifndef CDT_ONLY -- printf( -- " -s Force segments into mesh by splitting (instead of using CDT).\n"); --#endif /* not CDT_ONLY */ -- printf(" -C Check consistency of final mesh.\n"); --#endif /* not REDUCED */ -- printf(" -Q Quiet: No terminal output except errors.\n"); -- printf(" -V Verbose: Detailed information on what I'm doing.\n"); -- printf(" -h Help: Detailed instructions for Triangle.\n"); -- triexit(0); --} -- --#endif /* not TRILIBRARY */ -- --/*****************************************************************************/ --/* */ --/* info() Print out complete instructions. */ --/* */ --/*****************************************************************************/ -- --#ifndef TRILIBRARY -- --void info() --{ -- printf("Triangle\n"); -- printf( --"A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator.\n"); -- printf("Version 1.6\n\n"); -- printf( --"Copyright 1993, 1995, 1997, 1998, 2002, 2005 Jonathan Richard Shewchuk\n"); -- printf("2360 Woolsey #H / Berkeley, California 94705-1927\n"); -- printf("Bugs/comments to jrs@cs.berkeley.edu\n"); -- printf( --"Created as part of the Quake project (tools for earthquake simulation).\n"); -- printf( --"Supported in part by NSF Grant CMS-9318163 and an NSERC 1967 Scholarship.\n"); -- printf("There is no warranty whatsoever. Use at your own risk.\n"); --#ifdef SINGLE -- printf("This executable is compiled for single precision arithmetic.\n\n\n"); --#else /* not SINGLE */ -- printf("This executable is compiled for double precision arithmetic.\n\n\n"); --#endif /* not SINGLE */ -- printf( --"Triangle generates exact Delaunay triangulations, constrained Delaunay\n"); -- printf( --"triangulations, conforming Delaunay triangulations, Voronoi diagrams, and\n"); -- printf( --"high-quality triangular meshes. The latter can be generated with no small\n" --); -- printf( --"or large angles, and are thus suitable for finite element analysis. If no\n" --); -- printf( --"command line switch is specified, your .node input file is read, and the\n"); -- printf( --"Delaunay triangulation is returned in .node and .ele output files. The\n"); -- printf("command syntax is:\n\n"); -- printf("triangle [-prq__a__uAcDjevngBPNEIOXzo_YS__iFlsCQVh] input_file\n\n"); -- printf( --"Underscores indicate that numbers may optionally follow certain switches.\n"); -- printf( --"Do not leave any space between a switch and its numeric parameter.\n"); -- printf( --"input_file must be a file with extension .node, or extension .poly if the\n"); -- printf( --"-p switch is used. If -r is used, you must supply .node and .ele files,\n"); -- printf( --"and possibly a .poly file and an .area file as well. The formats of these\n" --); -- printf("files are described below.\n\n"); -- printf("Command Line Switches:\n\n"); -- printf( --" -p Reads a Planar Straight Line Graph (.poly file), which can specify\n" --); -- printf( --" vertices, segments, holes, regional attributes, and regional area\n"); -- printf( --" constraints. Generates a constrained Delaunay triangulation (CDT)\n" --); -- printf( --" fitting the input; or, if -s, -q, -a, or -u is used, a conforming\n"); -- printf( --" constrained Delaunay triangulation (CCDT). If you want a truly\n"); -- printf( --" Delaunay (not just constrained Delaunay) triangulation, use -D as\n"); -- printf( --" well. When -p is not used, Triangle reads a .node file by default.\n" --); -- printf( --" -r Refines a previously generated mesh. The mesh is read from a .node\n" --); -- printf( --" file and an .ele file. If -p is also used, a .poly file is read\n"); -- printf( --" and used to constrain segments in the mesh. If -a is also used\n"); -- printf( --" (with no number following), an .area file is read and used to\n"); -- printf( --" impose area constraints on the mesh. Further details on refinement\n" --); -- printf(" appear below.\n"); -- printf( --" -q Quality mesh generation by Delaunay refinement (a hybrid of Paul\n"); -- printf( --" Chew's and Jim Ruppert's algorithms). Adds vertices to the mesh to\n" --); -- printf( --" ensure that all angles are between 20 and 140 degrees. An\n"); -- printf( --" alternative bound on the minimum angle, replacing 20 degrees, may\n"); -- printf( --" be specified after the `q'. The specified angle may include a\n"); -- printf( --" decimal point, but not exponential notation. Note that a bound of\n" --); -- printf( --" theta degrees on the smallest angle also implies a bound of\n"); -- printf( --" (180 - 2 theta) on the largest angle. If the minimum angle is 28.6\n" --); -- printf( --" degrees or smaller, Triangle is mathematically guaranteed to\n"); -- printf( --" terminate (assuming infinite precision arithmetic--Triangle may\n"); -- printf( --" fail to terminate if you run out of precision). In practice,\n"); -- printf( --" Triangle often succeeds for minimum angles up to 34 degrees. For\n"); -- printf( --" some meshes, however, you might need to reduce the minimum angle to\n" --); -- printf( --" avoid problems associated with insufficient floating-point\n"); -- printf(" precision.\n"); -- printf( --" -a Imposes a maximum triangle area. If a number follows the `a', no\n"); -- printf( --" triangle is generated whose area is larger than that number. If no\n" --); -- printf( --" number is specified, an .area file (if -r is used) or .poly file\n"); -- printf( --" (if -r is not used) specifies a set of maximum area constraints.\n"); -- printf( --" An .area file contains a separate area constraint for each\n"); -- printf( --" triangle, and is useful for refining a finite element mesh based on\n" --); -- printf( --" a posteriori error estimates. A .poly file can optionally contain\n" --); -- printf( --" an area constraint for each segment-bounded region, thereby\n"); -- printf( --" controlling triangle densities in a first triangulation of a PSLG.\n" --); -- printf( --" You can impose both a fixed area constraint and a varying area\n"); -- printf( --" constraint by invoking the -a switch twice, once with and once\n"); -- printf( --" without a number following. Each area specified may include a\n"); -- printf(" decimal point.\n"); -- printf( --" -u Imposes a user-defined constraint on triangle size. There are two\n" --); -- printf( --" ways to use this feature. One is to edit the triunsuitable()\n"); -- printf( --" procedure in triangle.c to encode any constraint you like, then\n"); -- printf( --" recompile Triangle. The other is to compile triangle.c with the\n"); -- printf( --" EXTERNAL_TEST symbol set (compiler switch -DEXTERNAL_TEST), then\n"); -- printf( --" link Triangle with a separate object file that implements\n"); -- printf( --" triunsuitable(). In either case, the -u switch causes the user-\n"); -- printf(" defined test to be applied to every triangle.\n"); -- printf( --" -A Assigns an additional floating-point attribute to each triangle\n"); -- printf( --" that identifies what segment-bounded region each triangle belongs\n"); -- printf( --" to. Attributes are assigned to regions by the .poly file. If a\n"); -- printf( --" region is not explicitly marked by the .poly file, triangles in\n"); -- printf( --" that region are assigned an attribute of zero. The -A switch has\n"); -- printf( --" an effect only when the -p switch is used and the -r switch is not.\n" --); -- printf( --" -c Creates segments on the convex hull of the triangulation. If you\n"); -- printf( --" are triangulating a vertex set, this switch causes a .poly file to\n" --); -- printf( --" be written, containing all edges of the convex hull. If you are\n"); -- printf( --" triangulating a PSLG, this switch specifies that the whole convex\n"); -- printf( --" hull of the PSLG should be triangulated, regardless of what\n"); -- printf( --" segments the PSLG has. If you do not use this switch when\n"); -- printf( --" triangulating a PSLG, Triangle assumes that you have identified the\n" --); -- printf( --" region to be triangulated by surrounding it with segments of the\n"); -- printf( --" input PSLG. Beware: if you are not careful, this switch can cause\n" --); -- printf( --" the introduction of an extremely thin angle between a PSLG segment\n" --); -- printf( --" and a convex hull segment, which can cause overrefinement (and\n"); -- printf( --" possibly failure if Triangle runs out of precision). If you are\n"); -- printf( --" refining a mesh, the -c switch works differently: it causes a\n"); -- printf( --" .poly file to be written containing the boundary edges of the mesh\n" --); -- printf(" (useful if no .poly file was read).\n"); -- printf( --" -D Conforming Delaunay triangulation: use this switch if you want to\n" --); -- printf( --" ensure that all the triangles in the mesh are Delaunay, and not\n"); -- printf( --" merely constrained Delaunay; or if you want to ensure that all the\n" --); -- printf( --" Voronoi vertices lie within the triangulation. (Some finite volume\n" --); -- printf( --" methods have this requirement.) This switch invokes Ruppert's\n"); -- printf( --" original algorithm, which splits every subsegment whose diametral\n"); -- printf( --" circle is encroached. It usually increases the number of vertices\n" --); -- printf(" and triangles.\n"); -- printf( --" -j Jettisons vertices that are not part of the final triangulation\n"); -- printf( --" from the output .node file. By default, Triangle copies all\n"); -- printf( --" vertices in the input .node file to the output .node file, in the\n"); -- printf( --" same order, so their indices do not change. The -j switch prevents\n" --); -- printf( --" duplicated input vertices, or vertices `eaten' by holes, from\n"); -- printf( --" appearing in the output .node file. Thus, if two input vertices\n"); -- printf( --" have exactly the same coordinates, only the first appears in the\n"); -- printf( --" output. If any vertices are jettisoned, the vertex numbering in\n"); -- printf( --" the output .node file differs from that of the input .node file.\n"); -- printf( --" -e Outputs (to an .edge file) a list of edges of the triangulation.\n"); -- printf( --" -v Outputs the Voronoi diagram associated with the triangulation.\n"); -- printf( --" Does not attempt to detect degeneracies, so some Voronoi vertices\n"); -- printf( --" may be duplicated. See the discussion of Voronoi diagrams below.\n"); -- printf( --" -n Outputs (to a .neigh file) a list of triangles neighboring each\n"); -- printf(" triangle.\n"); -- printf( --" -g Outputs the mesh to an Object File Format (.off) file, suitable for\n" --); -- printf(" viewing with the Geometry Center's Geomview package.\n"); -- printf( --" -B No boundary markers in the output .node, .poly, and .edge output\n"); -- printf( --" files. See the detailed discussion of boundary markers below.\n"); -- printf( --" -P No output .poly file. Saves disk space, but you lose the ability\n"); -- printf( --" to maintain constraining segments on later refinements of the mesh.\n" --); -- printf(" -N No output .node file.\n"); -- printf(" -E No output .ele file.\n"); -- printf( --" -I No iteration numbers. Suppresses the output of .node and .poly\n"); -- printf( --" files, so your input files won't be overwritten. (If your input is\n" --); -- printf( --" a .poly file only, a .node file is written.) Cannot be used with\n"); -- printf( --" the -r switch, because that would overwrite your input .ele file.\n"); -- printf( --" Shouldn't be used with the -q, -a, -u, or -s switch if you are\n"); -- printf( --" using a .node file for input, because no .node file is written, so\n" --); -- printf(" there is no record of any added Steiner points.\n"); -- printf(" -O No holes. Ignores the holes in the .poly file.\n"); -- printf( --" -X No exact arithmetic. Normally, Triangle uses exact floating-point\n" --); -- printf( --" arithmetic for certain tests if it thinks the inexact tests are not\n" --); -- printf( --" accurate enough. Exact arithmetic ensures the robustness of the\n"); -- printf( --" triangulation algorithms, despite floating-point roundoff error.\n"); -- printf( --" Disabling exact arithmetic with the -X switch causes a small\n"); -- printf( --" improvement in speed and creates the possibility that Triangle will\n" --); -- printf(" fail to produce a valid mesh. Not recommended.\n"); -- printf( --" -z Numbers all items starting from zero (rather than one). Note that\n" --); -- printf( --" this switch is normally overridden by the value used to number the\n" --); -- printf( --" first vertex of the input .node or .poly file. However, this\n"); -- printf( --" switch is useful when calling Triangle from another program.\n"); -- printf( --" -o2 Generates second-order subparametric elements with six nodes each.\n" --); -- printf( --" -Y No new vertices on the boundary. This switch is useful when the\n"); -- printf( --" mesh boundary must be preserved so that it conforms to some\n"); -- printf( --" adjacent mesh. Be forewarned that you will probably sacrifice much\n" --); -- printf( --" of the quality of the mesh; Triangle will try, but the resulting\n"); -- printf( --" mesh may contain poorly shaped triangles. Works well if all the\n"); -- printf( --" boundary vertices are closely spaced. Specify this switch twice\n"); -- printf( --" (`-YY') to prevent all segment splitting, including internal\n"); -- printf(" boundaries.\n"); -- printf( --" -S Specifies the maximum number of Steiner points (vertices that are\n"); -- printf( --" not in the input, but are added to meet the constraints on minimum\n" --); -- printf( --" angle and maximum area). The default is to allow an unlimited\n"); -- printf( --" number. If you specify this switch with no number after it,\n"); -- printf( --" the limit is set to zero. Triangle always adds vertices at segment\n" --); -- printf( --" intersections, even if it needs to use more vertices than the limit\n" --); -- printf( --" you set. When Triangle inserts segments by splitting (-s), it\n"); -- printf( --" always adds enough vertices to ensure that all the segments of the\n" --); -- printf(" PLSG are recovered, ignoring the limit if necessary.\n"); -- printf( --" -i Uses an incremental rather than a divide-and-conquer algorithm to\n"); -- printf( --" construct a Delaunay triangulation. Try it if the divide-and-\n"); -- printf(" conquer algorithm fails.\n"); -- printf( --" -F Uses Steven Fortune's sweepline algorithm to construct a Delaunay\n"); -- printf( --" triangulation. Warning: does not use exact arithmetic for all\n"); -- printf(" calculations. An exact result is not guaranteed.\n"); -- printf( --" -l Uses only vertical cuts in the divide-and-conquer algorithm. By\n"); -- printf( --" default, Triangle alternates between vertical and horizontal cuts,\n" --); -- printf( --" which usually improve the speed except with vertex sets that are\n"); -- printf( --" small or short and wide. This switch is primarily of theoretical\n"); -- printf(" interest.\n"); -- printf( --" -s Specifies that segments should be forced into the triangulation by\n" --); -- printf( --" recursively splitting them at their midpoints, rather than by\n"); -- printf( --" generating a constrained Delaunay triangulation. Segment splitting\n" --); -- printf( --" is true to Ruppert's original algorithm, but can create needlessly\n" --); -- printf( --" small triangles. This switch is primarily of theoretical interest.\n" --); -- printf( --" -C Check the consistency of the final mesh. Uses exact arithmetic for\n" --); -- printf( --" checking, even if the -X switch is used. Useful if you suspect\n"); -- printf(" Triangle is buggy.\n"); -- printf( --" -Q Quiet: Suppresses all explanation of what Triangle is doing,\n"); -- printf(" unless an error occurs.\n"); -- printf( --" -V Verbose: Gives detailed information about what Triangle is doing.\n" --); -- printf( --" Add more `V's for increasing amount of detail. `-V' is most\n"); -- printf( --" useful; itgives information on algorithmic progress and much more\n"); -- printf( --" detailed statistics. `-VV' gives vertex-by-vertex details, and\n"); -- printf( --" prints so much that Triangle runs much more slowly. `-VVVV' gives\n" --); -- printf(" information only a debugger could love.\n"); -- printf(" -h Help: Displays these instructions.\n"); -- printf("\n"); -- printf("Definitions:\n"); -- printf("\n"); -- printf( --" A Delaunay triangulation of a vertex set is a triangulation whose\n"); -- printf( --" vertices are the vertex set, that covers the convex hull of the vertex\n"); -- printf( --" set. A Delaunay triangulation has the property that no vertex lies\n"); -- printf( --" inside the circumscribing circle (circle that passes through all three\n"); -- printf(" vertices) of any triangle in the triangulation.\n\n"); -- printf( --" A Voronoi diagram of a vertex set is a subdivision of the plane into\n"); -- printf( --" polygonal cells (some of which may be unbounded, meaning infinitely\n"); -- printf( --" large), where each cell is the set of points in the plane that are closer\n" --); -- printf( --" to some input vertex than to any other input vertex. The Voronoi diagram\n" --); -- printf(" is a geometric dual of the Delaunay triangulation.\n\n"); -- printf( --" A Planar Straight Line Graph (PSLG) is a set of vertices and segments.\n"); -- printf( --" Segments are simply edges, whose endpoints are all vertices in the PSLG.\n" --); -- printf( --" Segments may intersect each other only at their endpoints. The file\n"); -- printf(" format for PSLGs (.poly files) is described below.\n\n"); -- printf( --" A constrained Delaunay triangulation (CDT) of a PSLG is similar to a\n"); -- printf( --" Delaunay triangulation, but each PSLG segment is present as a single edge\n" --); -- printf( --" of the CDT. (A constrained Delaunay triangulation is not truly a\n"); -- printf( --" Delaunay triangulation, because some of its triangles might not be\n"); -- printf( --" Delaunay.) By definition, a CDT does not have any vertices other than\n"); -- printf( --" those specified in the input PSLG. Depending on context, a CDT might\n"); -- printf( --" cover the convex hull of the PSLG, or it might cover only a segment-\n"); -- printf(" bounded region (e.g. a polygon).\n\n"); -- printf( --" A conforming Delaunay triangulation of a PSLG is a triangulation in which\n" --); -- printf( --" each triangle is truly Delaunay, and each PSLG segment is represented by\n" --); -- printf( --" a linear contiguous sequence of edges of the triangulation. New vertices\n" --); -- printf( --" (not part of the PSLG) may appear, and each input segment may have been\n"); -- printf( --" subdivided into shorter edges (subsegments) by these additional vertices.\n" --); -- printf( --" The new vertices are frequently necessary to maintain the Delaunay\n"); -- printf(" property while ensuring that every segment is represented.\n\n"); -- printf( --" A conforming constrained Delaunay triangulation (CCDT) of a PSLG is a\n"); -- printf( --" triangulation of a PSLG whose triangles are constrained Delaunay. New\n"); -- printf(" vertices may appear, and input segments may be subdivided into\n"); -- printf( --" subsegments, but not to guarantee that segments are respected; rather, to\n" --); -- printf( --" improve the quality of the triangles. The high-quality meshes produced\n"); -- printf( --" by the -q switch are usually CCDTs, but can be made conforming Delaunay\n"); -- printf(" with the -D switch.\n\n"); -- printf("File Formats:\n\n"); -- printf( --" All files may contain comments prefixed by the character '#'. Vertices,\n" --); -- printf( --" triangles, edges, holes, and maximum area constraints must be numbered\n"); -- printf( --" consecutively, starting from either 1 or 0. Whichever you choose, all\n"); -- printf( --" input files must be consistent; if the vertices are numbered from 1, so\n"); -- printf( --" must be all other objects. Triangle automatically detects your choice\n"); -- printf( --" while reading the .node (or .poly) file. (When calling Triangle from\n"); -- printf( --" another program, use the -z switch if you wish to number objects from\n"); -- printf(" zero.) Examples of these file formats are given below.\n\n"); -- printf(" .node files:\n"); -- printf( --" First line: <# of vertices> <# of attributes>\n" --); -- printf( --" <# of boundary markers (0 or 1)>\n" --); -- printf( --" Remaining lines: [attributes] [boundary marker]\n"); -- printf("\n"); -- printf( --" The attributes, which are typically floating-point values of physical\n"); -- printf( --" quantities (such as mass or conductivity) associated with the nodes of\n" --); -- printf( --" a finite element mesh, are copied unchanged to the output mesh. If -q,\n" --); -- printf( --" -a, -u, -D, or -s is selected, each new Steiner point added to the mesh\n" --); -- printf(" has attributes assigned to it by linear interpolation.\n\n"); -- printf( --" If the fourth entry of the first line is `1', the last column of the\n"); -- printf( --" remainder of the file is assumed to contain boundary markers. Boundary\n" --); -- printf( --" markers are used to identify boundary vertices and vertices resting on\n" --); -- printf( --" PSLG segments; a complete description appears in a section below. The\n" --); -- printf( --" .node file produced by Triangle contains boundary markers in the last\n"); -- printf(" column unless they are suppressed by the -B switch.\n\n"); -- printf(" .ele files:\n"); -- printf( --" First line: <# of triangles> <# of attributes>\n"); -- printf( --" Remaining lines: ... [attributes]\n"); -- printf("\n"); -- printf( --" Nodes are indices into the corresponding .node file. The first three\n"); -- printf( --" nodes are the corner vertices, and are listed in counterclockwise order\n" --); -- printf( --" around each triangle. (The remaining nodes, if any, depend on the type\n" --); -- printf(" of finite element used.)\n\n"); -- printf( --" The attributes are just like those of .node files. Because there is no\n" --); -- printf( --" simple mapping from input to output triangles, Triangle attempts to\n"); -- printf( --" interpolate attributes, and may cause a lot of diffusion of attributes\n" --); -- printf( --" among nearby triangles as the triangulation is refined. Attributes do\n" --); -- printf(" not diffuse across segments, so attributes used to identify\n"); -- printf(" segment-bounded regions remain intact.\n\n"); -- printf( --" In .ele files produced by Triangle, each triangular element has three\n"); -- printf( --" nodes (vertices) unless the -o2 switch is used, in which case\n"); -- printf( --" subparametric quadratic elements with six nodes each are generated.\n"); -- printf( --" The first three nodes are the corners in counterclockwise order, and\n"); -- printf( --" the fourth, fifth, and sixth nodes lie on the midpoints of the edges\n"); -- printf( --" opposite the first, second, and third vertices, respectively.\n"); -- printf("\n"); -- printf(" .poly files:\n"); -- printf( --" First line: <# of vertices> <# of attributes>\n" --); -- printf( --" <# of boundary markers (0 or 1)>\n" --); -- printf( --" Following lines: [attributes] [boundary marker]\n"); -- printf(" One line: <# of segments> <# of boundary markers (0 or 1)>\n"); -- printf( --" Following lines: [boundary marker]\n"); -- printf(" One line: <# of holes>\n"); -- printf(" Following lines: \n"); -- printf( --" Optional line: <# of regional attributes and/or area constraints>\n"); -- printf( --" Optional following lines: \n"); -- printf("\n"); -- printf( --" A .poly file represents a PSLG, as well as some additional information.\n" --); -- printf( --" The first section lists all the vertices, and is identical to the\n"); -- printf( --" format of .node files. <# of vertices> may be set to zero to indicate\n" --); -- printf( --" that the vertices are listed in a separate .node file; .poly files\n"); -- printf( --" produced by Triangle always have this format. A vertex set represented\n" --); -- printf( --" this way has the advantage that it may easily be triangulated with or\n"); -- printf( --" without segments (depending on whether the -p switch is invoked).\n"); -- printf("\n"); -- printf( --" The second section lists the segments. Segments are edges whose\n"); -- printf( --" presence in the triangulation is enforced. (Depending on the choice of\n" --); -- printf( --" switches, segment might be subdivided into smaller edges). Each\n"); -- printf( --" segment is specified by listing the indices of its two endpoints. This\n" --); -- printf( --" means that you must include its endpoints in the vertex list. Each\n"); -- printf(" segment, like each point, may have a boundary marker.\n\n"); -- printf( --" If -q, -a, -u, and -s are not selected, Triangle produces a constrained\n" --); -- printf( --" Delaunay triangulation (CDT), in which each segment appears as a single\n" --); -- printf( --" edge in the triangulation. If -q, -a, -u, or -s is selected, Triangle\n" --); -- printf( --" produces a conforming constrained Delaunay triangulation (CCDT), in\n"); -- printf( --" which segments may be subdivided into smaller edges. If -D is\n"); -- printf( --" selected, Triangle produces a conforming Delaunay triangulation, so\n"); -- printf( --" that every triangle is Delaunay, and not just constrained Delaunay.\n"); -- printf("\n"); -- printf( --" The third section lists holes (and concavities, if -c is selected) in\n"); -- printf( --" the triangulation. Holes are specified by identifying a point inside\n"); -- printf( --" each hole. After the triangulation is formed, Triangle creates holes\n"); -- printf( --" by eating triangles, spreading out from each hole point until its\n"); -- printf( --" progress is blocked by segments in the PSLG. You must be careful to\n"); -- printf( --" enclose each hole in segments, or your whole triangulation might be\n"); -- printf( --" eaten away. If the two triangles abutting a segment are eaten, the\n"); -- printf( --" segment itself is also eaten. Do not place a hole directly on a\n"); -- printf(" segment; if you do, Triangle chooses one side of the segment\n"); -- printf(" arbitrarily.\n\n"); -- printf( --" The optional fourth section lists regional attributes (to be assigned\n"); -- printf( --" to all triangles in a region) and regional constraints on the maximum\n"); -- printf( --" triangle area. Triangle reads this section only if the -A switch is\n"); -- printf( --" used or the -a switch is used without a number following it, and the -r\n" --); -- printf( --" switch is not used. Regional attributes and area constraints are\n"); -- printf( --" propagated in the same manner as holes: you specify a point for each\n"); -- printf( --" attribute and/or constraint, and the attribute and/or constraint\n"); -- printf( --" affects the whole region (bounded by segments) containing the point.\n"); -- printf( --" If two values are written on a line after the x and y coordinate, the\n"); -- printf( --" first such value is assumed to be a regional attribute (but is only\n"); -- printf( --" applied if the -A switch is selected), and the second value is assumed\n" --); -- printf( --" to be a regional area constraint (but is only applied if the -a switch\n" --); -- printf( --" is selected). You may specify just one value after the coordinates,\n"); -- printf( --" which can serve as both an attribute and an area constraint, depending\n" --); -- printf( --" on the choice of switches. If you are using the -A and -a switches\n"); -- printf( --" simultaneously and wish to assign an attribute to some region without\n"); -- printf(" imposing an area constraint, use a negative maximum area.\n\n"); -- printf( --" When a triangulation is created from a .poly file, you must either\n"); -- printf( --" enclose the entire region to be triangulated in PSLG segments, or\n"); -- printf( --" use the -c switch, which automatically creates extra segments that\n"); -- printf( --" enclose the convex hull of the PSLG. If you do not use the -c switch,\n" --); -- printf( --" Triangle eats all triangles that are not enclosed by segments; if you\n"); -- printf( --" are not careful, your whole triangulation may be eaten away. If you do\n" --); -- printf( --" use the -c switch, you can still produce concavities by the appropriate\n" --); -- printf( --" placement of holes just inside the boundary of the convex hull.\n"); -- printf("\n"); -- printf( --" An ideal PSLG has no intersecting segments, nor any vertices that lie\n"); -- printf( --" upon segments (except, of course, the endpoints of each segment). You\n" --); -- printf( --" aren't required to make your .poly files ideal, but you should be aware\n" --); -- printf( --" of what can go wrong. Segment intersections are relatively safe--\n"); -- printf( --" Triangle calculates the intersection points for you and adds them to\n"); -- printf( --" the triangulation--as long as your machine's floating-point precision\n"); -- printf( --" doesn't become a problem. You are tempting the fates if you have three\n" --); -- printf( --" segments that cross at the same location, and expect Triangle to figure\n" --); -- printf( --" out where the intersection point is. Thanks to floating-point roundoff\n" --); -- printf( --" error, Triangle will probably decide that the three segments intersect\n" --); -- printf( --" at three different points, and you will find a minuscule triangle in\n"); -- printf( --" your output--unless Triangle tries to refine the tiny triangle, uses\n"); -- printf( --" up the last bit of machine precision, and fails to terminate at all.\n"); -- printf( --" You're better off putting the intersection point in the input files,\n"); -- printf( --" and manually breaking up each segment into two. Similarly, if you\n"); -- printf( --" place a vertex at the middle of a segment, and hope that Triangle will\n" --); -- printf( --" break up the segment at that vertex, you might get lucky. On the other\n" --); -- printf( --" hand, Triangle might decide that the vertex doesn't lie precisely on\n"); -- printf( --" the segment, and you'll have a needle-sharp triangle in your output--or\n" --); -- printf(" a lot of tiny triangles if you're generating a quality mesh.\n"); -- printf("\n"); -- printf( --" When Triangle reads a .poly file, it also writes a .poly file, which\n"); -- printf( --" includes all the subsegments--the edges that are parts of input\n"); -- printf( --" segments. If the -c switch is used, the output .poly file also\n"); -- printf( --" includes all of the edges on the convex hull. Hence, the output .poly\n" --); -- printf( --" file is useful for finding edges associated with input segments and for\n" --); -- printf( --" setting boundary conditions in finite element simulations. Moreover,\n"); -- printf( --" you will need the output .poly file if you plan to refine the output\n"); -- printf( --" mesh, and don't want segments to be missing in later triangulations.\n"); -- printf("\n"); -- printf(" .area files:\n"); -- printf(" First line: <# of triangles>\n"); -- printf(" Following lines: \n"); -- printf("\n"); -- printf( --" An .area file associates with each triangle a maximum area that is used\n" --); -- printf( --" for mesh refinement. As with other file formats, every triangle must\n"); -- printf( --" be represented, and the triangles must be numbered consecutively. A\n"); -- printf( --" triangle may be left unconstrained by assigning it a negative maximum\n"); -- printf(" area.\n\n"); -- printf(" .edge files:\n"); -- printf(" First line: <# of edges> <# of boundary markers (0 or 1)>\n"); -- printf( --" Following lines: [boundary marker]\n"); -- printf("\n"); -- printf( --" Endpoints are indices into the corresponding .node file. Triangle can\n" --); -- printf( --" produce .edge files (use the -e switch), but cannot read them. The\n"); -- printf( --" optional column of boundary markers is suppressed by the -B switch.\n"); -- printf("\n"); -- printf( --" In Voronoi diagrams, one also finds a special kind of edge that is an\n"); -- printf( --" infinite ray with only one endpoint. For these edges, a different\n"); -- printf(" format is used:\n\n"); -- printf(" -1 \n\n"); -- printf( --" The `direction' is a floating-point vector that indicates the direction\n" --); -- printf(" of the infinite ray.\n\n"); -- printf(" .neigh files:\n"); -- printf( --" First line: <# of triangles> <# of neighbors per triangle (always 3)>\n" --); -- printf( --" Following lines: \n"); -- printf("\n"); -- printf( --" Neighbors are indices into the corresponding .ele file. An index of -1\n" --); -- printf( --" indicates no neighbor (because the triangle is on an exterior\n"); -- printf( --" boundary). The first neighbor of triangle i is opposite the first\n"); -- printf(" corner of triangle i, and so on.\n\n"); -- printf( --" Triangle can produce .neigh files (use the -n switch), but cannot read\n" --); -- printf(" them.\n\n"); -- printf("Boundary Markers:\n\n"); -- printf( --" Boundary markers are tags used mainly to identify which output vertices\n"); -- printf( --" and edges are associated with which PSLG segment, and to identify which\n"); -- printf( --" vertices and edges occur on a boundary of the triangulation. A common\n"); -- printf( --" use is to determine where boundary conditions should be applied to a\n"); -- printf( --" finite element mesh. You can prevent boundary markers from being written\n" --); -- printf(" into files produced by Triangle by using the -B switch.\n\n"); -- printf( --" The boundary marker associated with each segment in an output .poly file\n" --); -- printf(" and each edge in an output .edge file is chosen as follows:\n"); -- printf( --" - If an output edge is part or all of a PSLG segment with a nonzero\n"); -- printf( --" boundary marker, then the edge is assigned the same marker.\n"); -- printf( --" - Otherwise, if the edge lies on a boundary of the triangulation\n"); -- printf( --" (even the boundary of a hole), then the edge is assigned the marker\n"); -- printf(" one (1).\n"); -- printf(" - Otherwise, the edge is assigned the marker zero (0).\n"); -- printf( --" The boundary marker associated with each vertex in an output .node file\n"); -- printf(" is chosen as follows:\n"); -- printf( --" - If a vertex is assigned a nonzero boundary marker in the input file,\n" --); -- printf( --" then it is assigned the same marker in the output .node file.\n"); -- printf( --" - Otherwise, if the vertex lies on a PSLG segment (even if it is an\n"); -- printf( --" endpoint of the segment) with a nonzero boundary marker, then the\n"); -- printf( --" vertex is assigned the same marker. If the vertex lies on several\n"); -- printf(" such segments, one of the markers is chosen arbitrarily.\n"); -- printf( --" - Otherwise, if the vertex occurs on a boundary of the triangulation,\n"); -- printf(" then the vertex is assigned the marker one (1).\n"); -- printf(" - Otherwise, the vertex is assigned the marker zero (0).\n"); -- printf("\n"); -- printf( --" If you want Triangle to determine for you which vertices and edges are on\n" --); -- printf( --" the boundary, assign them the boundary marker zero (or use no markers at\n" --); -- printf( --" all) in your input files. In the output files, all boundary vertices,\n"); -- printf(" edges, and segments will be assigned the value one.\n\n"); -- printf("Triangulation Iteration Numbers:\n\n"); -- printf( --" Because Triangle can read and refine its own triangulations, input\n"); -- printf( --" and output files have iteration numbers. For instance, Triangle might\n"); -- printf( --" read the files mesh.3.node, mesh.3.ele, and mesh.3.poly, refine the\n"); -- printf( --" triangulation, and output the files mesh.4.node, mesh.4.ele, and\n"); -- printf(" mesh.4.poly. Files with no iteration number are treated as if\n"); -- printf( --" their iteration number is zero; hence, Triangle might read the file\n"); -- printf( --" points.node, triangulate it, and produce the files points.1.node and\n"); -- printf(" points.1.ele.\n\n"); -- printf( --" Iteration numbers allow you to create a sequence of successively finer\n"); -- printf( --" meshes suitable for multigrid methods. They also allow you to produce a\n" --); -- printf( --" sequence of meshes using error estimate-driven mesh refinement.\n"); -- printf("\n"); -- printf( --" If you're not using refinement or quality meshing, and you don't like\n"); -- printf( --" iteration numbers, use the -I switch to disable them. This switch also\n"); -- printf( --" disables output of .node and .poly files to prevent your input files from\n" --); -- printf( --" being overwritten. (If the input is a .poly file that contains its own\n"); -- printf( --" points, a .node file is written. This can be quite convenient for\n"); -- printf(" computing CDTs or quality meshes.)\n\n"); -- printf("Examples of How to Use Triangle:\n\n"); -- printf( --" `triangle dots' reads vertices from dots.node, and writes their Delaunay\n" --); -- printf( --" triangulation to dots.1.node and dots.1.ele. (dots.1.node is identical\n"); -- printf( --" to dots.node.) `triangle -I dots' writes the triangulation to dots.ele\n"); -- printf( --" instead. (No additional .node file is needed, so none is written.)\n"); -- printf("\n"); -- printf( --" `triangle -pe object.1' reads a PSLG from object.1.poly (and possibly\n"); -- printf( --" object.1.node, if the vertices are omitted from object.1.poly) and writes\n" --); -- printf( --" its constrained Delaunay triangulation to object.2.node and object.2.ele.\n" --); -- printf( --" The segments are copied to object.2.poly, and all edges are written to\n"); -- printf(" object.2.edge.\n\n"); -- printf( --" `triangle -pq31.5a.1 object' reads a PSLG from object.poly (and possibly\n" --); -- printf( --" object.node), generates a mesh whose angles are all between 31.5 and 117\n" --); -- printf( --" degrees and whose triangles all have areas of 0.1 or less, and writes the\n" --); -- printf( --" mesh to object.1.node and object.1.ele. Each segment may be broken up\n"); -- printf(" into multiple subsegments; these are written to object.1.poly.\n"); -- printf("\n"); -- printf( --" Here is a sample file `box.poly' describing a square with a square hole:\n" --); -- printf("\n"); -- printf( --" # A box with eight vertices in 2D, no attributes, one boundary marker.\n" --); -- printf(" 8 2 0 1\n"); -- printf(" # Outer box has these vertices:\n"); -- printf(" 1 0 0 0\n"); -- printf(" 2 0 3 0\n"); -- printf(" 3 3 0 0\n"); -- printf(" 4 3 3 33 # A special marker for this vertex.\n"); -- printf(" # Inner square has these vertices:\n"); -- printf(" 5 1 1 0\n"); -- printf(" 6 1 2 0\n"); -- printf(" 7 2 1 0\n"); -- printf(" 8 2 2 0\n"); -- printf(" # Five segments with boundary markers.\n"); -- printf(" 5 1\n"); -- printf(" 1 1 2 5 # Left side of outer box.\n"); -- printf(" # Square hole has these segments:\n"); -- printf(" 2 5 7 0\n"); -- printf(" 3 7 8 0\n"); -- printf(" 4 8 6 10\n"); -- printf(" 5 6 5 0\n"); -- printf(" # One hole in the middle of the inner square.\n"); -- printf(" 1\n"); -- printf(" 1 1.5 1.5\n"); -- printf("\n"); -- printf( --" Note that some segments are missing from the outer square, so you must\n"); -- printf( --" use the `-c' switch. After `triangle -pqc box.poly', here is the output\n" --); -- printf( --" file `box.1.node', with twelve vertices. The last four vertices were\n"); -- printf( --" added to meet the angle constraint. Vertices 1, 2, and 9 have markers\n"); -- printf( --" from segment 1. Vertices 6 and 8 have markers from segment 4. All the\n"); -- printf( --" other vertices but 4 have been marked to indicate that they lie on a\n"); -- printf(" boundary.\n\n"); -- printf(" 12 2 0 1\n"); -- printf(" 1 0 0 5\n"); -- printf(" 2 0 3 5\n"); -- printf(" 3 3 0 1\n"); -- printf(" 4 3 3 33\n"); -- printf(" 5 1 1 1\n"); -- printf(" 6 1 2 10\n"); -- printf(" 7 2 1 1\n"); -- printf(" 8 2 2 10\n"); -- printf(" 9 0 1.5 5\n"); -- printf(" 10 1.5 0 1\n"); -- printf(" 11 3 1.5 1\n"); -- printf(" 12 1.5 3 1\n"); -- printf(" # Generated by triangle -pqc box.poly\n"); -- printf("\n"); -- printf(" Here is the output file `box.1.ele', with twelve triangles.\n"); -- printf("\n"); -- printf(" 12 3 0\n"); -- printf(" 1 5 6 9\n"); -- printf(" 2 10 3 7\n"); -- printf(" 3 6 8 12\n"); -- printf(" 4 9 1 5\n"); -- printf(" 5 6 2 9\n"); -- printf(" 6 7 3 11\n"); -- printf(" 7 11 4 8\n"); -- printf(" 8 7 5 10\n"); -- printf(" 9 12 2 6\n"); -- printf(" 10 8 7 11\n"); -- printf(" 11 5 1 10\n"); -- printf(" 12 8 4 12\n"); -- printf(" # Generated by triangle -pqc box.poly\n\n"); -- printf( --" Here is the output file `box.1.poly'. Note that segments have been added\n" --); -- printf( --" to represent the convex hull, and some segments have been subdivided by\n"); -- printf( --" newly added vertices. Note also that <# of vertices> is set to zero to\n"); -- printf(" indicate that the vertices should be read from the .node file.\n"); -- printf("\n"); -- printf(" 0 2 0 1\n"); -- printf(" 12 1\n"); -- printf(" 1 1 9 5\n"); -- printf(" 2 5 7 1\n"); -- printf(" 3 8 7 1\n"); -- printf(" 4 6 8 10\n"); -- printf(" 5 5 6 1\n"); -- printf(" 6 3 10 1\n"); -- printf(" 7 4 11 1\n"); -- printf(" 8 2 12 1\n"); -- printf(" 9 9 2 5\n"); -- printf(" 10 10 1 1\n"); -- printf(" 11 11 3 1\n"); -- printf(" 12 12 4 1\n"); -- printf(" 1\n"); -- printf(" 1 1.5 1.5\n"); -- printf(" # Generated by triangle -pqc box.poly\n"); -- printf("\n"); -- printf("Refinement and Area Constraints:\n"); -- printf("\n"); -- printf( --" The -r switch causes a mesh (.node and .ele files) to be read and\n"); -- printf( --" refined. If the -p switch is also used, a .poly file is read and used to\n" --); -- printf( --" specify edges that are constrained and cannot be eliminated (although\n"); -- printf( --" they can be subdivided into smaller edges) by the refinement process.\n"); -- printf("\n"); -- printf( --" When you refine a mesh, you generally want to impose tighter constraints.\n" --); -- printf( --" One way to accomplish this is to use -q with a larger angle, or -a\n"); -- printf( --" followed by a smaller area than you used to generate the mesh you are\n"); -- printf( --" refining. Another way to do this is to create an .area file, which\n"); -- printf( --" specifies a maximum area for each triangle, and use the -a switch\n"); -- printf( --" (without a number following). Each triangle's area constraint is applied\n" --); -- printf( --" to that triangle. Area constraints tend to diffuse as the mesh is\n"); -- printf( --" refined, so if there are large variations in area constraint between\n"); -- printf( --" adjacent triangles, you may not get the results you want. In that case,\n" --); -- printf( --" consider instead using the -u switch and writing a C procedure that\n"); -- printf(" determines which triangles are too large.\n\n"); -- printf( --" If you are refining a mesh composed of linear (three-node) elements, the\n" --); -- printf( --" output mesh contains all the nodes present in the input mesh, in the same\n" --); -- printf( --" order, with new nodes added at the end of the .node file. However, the\n"); -- printf( --" refinement is not hierarchical: there is no guarantee that each output\n"); -- printf( --" element is contained in a single input element. Often, an output element\n" --); -- printf( --" can overlap two or three input elements, and some input edges are not\n"); -- printf( --" present in the output mesh. Hence, a sequence of refined meshes forms a\n" --); -- printf( --" hierarchy of nodes, but not a hierarchy of elements. If you refine a\n"); -- printf( --" mesh of higher-order elements, the hierarchical property applies only to\n" --); -- printf( --" the nodes at the corners of an element; the midpoint nodes on each edge\n"); -- printf(" are discarded before the mesh is refined.\n\n"); -- printf( --" Maximum area constraints in .poly files operate differently from those in\n" --); -- printf( --" .area files. A maximum area in a .poly file applies to the whole\n"); -- printf( --" (segment-bounded) region in which a point falls, whereas a maximum area\n"); -- printf( --" in an .area file applies to only one triangle. Area constraints in .poly\n" --); -- printf( --" files are used only when a mesh is first generated, whereas area\n"); -- printf( --" constraints in .area files are used only to refine an existing mesh, and\n" --); -- printf( --" are typically based on a posteriori error estimates resulting from a\n"); -- printf(" finite element simulation on that mesh.\n\n"); -- printf( --" `triangle -rq25 object.1' reads object.1.node and object.1.ele, then\n"); -- printf( --" refines the triangulation to enforce a 25 degree minimum angle, and then\n" --); -- printf( --" writes the refined triangulation to object.2.node and object.2.ele.\n"); -- printf("\n"); -- printf( --" `triangle -rpaa6.2 z.3' reads z.3.node, z.3.ele, z.3.poly, and z.3.area.\n" --); -- printf( --" After reconstructing the mesh and its subsegments, Triangle refines the\n"); -- printf( --" mesh so that no triangle has area greater than 6.2, and furthermore the\n"); -- printf( --" triangles satisfy the maximum area constraints in z.3.area. No angle\n"); -- printf( --" bound is imposed at all. The output is written to z.4.node, z.4.ele, and\n" --); -- printf(" z.4.poly.\n\n"); -- printf( --" The sequence `triangle -qa1 x', `triangle -rqa.3 x.1', `triangle -rqa.1\n"); -- printf( --" x.2' creates a sequence of successively finer meshes x.1, x.2, and x.3,\n"); -- printf(" suitable for multigrid.\n\n"); -- printf("Convex Hulls and Mesh Boundaries:\n\n"); -- printf( --" If the input is a vertex set (not a PSLG), Triangle produces its convex\n"); -- printf( --" hull as a by-product in the output .poly file if you use the -c switch.\n"); -- printf( --" There are faster algorithms for finding a two-dimensional convex hull\n"); -- printf(" than triangulation, of course, but this one comes for free.\n\n"); -- printf( --" If the input is an unconstrained mesh (you are using the -r switch but\n"); -- printf( --" not the -p switch), Triangle produces a list of its boundary edges\n"); -- printf( --" (including hole boundaries) as a by-product when you use the -c switch.\n"); -- printf( --" If you also use the -p switch, the output .poly file contains all the\n"); -- printf(" segments from the input .poly file as well.\n\n"); -- printf("Voronoi Diagrams:\n\n"); -- printf( --" The -v switch produces a Voronoi diagram, in files suffixed .v.node and\n"); -- printf( --" .v.edge. For example, `triangle -v points' reads points.node, produces\n"); -- printf( --" its Delaunay triangulation in points.1.node and points.1.ele, and\n"); -- printf( --" produces its Voronoi diagram in points.1.v.node and points.1.v.edge. The\n" --); -- printf( --" .v.node file contains a list of all Voronoi vertices, and the .v.edge\n"); -- printf( --" file contains a list of all Voronoi edges, some of which may be infinite\n" --); -- printf( --" rays. (The choice of filenames makes it easy to run the set of Voronoi\n"); -- printf(" vertices through Triangle, if so desired.)\n\n"); -- printf( --" This implementation does not use exact arithmetic to compute the Voronoi\n" --); -- printf( --" vertices, and does not check whether neighboring vertices are identical.\n" --); -- printf( --" Be forewarned that if the Delaunay triangulation is degenerate or\n"); -- printf( --" near-degenerate, the Voronoi diagram may have duplicate vertices or\n"); -- printf(" crossing edges.\n\n"); -- printf( --" The result is a valid Voronoi diagram only if Triangle's output is a true\n" --); -- printf( --" Delaunay triangulation. The Voronoi output is usually meaningless (and\n"); -- printf( --" may contain crossing edges and other pathology) if the output is a CDT or\n" --); -- printf( --" CCDT, or if it has holes or concavities. If the triangulated domain is\n"); -- printf( --" convex and has no holes, you can use -D switch to force Triangle to\n"); -- printf( --" construct a conforming Delaunay triangulation instead of a CCDT, so the\n"); -- printf(" Voronoi diagram will be valid.\n\n"); -- printf("Mesh Topology:\n\n"); -- printf( --" You may wish to know which triangles are adjacent to a certain Delaunay\n"); -- printf( --" edge in an .edge file, which Voronoi cells are adjacent to a certain\n"); -- printf( --" Voronoi edge in a .v.edge file, or which Voronoi cells are adjacent to\n"); -- printf( --" each other. All of this information can be found by cross-referencing\n"); -- printf( --" output files with the recollection that the Delaunay triangulation and\n"); -- printf(" the Voronoi diagram are planar duals.\n\n"); -- printf( --" Specifically, edge i of an .edge file is the dual of Voronoi edge i of\n"); -- printf( --" the corresponding .v.edge file, and is rotated 90 degrees counterclock-\n"); -- printf( --" wise from the Voronoi edge. Triangle j of an .ele file is the dual of\n"); -- printf( --" vertex j of the corresponding .v.node file. Voronoi cell k is the dual\n"); -- printf(" of vertex k of the corresponding .node file.\n\n"); -- printf( --" Hence, to find the triangles adjacent to a Delaunay edge, look at the\n"); -- printf( --" vertices of the corresponding Voronoi edge. If the endpoints of a\n"); -- printf( --" Voronoi edge are Voronoi vertices 2 and 6 respectively, then triangles 2\n" --); -- printf( --" and 6 adjoin the left and right sides of the corresponding Delaunay edge,\n" --); -- printf( --" respectively. To find the Voronoi cells adjacent to a Voronoi edge, look\n" --); -- printf( --" at the endpoints of the corresponding Delaunay edge. If the endpoints of\n" --); -- printf( --" a Delaunay edge are input vertices 7 and 12, then Voronoi cells 7 and 12\n" --); -- printf( --" adjoin the right and left sides of the corresponding Voronoi edge,\n"); -- printf( --" respectively. To find which Voronoi cells are adjacent to each other,\n"); -- printf(" just read the list of Delaunay edges.\n\n"); -- printf( --" Triangle does not write a list of the edges adjoining each Voronoi cell,\n" --); -- printf( --" but you can reconstructed it straightforwardly. For instance, to find\n"); -- printf( --" all the edges of Voronoi cell 1, search the output .edge file for every\n"); -- printf( --" edge that has input vertex 1 as an endpoint. The corresponding dual\n"); -- printf( --" edges in the output .v.edge file form the boundary of Voronoi cell 1.\n"); -- printf("\n"); -- printf( --" For each Voronoi vertex, the .neigh file gives a list of the three\n"); -- printf( --" Voronoi vertices attached to it. You might find this more convenient\n"); -- printf(" than the .v.edge file.\n\n"); -- printf("Quadratic Elements:\n\n"); -- printf( --" Triangle generates meshes with subparametric quadratic elements if the\n"); -- printf( --" -o2 switch is specified. Quadratic elements have six nodes per element,\n" --); -- printf( --" rather than three. `Subparametric' means that the edges of the triangles\n" --); -- printf( --" are always straight, so that subparametric quadratic elements are\n"); -- printf( --" geometrically identical to linear elements, even though they can be used\n" --); -- printf( --" with quadratic interpolating functions. The three extra nodes of an\n"); -- printf( --" element fall at the midpoints of the three edges, with the fourth, fifth,\n" --); -- printf( --" and sixth nodes appearing opposite the first, second, and third corners\n"); -- printf(" respectively.\n\n"); -- printf("Domains with Small Angles:\n\n"); -- printf( --" If two input segments adjoin each other at a small angle, clearly the -q\n" --); -- printf( --" switch cannot remove the small angle. Moreover, Triangle may have no\n"); -- printf( --" choice but to generate additional triangles whose smallest angles are\n"); -- printf( --" smaller than the specified bound. However, these triangles only appear\n"); -- printf( --" between input segments separated by small angles. Moreover, if you\n"); -- printf( --" request a minimum angle of theta degrees, Triangle will generally produce\n" --); -- printf( --" no angle larger than 180 - 2 theta, even if it is forced to compromise on\n" --); -- printf(" the minimum angle.\n\n"); -- printf("Statistics:\n\n"); -- printf( --" After generating a mesh, Triangle prints a count of entities in the\n"); -- printf( --" output mesh, including the number of vertices, triangles, edges, exterior\n" --); -- printf( --" boundary edges (i.e. subsegments on the boundary of the triangulation,\n"); -- printf( --" including hole boundaries), interior boundary edges (i.e. subsegments of\n" --); -- printf( --" input segments not on the boundary), and total subsegments. If you've\n"); -- printf( --" forgotten the statistics for an existing mesh, run Triangle on that mesh\n" --); -- printf( --" with the -rNEP switches to read the mesh and print the statistics without\n" --); -- printf( --" writing any files. Use -rpNEP if you've got a .poly file for the mesh.\n"); -- printf("\n"); -- printf( --" The -V switch produces extended statistics, including a rough estimate\n"); -- printf( --" of memory use, the number of calls to geometric predicates, and\n"); -- printf( --" histograms of the angles and the aspect ratios of the triangles in the\n"); -- printf(" mesh.\n\n"); -- printf("Exact Arithmetic:\n\n"); -- printf( --" Triangle uses adaptive exact arithmetic to perform what computational\n"); -- printf( --" geometers call the `orientation' and `incircle' tests. If the floating-\n" --); -- printf( --" point arithmetic of your machine conforms to the IEEE 754 standard (as\n"); -- printf( --" most workstations do), and does not use extended precision internal\n"); -- printf( --" floating-point registers, then your output is guaranteed to be an\n"); -- printf( --" absolutely true Delaunay or constrained Delaunay triangulation, roundoff\n" --); -- printf( --" error notwithstanding. The word `adaptive' implies that these arithmetic\n" --); -- printf( --" routines compute the result only to the precision necessary to guarantee\n" --); -- printf( --" correctness, so they are usually nearly as fast as their approximate\n"); -- printf(" counterparts.\n\n"); -- printf( --" May CPUs, including Intel x86 processors, have extended precision\n"); -- printf( --" floating-point registers. These must be reconfigured so their precision\n" --); -- printf( --" is reduced to memory precision. Triangle does this if it is compiled\n"); -- printf(" correctly. See the makefile for details.\n\n"); -- printf( --" The exact tests can be disabled with the -X switch. On most inputs, this\n" --); -- printf( --" switch reduces the computation time by about eight percent--it's not\n"); -- printf( --" worth the risk. There are rare difficult inputs (having many collinear\n"); -- printf( --" and cocircular vertices), however, for which the difference in speed\n"); -- printf( --" could be a factor of two. Be forewarned that these are precisely the\n"); -- printf( --" inputs most likely to cause errors if you use the -X switch. Hence, the\n" --); -- printf(" -X switch is not recommended.\n\n"); -- printf( --" Unfortunately, the exact tests don't solve every numerical problem.\n"); -- printf( --" Exact arithmetic is not used to compute the positions of new vertices,\n"); -- printf( --" because the bit complexity of vertex coordinates would grow without\n"); -- printf( --" bound. Hence, segment intersections aren't computed exactly; in very\n"); -- printf( --" unusual cases, roundoff error in computing an intersection point might\n"); -- printf( --" actually lead to an inverted triangle and an invalid triangulation.\n"); -- printf( --" (This is one reason to specify your own intersection points in your .poly\n" --); -- printf( --" files.) Similarly, exact arithmetic is not used to compute the vertices\n" --); -- printf(" of the Voronoi diagram.\n\n"); -- printf( --" Another pair of problems not solved by the exact arithmetic routines is\n"); -- printf( --" underflow and overflow. If Triangle is compiled for double precision\n"); -- printf( --" arithmetic, I believe that Triangle's geometric predicates work correctly\n" --); -- printf( --" if the exponent of every input coordinate falls in the range [-148, 201].\n" --); -- printf( --" Underflow can silently prevent the orientation and incircle tests from\n"); -- printf( --" being performed exactly, while overflow typically causes a floating\n"); -- printf(" exception.\n\n"); -- printf("Calling Triangle from Another Program:\n\n"); -- printf(" Read the file triangle.h for details.\n\n"); -- printf("Troubleshooting:\n\n"); -- printf(" Please read this section before mailing me bugs.\n\n"); -- printf(" `My output mesh has no triangles!'\n\n"); -- printf( --" If you're using a PSLG, you've probably failed to specify a proper set\n" --); -- printf( --" of bounding segments, or forgotten to use the -c switch. Or you may\n"); -- printf( --" have placed a hole badly, thereby eating all your triangles. To test\n"); -- printf(" these possibilities, try again with the -c and -O switches.\n"); -- printf( --" Alternatively, all your input vertices may be collinear, in which case\n" --); -- printf(" you can hardly expect to triangulate them.\n\n"); -- printf(" `Triangle doesn't terminate, or just crashes.'\n\n"); -- printf( --" Bad things can happen when triangles get so small that the distance\n"); -- printf( --" between their vertices isn't much larger than the precision of your\n"); -- printf( --" machine's arithmetic. If you've compiled Triangle for single-precision\n" --); -- printf( --" arithmetic, you might do better by recompiling it for double-precision.\n" --); -- printf( --" Then again, you might just have to settle for more lenient constraints\n" --); -- printf( --" on the minimum angle and the maximum area than you had planned.\n"); -- printf("\n"); -- printf( --" You can minimize precision problems by ensuring that the origin lies\n"); -- printf( --" inside your vertex set, or even inside the densest part of your\n"); -- printf( --" mesh. If you're triangulating an object whose x-coordinates all fall\n"); -- printf( --" between 6247133 and 6247134, you're not leaving much floating-point\n"); -- printf(" precision for Triangle to work with.\n\n"); -- printf( --" Precision problems can occur covertly if the input PSLG contains two\n"); -- printf( --" segments that meet (or intersect) at an extremely small angle, or if\n"); -- printf( --" such an angle is introduced by the -c switch. If you don't realize\n"); -- printf( --" that a tiny angle is being formed, you might never discover why\n"); -- printf( --" Triangle is crashing. To check for this possibility, use the -S switch\n" --); -- printf( --" (with an appropriate limit on the number of Steiner points, found by\n"); -- printf( --" trial-and-error) to stop Triangle early, and view the output .poly file\n" --); -- printf( --" with Show Me (described below). Look carefully for regions where dense\n" --); -- printf( --" clusters of vertices are forming and for small angles between segments.\n" --); -- printf( --" Zoom in closely, as such segments might look like a single segment from\n" --); -- printf(" a distance.\n\n"); -- printf( --" If some of the input values are too large, Triangle may suffer a\n"); -- printf( --" floating exception due to overflow when attempting to perform an\n"); -- printf( --" orientation or incircle test. (Read the section on exact arithmetic\n"); -- printf( --" above.) Again, I recommend compiling Triangle for double (rather\n"); -- printf(" than single) precision arithmetic.\n\n"); -- printf( --" Unexpected problems can arise if you use quality meshing (-q, -a, or\n"); -- printf( --" -u) with an input that is not segment-bounded--that is, if your input\n"); -- printf( --" is a vertex set, or you're using the -c switch. If the convex hull of\n" --); -- printf( --" your input vertices has collinear vertices on its boundary, an input\n"); -- printf( --" vertex that you think lies on the convex hull might actually lie just\n"); -- printf( --" inside the convex hull. If so, the vertex and the nearby convex hull\n"); -- printf( --" edge form an extremely thin triangle. When Triangle tries to refine\n"); -- printf( --" the mesh to enforce angle and area constraints, Triangle might generate\n" --); -- printf( --" extremely tiny triangles, or it might fail because of insufficient\n"); -- printf(" floating-point precision.\n\n"); -- printf( --" `The numbering of the output vertices doesn't match the input vertices.'\n" --); -- printf("\n"); -- printf( --" You may have had duplicate input vertices, or you may have eaten some\n"); -- printf( --" of your input vertices with a hole, or by placing them outside the area\n" --); -- printf( --" enclosed by segments. In any case, you can solve the problem by not\n"); -- printf(" using the -j switch.\n\n"); -- printf( --" `Triangle executes without incident, but when I look at the resulting\n"); -- printf( --" mesh, it has overlapping triangles or other geometric inconsistencies.'\n"); -- printf("\n"); -- printf( --" If you select the -X switch, Triangle occasionally makes mistakes due\n"); -- printf( --" to floating-point roundoff error. Although these errors are rare,\n"); -- printf( --" don't use the -X switch. If you still have problems, please report the\n" --); -- printf(" bug.\n\n"); -- printf( --" `Triangle executes without incident, but when I look at the resulting\n"); -- printf(" Voronoi diagram, it has overlapping edges or other geometric\n"); -- printf(" inconsistencies.'\n"); -- printf("\n"); -- printf( --" If your input is a PSLG (-p), you can only expect a meaningful Voronoi\n" --); -- printf( --" diagram if the domain you are triangulating is convex and free of\n"); -- printf( --" holes, and you use the -D switch to construct a conforming Delaunay\n"); -- printf(" triangulation (instead of a CDT or CCDT).\n\n"); -- printf( --" Strange things can happen if you've taken liberties with your PSLG. Do\n"); -- printf( --" you have a vertex lying in the middle of a segment? Triangle sometimes\n"); -- printf( --" copes poorly with that sort of thing. Do you want to lay out a collinear\n" --); -- printf( --" row of evenly spaced, segment-connected vertices? Have you simply\n"); -- printf( --" defined one long segment connecting the leftmost vertex to the rightmost\n" --); -- printf( --" vertex, and a bunch of vertices lying along it? This method occasionally\n" --); -- printf( --" works, especially with horizontal and vertical lines, but often it\n"); -- printf( --" doesn't, and you'll have to connect each adjacent pair of vertices with a\n" --); -- printf(" separate segment. If you don't like it, tough.\n\n"); -- printf( --" Furthermore, if you have segments that intersect other than at their\n"); -- printf( --" endpoints, try not to let the intersections fall extremely close to PSLG\n" --); -- printf(" vertices or each other.\n\n"); -- printf( --" If you have problems refining a triangulation not produced by Triangle:\n"); -- printf( --" Are you sure the triangulation is geometrically valid? Is it formatted\n"); -- printf( --" correctly for Triangle? Are the triangles all listed so the first three\n" --); -- printf( --" vertices are their corners in counterclockwise order? Are all of the\n"); -- printf( --" triangles constrained Delaunay? Triangle's Delaunay refinement algorithm\n" --); -- printf(" assumes that it starts with a CDT.\n\n"); -- printf("Show Me:\n\n"); -- printf( --" Triangle comes with a separate program named `Show Me', whose primary\n"); -- printf( --" purpose is to draw meshes on your screen or in PostScript. Its secondary\n" --); -- printf( --" purpose is to check the validity of your input files, and do so more\n"); -- printf( --" thoroughly than Triangle does. Unlike Triangle, Show Me requires that\n"); -- printf( --" you have the X Windows system. Sorry, Microsoft Windows users.\n"); -- printf("\n"); -- printf("Triangle on the Web:\n"); -- printf("\n"); -- printf(" To see an illustrated version of these instructions, check out\n"); -- printf("\n"); -- printf(" http://www.cs.cmu.edu/~quake/triangle.html\n"); -- printf("\n"); -- printf("A Brief Plea:\n"); -- printf("\n"); -- printf( --" If you use Triangle, and especially if you use it to accomplish real\n"); -- printf( --" work, I would like very much to hear from you. A short letter or email\n"); -- printf( --" (to jrs@cs.berkeley.edu) describing how you use Triangle will mean a lot\n" --); -- printf( --" to me. The more people I know are using this program, the more easily I\n" --); -- printf( --" can justify spending time on improvements, which in turn will benefit\n"); -- printf( --" you. Also, I can put you on a list to receive email whenever a new\n"); -- printf(" version of Triangle is available.\n\n"); -- printf( --" If you use a mesh generated by Triangle in a publication, please include\n" --); -- printf( --" an acknowledgment as well. And please spell Triangle with a capital `T'!\n" --); -- printf( --" If you want to include a citation, use `Jonathan Richard Shewchuk,\n"); -- printf( --" ``Triangle: Engineering a 2D Quality Mesh Generator and Delaunay\n"); -- printf( --" Triangulator,'' in Applied Computational Geometry: Towards Geometric\n"); -- printf( --" Engineering (Ming C. Lin and Dinesh Manocha, editors), volume 1148 of\n"); -- printf( --" Lecture Notes in Computer Science, pages 203-222, Springer-Verlag,\n"); -- printf( --" Berlin, May 1996. (From the First ACM Workshop on Applied Computational\n" --); -- printf(" Geometry.)'\n\n"); -- printf("Research credit:\n\n"); -- printf( --" Of course, I can take credit for only a fraction of the ideas that made\n"); -- printf( --" this mesh generator possible. Triangle owes its existence to the efforts\n" --); -- printf( --" of many fine computational geometers and other researchers, including\n"); -- printf( --" Marshall Bern, L. Paul Chew, Kenneth L. Clarkson, Boris Delaunay, Rex A.\n" --); -- printf( --" Dwyer, David Eppstein, Steven Fortune, Leonidas J. Guibas, Donald E.\n"); -- printf( --" Knuth, Charles L. Lawson, Der-Tsai Lee, Gary L. Miller, Ernst P. Mucke,\n"); -- printf( --" Steven E. Pav, Douglas M. Priest, Jim Ruppert, Isaac Saias, Bruce J.\n"); -- printf( --" Schachter, Micha Sharir, Peter W. Shor, Daniel D. Sleator, Jorge Stolfi,\n" --); -- printf(" Robert E. Tarjan, Alper Ungor, Christopher J. Van Wyk, Noel J.\n"); -- printf( --" Walkington, and Binhai Zhu. See the comments at the beginning of the\n"); -- printf(" source code for references.\n\n"); -- triexit(0); --} -- --#endif /* not TRILIBRARY */ -- --/*****************************************************************************/ --/* */ --/* internalerror() Ask the user to send me the defective product. Exit. */ --/* */ --/*****************************************************************************/ -- --void internalerror() --{ -- printf(" Please report this bug to jrs@cs.berkeley.edu\n"); -- printf(" Include the message above, your input data set, and the exact\n"); -- printf(" command line you used to run Triangle.\n"); -- triexit(1); --} -- --/*****************************************************************************/ --/* */ --/* parsecommandline() Read the command line, identify switches, and set */ --/* up options and file names. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --void parsecommandline(int argc, const char * const * const argv, struct behavior *b) --#else /* not ANSI_DECLARATORS */ --void parsecommandline(argc, argv, b) --int argc; --const char * const * const argv; --struct behavior *b; --#endif /* not ANSI_DECLARATORS */ -- --{ --#ifdef TRILIBRARY --#define STARTINDEX 0 --#else /* not TRILIBRARY */ --#define STARTINDEX 1 -- int increment; -- int meshnumber; --#endif /* not TRILIBRARY */ -- int i, j, k; -- char workstring[FILENAMESIZE]; -- -- b->poly = b->refine = b->quality = 0; -- b->vararea = b->fixedarea = b->usertest = 0; -- b->regionattrib = b->convex = b->weighted = b->jettison = 0; -- b->firstnumber = 1; -- b->edgesout = b->voronoi = b->neighbors = b->geomview = 0; -- b->nobound = b->nopolywritten = b->nonodewritten = b->noelewritten = 0; -- b->noiterationnum = 0; -- b->noholes = b->noexact = 0; -- b->incremental = b->sweepline = 0; -- b->dwyer = 1; -- b->splitseg = 0; -- b->docheck = 0; -- b->nobisect = 0; -- b->conformdel = 0; -- b->steiner = -1; -- b->order = 1; -- b->minangle = 0.0; -- b->maxarea = -1.0; -- b->quiet = b->verbose = 0; --#ifndef TRILIBRARY -- b->innodefilename[0] = '\0'; --#endif /* not TRILIBRARY */ -- -- for (i = STARTINDEX; i < argc; i++) { --#ifndef TRILIBRARY -- if (argv[i][0] == '-') { --#endif /* not TRILIBRARY */ -- for (j = STARTINDEX; argv[i][j] != '\0'; j++) { -- if (argv[i][j] == 'p') { -- b->poly = 1; -- } --#ifndef CDT_ONLY -- if (argv[i][j] == 'r') { -- b->refine = 1; -- } -- if (argv[i][j] == 'q') { -- b->quality = 1; -- if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || -- (argv[i][j + 1] == '.')) { -- k = 0; -- while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || -- (argv[i][j + 1] == '.')) { -- j++; -- workstring[k] = argv[i][j]; -- k++; -- } -- workstring[k] = '\0'; -- b->minangle = (REAL) strtod(workstring, (char **) NULL); -- } else { -- b->minangle = 20.0; -- } -- } -- if (argv[i][j] == 'a') { -- b->quality = 1; -- if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || -- (argv[i][j + 1] == '.')) { -- b->fixedarea = 1; -- k = 0; -- while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || -- (argv[i][j + 1] == '.')) { -- j++; -- workstring[k] = argv[i][j]; -- k++; -- } -- workstring[k] = '\0'; -- b->maxarea = (REAL) strtod(workstring, (char **) NULL); -- if (b->maxarea <= 0.0) { -- printf("Error: Maximum area must be greater than zero.\n"); -- triexit(1); -- } -- } else { -- b->vararea = 1; -- } -- } -- if (argv[i][j] == 'u') { -- b->quality = 1; -- b->usertest = 1; -- } --#endif /* not CDT_ONLY */ -- if (argv[i][j] == 'A') { -- b->regionattrib = 1; -- } -- if (argv[i][j] == 'c') { -- b->convex = 1; -- } -- if (argv[i][j] == 'w') { -- b->weighted = 1; -- } -- if (argv[i][j] == 'W') { -- b->weighted = 2; -- } -- if (argv[i][j] == 'j') { -- b->jettison = 1; -- } -- if (argv[i][j] == 'z') { -- b->firstnumber = 0; -- } -- if (argv[i][j] == 'e') { -- b->edgesout = 1; -- } -- if (argv[i][j] == 'v') { -- b->voronoi = 1; -- } -- if (argv[i][j] == 'n') { -- b->neighbors = 1; -- } -- if (argv[i][j] == 'g') { -- b->geomview = 1; -- } -- if (argv[i][j] == 'B') { -- b->nobound = 1; -- } -- if (argv[i][j] == 'P') { -- b->nopolywritten = 1; -- } -- if (argv[i][j] == 'N') { -- b->nonodewritten = 1; -- } -- if (argv[i][j] == 'E') { -- b->noelewritten = 1; -- } --#ifndef TRILIBRARY -- if (argv[i][j] == 'I') { -- b->noiterationnum = 1; -- } --#endif /* not TRILIBRARY */ -- if (argv[i][j] == 'O') { -- b->noholes = 1; -- } -- if (argv[i][j] == 'X') { -- b->noexact = 1; -- } -- if (argv[i][j] == 'o') { -- if (argv[i][j + 1] == '2') { -- j++; -- b->order = 2; -- } -- } --#ifndef CDT_ONLY -- if (argv[i][j] == 'Y') { -- b->nobisect++; -- } -- if (argv[i][j] == 'S') { -- b->steiner = 0; -- while ((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) { -- j++; -- b->steiner = b->steiner * 10 + (int) (argv[i][j] - '0'); -- } -- } --#endif /* not CDT_ONLY */ --#ifndef REDUCED -- if (argv[i][j] == 'i') { -- b->incremental = 1; -- } -- if (argv[i][j] == 'F') { -- b->sweepline = 1; -- } --#endif /* not REDUCED */ -- if (argv[i][j] == 'l') { -- b->dwyer = 0; -- } --#ifndef REDUCED --#ifndef CDT_ONLY -- if (argv[i][j] == 's') { -- b->splitseg = 1; -- } -- if ((argv[i][j] == 'D') || (argv[i][j] == 'L')) { -- b->quality = 1; -- b->conformdel = 1; -- } --#endif /* not CDT_ONLY */ -- if (argv[i][j] == 'C') { -- b->docheck = 1; -- } --#endif /* not REDUCED */ -- if (argv[i][j] == 'Q') { -- b->quiet = 1; -- } -- if (argv[i][j] == 'V') { -- b->verbose++; -- } --#ifndef TRILIBRARY -- if ((argv[i][j] == 'h') || (argv[i][j] == 'H') || -- (argv[i][j] == '?')) { -- info(); -- } --#endif /* not TRILIBRARY */ -- } --#ifndef TRILIBRARY -- } else { -- strncpy(b->innodefilename, argv[i], FILENAMESIZE - 1); -- b->innodefilename[FILENAMESIZE - 1] = '\0'; -- } --#endif /* not TRILIBRARY */ -- } --#ifndef TRILIBRARY -- if (b->innodefilename[0] == '\0') { -- syntax(); -- } -- if (!strcmp(&b->innodefilename[strlen(b->innodefilename) - 5], ".node")) { -- b->innodefilename[strlen(b->innodefilename) - 5] = '\0'; -- } -- if (!strcmp(&b->innodefilename[strlen(b->innodefilename) - 5], ".poly")) { -- b->innodefilename[strlen(b->innodefilename) - 5] = '\0'; -- b->poly = 1; -- } --#ifndef CDT_ONLY -- if (!strcmp(&b->innodefilename[strlen(b->innodefilename) - 4], ".ele")) { -- b->innodefilename[strlen(b->innodefilename) - 4] = '\0'; -- b->refine = 1; -- } -- if (!strcmp(&b->innodefilename[strlen(b->innodefilename) - 5], ".area")) { -- b->innodefilename[strlen(b->innodefilename) - 5] = '\0'; -- b->refine = 1; -- b->quality = 1; -- b->vararea = 1; -- } --#endif /* not CDT_ONLY */ --#endif /* not TRILIBRARY */ -- b->usesegments = b->poly || b->refine || b->quality || b->convex; -- b->goodangle = cos(b->minangle * PI / 180.0); -- if (b->goodangle == 1.0) { -- b->offconstant = 0.0; -- } else { -- b->offconstant = 0.475 * sqrt((1.0 + b->goodangle) / (1.0 - b->goodangle)); -- } -- b->goodangle *= b->goodangle; -- if (b->refine && b->noiterationnum) { -- printf( -- "Error: You cannot use the -I switch when refining a triangulation.\n"); -- triexit(1); -- } -- /* Be careful not to allocate space for element area constraints that */ -- /* will never be assigned any value (other than the default -1.0). */ -- if (!b->refine && !b->poly) { -- b->vararea = 0; -- } -- /* Be careful not to add an extra attribute to each element unless the */ -- /* input supports it (PSLG in, but not refining a preexisting mesh). */ -- if (b->refine || !b->poly) { -- b->regionattrib = 0; -- } -- /* Regular/weighted triangulations are incompatible with PSLGs */ -- /* and meshing. */ -- if (b->weighted && (b->poly || b->quality)) { -- b->weighted = 0; -- if (!b->quiet) { -- printf("Warning: weighted triangulations (-w, -W) are incompatible\n"); -- printf(" with PSLGs (-p) and meshing (-q, -a, -u). Weights ignored.\n" -- ); -- } -- } -- if (b->jettison && b->nonodewritten && !b->quiet) { -- printf("Warning: -j and -N switches are somewhat incompatible.\n"); -- printf(" If any vertices are jettisoned, you will need the output\n"); -- printf(" .node file to reconstruct the new node indices."); -- } -- --#ifndef TRILIBRARY -- strcpy(b->inpolyfilename, b->innodefilename); -- strcpy(b->inelefilename, b->innodefilename); -- strcpy(b->areafilename, b->innodefilename); -- increment = 0; -- strcpy(workstring, b->innodefilename); -- j = 1; -- while (workstring[j] != '\0') { -- if ((workstring[j] == '.') && (workstring[j + 1] != '\0')) { -- increment = j + 1; -- } -- j++; -- } -- meshnumber = 0; -- if (increment > 0) { -- j = increment; -- do { -- if ((workstring[j] >= '0') && (workstring[j] <= '9')) { -- meshnumber = meshnumber * 10 + (int) (workstring[j] - '0'); -- } else { -- increment = 0; -- } -- j++; -- } while (workstring[j] != '\0'); -- } -- if (b->noiterationnum) { -- strcpy(b->outnodefilename, b->innodefilename); -- strcpy(b->outelefilename, b->innodefilename); -- strcpy(b->edgefilename, b->innodefilename); -- strcpy(b->vnodefilename, b->innodefilename); -- strcpy(b->vedgefilename, b->innodefilename); -- strcpy(b->neighborfilename, b->innodefilename); -- strcpy(b->offfilename, b->innodefilename); -- strcat(b->outnodefilename, ".node"); -- strcat(b->outelefilename, ".ele"); -- strcat(b->edgefilename, ".edge"); -- strcat(b->vnodefilename, ".v.node"); -- strcat(b->vedgefilename, ".v.edge"); -- strcat(b->neighborfilename, ".neigh"); -- strcat(b->offfilename, ".off"); -- } else if (increment == 0) { -- strcpy(b->outnodefilename, b->innodefilename); -- strcpy(b->outpolyfilename, b->innodefilename); -- strcpy(b->outelefilename, b->innodefilename); -- strcpy(b->edgefilename, b->innodefilename); -- strcpy(b->vnodefilename, b->innodefilename); -- strcpy(b->vedgefilename, b->innodefilename); -- strcpy(b->neighborfilename, b->innodefilename); -- strcpy(b->offfilename, b->innodefilename); -- strcat(b->outnodefilename, ".1.node"); -- strcat(b->outpolyfilename, ".1.poly"); -- strcat(b->outelefilename, ".1.ele"); -- strcat(b->edgefilename, ".1.edge"); -- strcat(b->vnodefilename, ".1.v.node"); -- strcat(b->vedgefilename, ".1.v.edge"); -- strcat(b->neighborfilename, ".1.neigh"); -- strcat(b->offfilename, ".1.off"); -- } else { -- workstring[increment] = '%'; -- workstring[increment + 1] = 'd'; -- workstring[increment + 2] = '\0'; -- sprintf(b->outnodefilename, workstring, meshnumber + 1); -- strcpy(b->outpolyfilename, b->outnodefilename); -- strcpy(b->outelefilename, b->outnodefilename); -- strcpy(b->edgefilename, b->outnodefilename); -- strcpy(b->vnodefilename, b->outnodefilename); -- strcpy(b->vedgefilename, b->outnodefilename); -- strcpy(b->neighborfilename, b->outnodefilename); -- strcpy(b->offfilename, b->outnodefilename); -- strcat(b->outnodefilename, ".node"); -- strcat(b->outpolyfilename, ".poly"); -- strcat(b->outelefilename, ".ele"); -- strcat(b->edgefilename, ".edge"); -- strcat(b->vnodefilename, ".v.node"); -- strcat(b->vedgefilename, ".v.edge"); -- strcat(b->neighborfilename, ".neigh"); -- strcat(b->offfilename, ".off"); -- } -- strcat(b->innodefilename, ".node"); -- strcat(b->inpolyfilename, ".poly"); -- strcat(b->inelefilename, ".ele"); -- strcat(b->areafilename, ".area"); --#endif /* not TRILIBRARY */ --} -- --/** **/ --/** **/ --/********* User interaction routines begin here *********/ -- --/********* Debugging routines begin here *********/ --/** **/ --/** **/ -- --/*****************************************************************************/ --/* */ --/* printtriangle() Print out the details of an oriented triangle. */ --/* */ --/* I originally wrote this procedure to simplify debugging; it can be */ --/* called directly from the debugger, and presents information about an */ --/* oriented triangle in digestible form. It's also used when the */ --/* highest level of verbosity (`-VVV') is specified. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --void printtriangle(struct mesh *m, struct behavior *b, struct otri *t) --#else /* not ANSI_DECLARATORS */ --void printtriangle(m, b, t) --struct mesh *m; --struct behavior *b; --struct otri *t; --#endif /* not ANSI_DECLARATORS */ -- --{ -- struct otri printtri; -- struct osub printsh; -- vertex printvertex; -- -- printf("triangle x%lx with orientation %d:\n", (TRIANGLE_PTRINT) t->tri, -- t->orient); -- decode(t->tri[0], printtri); -- if (printtri.tri == m->dummytri) { -- printf(" [0] = Outer space\n"); -- } else { -- printf(" [0] = x%lx %d\n", (TRIANGLE_PTRINT) printtri.tri, -- printtri.orient); -- } -- decode(t->tri[1], printtri); -- if (printtri.tri == m->dummytri) { -- printf(" [1] = Outer space\n"); -- } else { -- printf(" [1] = x%lx %d\n", (TRIANGLE_PTRINT) printtri.tri, -- printtri.orient); -- } -- decode(t->tri[2], printtri); -- if (printtri.tri == m->dummytri) { -- printf(" [2] = Outer space\n"); -- } else { -- printf(" [2] = x%lx %d\n", (TRIANGLE_PTRINT) printtri.tri, -- printtri.orient); -- } -- -- org(*t, printvertex); -- if (printvertex == (vertex) NULL) -- printf(" Origin[%d] = NULL\n", (t->orient + 1) % 3 + 3); -- else -- printf(" Origin[%d] = x%lx (%.12g, %.12g)\n", -- (t->orient + 1) % 3 + 3, (TRIANGLE_PTRINT) printvertex, -- printvertex[0], printvertex[1]); -- dest(*t, printvertex); -- if (printvertex == (vertex) NULL) -- printf(" Dest [%d] = NULL\n", (t->orient + 2) % 3 + 3); -- else -- printf(" Dest [%d] = x%lx (%.12g, %.12g)\n", -- (t->orient + 2) % 3 + 3, (TRIANGLE_PTRINT) printvertex, -- printvertex[0], printvertex[1]); -- apex(*t, printvertex); -- if (printvertex == (vertex) NULL) -- printf(" Apex [%d] = NULL\n", t->orient + 3); -- else -- printf(" Apex [%d] = x%lx (%.12g, %.12g)\n", -- t->orient + 3, (TRIANGLE_PTRINT) printvertex, -- printvertex[0], printvertex[1]); -- -- if (b->usesegments) { -- sdecode(t->tri[6], printsh); -- if (printsh.ss != m->dummysub) { -- printf(" [6] = x%lx %d\n", (TRIANGLE_PTRINT) printsh.ss, -- printsh.ssorient); -- } -- sdecode(t->tri[7], printsh); -- if (printsh.ss != m->dummysub) { -- printf(" [7] = x%lx %d\n", (TRIANGLE_PTRINT) printsh.ss, -- printsh.ssorient); -- } -- sdecode(t->tri[8], printsh); -- if (printsh.ss != m->dummysub) { -- printf(" [8] = x%lx %d\n", (TRIANGLE_PTRINT) printsh.ss, -- printsh.ssorient); -- } -- } -- -- if (b->vararea) { -- printf(" Area constraint: %.4g\n", areabound(*t)); -- } --} -- --/*****************************************************************************/ --/* */ --/* printsubseg() Print out the details of an oriented subsegment. */ --/* */ --/* I originally wrote this procedure to simplify debugging; it can be */ --/* called directly from the debugger, and presents information about an */ --/* oriented subsegment in digestible form. It's also used when the highest */ --/* level of verbosity (`-VVV') is specified. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --void printsubseg(struct mesh *m, struct behavior *b, struct osub *s) --#else /* not ANSI_DECLARATORS */ --void printsubseg(m, b, s) --struct mesh *m; --struct behavior *b; --struct osub *s; --#endif /* not ANSI_DECLARATORS */ -- --{ -- struct osub printsh; -- struct otri printtri; -- vertex printvertex; -- -- printf("subsegment x%lx with orientation %d and mark %d:\n", -- (TRIANGLE_PTRINT) s->ss, s->ssorient, mark(*s)); -- sdecode(s->ss[0], printsh); -- if (printsh.ss == m->dummysub) { -- printf(" [0] = No subsegment\n"); -- } else { -- printf(" [0] = x%lx %d\n", (TRIANGLE_PTRINT) printsh.ss, -- printsh.ssorient); -- } -- sdecode(s->ss[1], printsh); -- if (printsh.ss == m->dummysub) { -- printf(" [1] = No subsegment\n"); -- } else { -- printf(" [1] = x%lx %d\n", (TRIANGLE_PTRINT) printsh.ss, -- printsh.ssorient); -- } -- -- sorg(*s, printvertex); -- if (printvertex == (vertex) NULL) -- printf(" Origin[%d] = NULL\n", 2 + s->ssorient); -- else -- printf(" Origin[%d] = x%lx (%.12g, %.12g)\n", -- 2 + s->ssorient, (TRIANGLE_PTRINT) printvertex, -- printvertex[0], printvertex[1]); -- sdest(*s, printvertex); -- if (printvertex == (vertex) NULL) -- printf(" Dest [%d] = NULL\n", 3 - s->ssorient); -- else -- printf(" Dest [%d] = x%lx (%.12g, %.12g)\n", -- 3 - s->ssorient, (TRIANGLE_PTRINT) printvertex, -- printvertex[0], printvertex[1]); -- -- decode(s->ss[6], printtri); -- if (printtri.tri == m->dummytri) { -- printf(" [6] = Outer space\n"); -- } else { -- printf(" [6] = x%lx %d\n", (TRIANGLE_PTRINT) printtri.tri, -- printtri.orient); -- } -- decode(s->ss[7], printtri); -- if (printtri.tri == m->dummytri) { -- printf(" [7] = Outer space\n"); -- } else { -- printf(" [7] = x%lx %d\n", (TRIANGLE_PTRINT) printtri.tri, -- printtri.orient); -- } -- -- segorg(*s, printvertex); -- if (printvertex == (vertex) NULL) -- printf(" Segment origin[%d] = NULL\n", 4 + s->ssorient); -- else -- printf(" Segment origin[%d] = x%lx (%.12g, %.12g)\n", -- 4 + s->ssorient, (TRIANGLE_PTRINT) printvertex, -- printvertex[0], printvertex[1]); -- segdest(*s, printvertex); -- if (printvertex == (vertex) NULL) -- printf(" Segment dest [%d] = NULL\n", 5 - s->ssorient); -- else -- printf(" Segment dest [%d] = x%lx (%.12g, %.12g)\n", -- 5 - s->ssorient, (TRIANGLE_PTRINT) printvertex, -- printvertex[0], printvertex[1]); --} -- --/** **/ --/** **/ --/********* Debugging routines end here *********/ -- --/********* Memory management routines begin here *********/ --/** **/ --/** **/ -- --/*****************************************************************************/ --/* */ --/* poolzero() Set all of a pool's fields to zero. */ --/* */ --/* This procedure should never be called on a pool that has any memory */ --/* allocated to it, as that memory would leak. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --void poolzero(struct memorypool *pool) --#else /* not ANSI_DECLARATORS */ --void poolzero(pool) --struct memorypool *pool; --#endif /* not ANSI_DECLARATORS */ -- --{ -- pool->firstblock = (void **) NULL; -- pool->nowblock = (void **) NULL; -- pool->nextitem = (void *) NULL; -- pool->deaditemstack = (void *) NULL; -- pool->pathblock = (void **) NULL; -- pool->pathitem = (void *) NULL; -- pool->alignbytes = 0; -- pool->itembytes = 0; -- pool->itemsperblock = 0; -- pool->itemsfirstblock = 0; -- pool->items = 0; -- pool->maxitems = 0; -- pool->unallocateditems = 0; -- pool->pathitemsleft = 0; --} -- --/*****************************************************************************/ --/* */ --/* poolrestart() Deallocate all items in a pool. */ --/* */ --/* The pool is returned to its starting state, except that no memory is */ --/* freed to the operating system. Rather, the previously allocated blocks */ --/* are ready to be reused. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --void poolrestart(struct memorypool *pool) --#else /* not ANSI_DECLARATORS */ --void poolrestart(pool) --struct memorypool *pool; --#endif /* not ANSI_DECLARATORS */ -- --{ -- TRIANGLE_PTRINT alignptr; -- -- pool->items = 0; -- pool->maxitems = 0; -- -- /* Set the currently active block. */ -- pool->nowblock = pool->firstblock; -- /* Find the first item in the pool. Increment by the size of (void *). */ -- alignptr = (TRIANGLE_PTRINT) (pool->nowblock + 1); -- /* Align the item on an `alignbytes'-byte boundary. */ -- pool->nextitem = (void *) -- (alignptr + (TRIANGLE_PTRINT) pool->alignbytes - -- (alignptr % (TRIANGLE_PTRINT) pool->alignbytes)); -- /* There are lots of unallocated items left in this block. */ -- pool->unallocateditems = pool->itemsfirstblock; -- /* The stack of deallocated items is empty. */ -- pool->deaditemstack = (void *) NULL; --} -- --/*****************************************************************************/ --/* */ --/* poolinit() Initialize a pool of memory for allocation of items. */ --/* */ --/* This routine initializes the machinery for allocating items. A `pool' */ --/* is created whose records have size at least `bytecount'. Items will be */ --/* allocated in `itemcount'-item blocks. Each item is assumed to be a */ --/* collection of words, and either pointers or floating-point values are */ --/* assumed to be the "primary" word type. (The "primary" word type is used */ --/* to determine alignment of items.) If `alignment' isn't zero, all items */ --/* will be `alignment'-byte aligned in memory. `alignment' must be either */ --/* a multiple or a factor of the primary word size; powers of two are safe. */ --/* `alignment' is normally used to create a few unused bits at the bottom */ --/* of each item's pointer, in which information may be stored. */ --/* */ --/* Don't change this routine unless you understand it. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --void poolinit(struct memorypool *pool, int bytecount, int itemcount, -- int firstitemcount, int alignment) --#else /* not ANSI_DECLARATORS */ --void poolinit(pool, bytecount, itemcount, firstitemcount, alignment) --struct memorypool *pool; --int bytecount; --int itemcount; --int firstitemcount; --int alignment; --#endif /* not ANSI_DECLARATORS */ -- --{ -- /* Find the proper alignment, which must be at least as large as: */ -- /* - The parameter `alignment'. */ -- /* - sizeof(void *), so the stack of dead items can be maintained */ -- /* without unaligned accesses. */ -- if (alignment > sizeof(void *)) { -- pool->alignbytes = alignment; -- } else { -- pool->alignbytes = sizeof(void *); -- } -- pool->itembytes = ((bytecount - 1) / pool->alignbytes + 1) * -- pool->alignbytes; -- pool->itemsperblock = itemcount; -- if (firstitemcount == 0) { -- pool->itemsfirstblock = itemcount; -- } else { -- pool->itemsfirstblock = firstitemcount; -- } -- -- /* Allocate a block of items. Space for `itemsfirstblock' items and one */ -- /* pointer (to point to the next block) are allocated, as well as space */ -- /* to ensure alignment of the items. */ -- pool->firstblock = (void **) -- trimalloc(pool->itemsfirstblock * pool->itembytes + (int) sizeof(void *) + -- pool->alignbytes); -- /* Set the next block pointer to NULL. */ -- *(pool->firstblock) = (void *) NULL; -- poolrestart(pool); --} -- --/*****************************************************************************/ --/* */ --/* pooldeinit() Free to the operating system all memory taken by a pool. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --void pooldeinit(struct memorypool *pool) --#else /* not ANSI_DECLARATORS */ --void pooldeinit(pool) --struct memorypool *pool; --#endif /* not ANSI_DECLARATORS */ -- --{ -- while (pool->firstblock != (void **) NULL) { -- pool->nowblock = (void **) *(pool->firstblock); -- trifree((void *) pool->firstblock); -- pool->firstblock = pool->nowblock; -- } --} -- --/*****************************************************************************/ --/* */ --/* poolalloc() Allocate space for an item. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --void *poolalloc(struct memorypool *pool) --#else /* not ANSI_DECLARATORS */ --void *poolalloc(pool) --struct memorypool *pool; --#endif /* not ANSI_DECLARATORS */ -- --{ -- void *newitem; -- void **newblock; -- TRIANGLE_PTRINT alignptr; -- -- /* First check the linked list of dead items. If the list is not */ -- /* empty, allocate an item from the list rather than a fresh one. */ -- if (pool->deaditemstack != (void *) NULL) { -- newitem = pool->deaditemstack; /* Take first item in list. */ -- pool->deaditemstack = * (void **) pool->deaditemstack; -- } else { -- /* Check if there are any free items left in the current block. */ -- if (pool->unallocateditems == 0) { -- /* Check if another block must be allocated. */ -- if (*(pool->nowblock) == (void *) NULL) { -- /* Allocate a new block of items, pointed to by the previous block. */ -- newblock = (void **) trimalloc(pool->itemsperblock * pool->itembytes + -- (int) sizeof(void *) + -- pool->alignbytes); -- *(pool->nowblock) = (void *) newblock; -- /* The next block pointer is NULL. */ -- *newblock = (void *) NULL; -- } -- -- /* Move to the new block. */ -- pool->nowblock = (void **) *(pool->nowblock); -- /* Find the first item in the block. */ -- /* Increment by the size of (void *). */ -- alignptr = (TRIANGLE_PTRINT) (pool->nowblock + 1); -- /* Align the item on an `alignbytes'-byte boundary. */ -- pool->nextitem = (void *) -- (alignptr + (TRIANGLE_PTRINT) pool->alignbytes - -- (alignptr % (TRIANGLE_PTRINT) pool->alignbytes)); -- /* There are lots of unallocated items left in this block. */ -- pool->unallocateditems = pool->itemsperblock; -- } -- -- /* Allocate a new item. */ -- newitem = pool->nextitem; -- /* Advance `nextitem' pointer to next free item in block. */ -- pool->nextitem = (void *) ((char *) pool->nextitem + pool->itembytes); -- pool->unallocateditems--; -- pool->maxitems++; -- } -- pool->items++; -- return newitem; --} -- --/*****************************************************************************/ --/* */ --/* pooldealloc() Deallocate space for an item. */ --/* */ --/* The deallocated space is stored in a queue for later reuse. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --void pooldealloc(struct memorypool *pool, void *dyingitem) --#else /* not ANSI_DECLARATORS */ --void pooldealloc(pool, dyingitem) --struct memorypool *pool; --void *dyingitem; --#endif /* not ANSI_DECLARATORS */ -- --{ -- /* Push freshly killed item onto stack. */ -- *((void **) dyingitem) = pool->deaditemstack; -- pool->deaditemstack = dyingitem; -- pool->items--; --} -- --/*****************************************************************************/ --/* */ --/* traversalinit() Prepare to traverse the entire list of items. */ --/* */ --/* This routine is used in conjunction with traverse(). */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --void traversalinit(struct memorypool *pool) --#else /* not ANSI_DECLARATORS */ --void traversalinit(pool) --struct memorypool *pool; --#endif /* not ANSI_DECLARATORS */ -- --{ -- TRIANGLE_PTRINT alignptr; -- -- /* Begin the traversal in the first block. */ -- pool->pathblock = pool->firstblock; -- /* Find the first item in the block. Increment by the size of (void *). */ -- alignptr = (TRIANGLE_PTRINT) (pool->pathblock + 1); -- /* Align with item on an `alignbytes'-byte boundary. */ -- pool->pathitem = (void *) -- (alignptr + (TRIANGLE_PTRINT) pool->alignbytes - -- (alignptr % (TRIANGLE_PTRINT) pool->alignbytes)); -- /* Set the number of items left in the current block. */ -- pool->pathitemsleft = pool->itemsfirstblock; --} -- --/*****************************************************************************/ --/* */ --/* traverse() Find the next item in the list. */ --/* */ --/* This routine is used in conjunction with traversalinit(). Be forewarned */ --/* that this routine successively returns all items in the list, including */ --/* deallocated ones on the deaditemqueue. It's up to you to figure out */ --/* which ones are actually dead. Why? I don't want to allocate extra */ --/* space just to demarcate dead items. It can usually be done more */ --/* space-efficiently by a routine that knows something about the structure */ --/* of the item. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --void *traverse(struct memorypool *pool) --#else /* not ANSI_DECLARATORS */ --void *traverse(pool) --struct memorypool *pool; --#endif /* not ANSI_DECLARATORS */ -- --{ -- void *newitem; -- TRIANGLE_PTRINT alignptr; -- -- /* Stop upon exhausting the list of items. */ -- if (pool->pathitem == pool->nextitem) { -- return (void *) NULL; -- } -- -- /* Check whether any untraversed items remain in the current block. */ -- if (pool->pathitemsleft == 0) { -- /* Find the next block. */ -- pool->pathblock = (void **) *(pool->pathblock); -- /* Find the first item in the block. Increment by the size of (void *). */ -- alignptr = (TRIANGLE_PTRINT) (pool->pathblock + 1); -- /* Align with item on an `alignbytes'-byte boundary. */ -- pool->pathitem = (void *) -- (alignptr + (TRIANGLE_PTRINT) pool->alignbytes - -- (alignptr % (TRIANGLE_PTRINT) pool->alignbytes)); -- /* Set the number of items left in the current block. */ -- pool->pathitemsleft = pool->itemsperblock; -- } -- -- newitem = pool->pathitem; -- /* Find the next item in the block. */ -- pool->pathitem = (void *) ((char *) pool->pathitem + pool->itembytes); -- pool->pathitemsleft--; -- return newitem; --} -- --/*****************************************************************************/ --/* */ --/* dummyinit() Initialize the triangle that fills "outer space" and the */ --/* omnipresent subsegment. */ --/* */ --/* The triangle that fills "outer space," called `dummytri', is pointed to */ --/* by every triangle and subsegment on a boundary (be it outer or inner) of */ --/* the triangulation. Also, `dummytri' points to one of the triangles on */ --/* the convex hull (until the holes and concavities are carved), making it */ --/* possible to find a starting triangle for point location. */ --/* */ --/* The omnipresent subsegment, `dummysub', is pointed to by every triangle */ --/* or subsegment that doesn't have a full complement of real subsegments */ --/* to point to. */ --/* */ --/* `dummytri' and `dummysub' are generally required to fulfill only a few */ --/* invariants: their vertices must remain NULL and `dummytri' must always */ --/* be bonded (at offset zero) to some triangle on the convex hull of the */ --/* mesh, via a boundary edge. Otherwise, the connections of `dummytri' and */ --/* `dummysub' may change willy-nilly. This makes it possible to avoid */ --/* writing a good deal of special-case code (in the edge flip, for example) */ --/* for dealing with the boundary of the mesh, places where no subsegment is */ --/* present, and so forth. Other entities are frequently bonded to */ --/* `dummytri' and `dummysub' as if they were real mesh entities, with no */ --/* harm done. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --void dummyinit(struct mesh *m, struct behavior *b, int trianglebytes, -- int subsegbytes) --#else /* not ANSI_DECLARATORS */ --void dummyinit(m, b, trianglebytes, subsegbytes) --struct mesh *m; --struct behavior *b; --int trianglebytes; --int subsegbytes; --#endif /* not ANSI_DECLARATORS */ -- --{ -- TRIANGLE_PTRINT alignptr; -- -- /* Set up `dummytri', the `triangle' that occupies "outer space." */ -- m->dummytribase = (triangle *) trimalloc(trianglebytes + -- m->triangles.alignbytes); -- /* Align `dummytri' on a `triangles.alignbytes'-byte boundary. */ -- alignptr = (TRIANGLE_PTRINT) m->dummytribase; -- m->dummytri = (triangle *) -- (alignptr + (TRIANGLE_PTRINT) m->triangles.alignbytes - -- (alignptr % (TRIANGLE_PTRINT) m->triangles.alignbytes)); -- /* Initialize the three adjoining triangles to be "outer space." These */ -- /* will eventually be changed by various bonding operations, but their */ -- /* values don't really matter, as long as they can legally be */ -- /* dereferenced. */ -- m->dummytri[0] = (triangle) m->dummytri; -- m->dummytri[1] = (triangle) m->dummytri; -- m->dummytri[2] = (triangle) m->dummytri; -- /* Three NULL vertices. */ -- m->dummytri[3] = (triangle) NULL; -- m->dummytri[4] = (triangle) NULL; -- m->dummytri[5] = (triangle) NULL; -- -- if (b->usesegments) { -- /* Set up `dummysub', the omnipresent subsegment pointed to by any */ -- /* triangle side or subsegment end that isn't attached to a real */ -- /* subsegment. */ -- m->dummysubbase = (subseg *) trimalloc(subsegbytes + -- m->subsegs.alignbytes); -- /* Align `dummysub' on a `subsegs.alignbytes'-byte boundary. */ -- alignptr = (TRIANGLE_PTRINT) m->dummysubbase; -- m->dummysub = (subseg *) -- (alignptr + (TRIANGLE_PTRINT) m->subsegs.alignbytes - -- (alignptr % (TRIANGLE_PTRINT) m->subsegs.alignbytes)); -- /* Initialize the two adjoining subsegments to be the omnipresent */ -- /* subsegment. These will eventually be changed by various bonding */ -- /* operations, but their values don't really matter, as long as they */ -- /* can legally be dereferenced. */ -- m->dummysub[0] = (subseg) m->dummysub; -- m->dummysub[1] = (subseg) m->dummysub; -- /* Four NULL vertices. */ -- m->dummysub[2] = (subseg) NULL; -- m->dummysub[3] = (subseg) NULL; -- m->dummysub[4] = (subseg) NULL; -- m->dummysub[5] = (subseg) NULL; -- /* Initialize the two adjoining triangles to be "outer space." */ -- m->dummysub[6] = (subseg) m->dummytri; -- m->dummysub[7] = (subseg) m->dummytri; -- /* Set the boundary marker to zero. */ -- * (int *) (m->dummysub + 8) = 0; -- -- /* Initialize the three adjoining subsegments of `dummytri' to be */ -- /* the omnipresent subsegment. */ -- m->dummytri[6] = (triangle) m->dummysub; -- m->dummytri[7] = (triangle) m->dummysub; -- m->dummytri[8] = (triangle) m->dummysub; -- } --} -- --/*****************************************************************************/ --/* */ --/* initializevertexpool() Calculate the size of the vertex data structure */ --/* and initialize its memory pool. */ --/* */ --/* This routine also computes the `vertexmarkindex' and `vertex2triindex' */ --/* indices used to find values within each vertex. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --void initializevertexpool(struct mesh *m, struct behavior *b) --#else /* not ANSI_DECLARATORS */ --void initializevertexpool(m, b) --struct mesh *m; --struct behavior *b; --#endif /* not ANSI_DECLARATORS */ -- --{ -- int vertexsize; -- -- /* The index within each vertex at which the boundary marker is found, */ -- /* followed by the vertex type. Ensure the vertex marker is aligned to */ -- /* a sizeof(int)-byte address. */ -- m->vertexmarkindex = ((m->mesh_dim + m->nextras) * sizeof(REAL) + -- sizeof(int) - 1) / -- sizeof(int); -- vertexsize = (m->vertexmarkindex + 2) * sizeof(int); -- if (b->poly) { -- /* The index within each vertex at which a triangle pointer is found. */ -- /* Ensure the pointer is aligned to a sizeof(triangle)-byte address. */ -- m->vertex2triindex = (vertexsize + sizeof(triangle) - 1) / -- sizeof(triangle); -- vertexsize = (m->vertex2triindex + 1) * sizeof(triangle); -- } -- -- /* Initialize the pool of vertices. */ -- poolinit(&m->vertices, vertexsize, VERTEXPERBLOCK, -- m->invertices > VERTEXPERBLOCK ? m->invertices : VERTEXPERBLOCK, -- sizeof(REAL)); --} -- --/*****************************************************************************/ --/* */ --/* initializetrisubpools() Calculate the sizes of the triangle and */ --/* subsegment data structures and initialize */ --/* their memory pools. */ --/* */ --/* This routine also computes the `highorderindex', `elemattribindex', and */ --/* `areaboundindex' indices used to find values within each triangle. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --void initializetrisubpools(struct mesh *m, struct behavior *b) --#else /* not ANSI_DECLARATORS */ --void initializetrisubpools(m, b) --struct mesh *m; --struct behavior *b; --#endif /* not ANSI_DECLARATORS */ -- --{ -- int trisize; -- -- /* The index within each triangle at which the extra nodes (above three) */ -- /* associated with high order elements are found. There are three */ -- /* pointers to other triangles, three pointers to corners, and possibly */ -- /* three pointers to subsegments before the extra nodes. */ -- m->highorderindex = 6 + (b->usesegments * 3); -- /* The number of bytes occupied by a triangle. */ -- trisize = ((b->order + 1) * (b->order + 2) / 2 + (m->highorderindex - 3)) * -- sizeof(triangle); -- /* The index within each triangle at which its attributes are found, */ -- /* where the index is measured in REALs. */ -- m->elemattribindex = (trisize + sizeof(REAL) - 1) / sizeof(REAL); -- /* The index within each triangle at which the maximum area constraint */ -- /* is found, where the index is measured in REALs. Note that if the */ -- /* `regionattrib' flag is set, an additional attribute will be added. */ -- m->areaboundindex = m->elemattribindex + m->eextras + b->regionattrib; -- /* If triangle attributes or an area bound are needed, increase the number */ -- /* of bytes occupied by a triangle. */ -- if (b->vararea) { -- trisize = (m->areaboundindex + 1) * sizeof(REAL); -- } else if (m->eextras + b->regionattrib > 0) { -- trisize = m->areaboundindex * sizeof(REAL); -- } -- /* If a Voronoi diagram or triangle neighbor graph is requested, make */ -- /* sure there's room to store an integer index in each triangle. This */ -- /* integer index can occupy the same space as the subsegment pointers */ -- /* or attributes or area constraint or extra nodes. */ -- if ((b->voronoi || b->neighbors) && -- (trisize < 6 * sizeof(triangle) + sizeof(int))) { -- trisize = 6 * sizeof(triangle) + sizeof(int); -- } -- -- /* Having determined the memory size of a triangle, initialize the pool. */ -- poolinit(&m->triangles, trisize, TRIPERBLOCK, -- (2 * m->invertices - 2) > TRIPERBLOCK ? (2 * m->invertices - 2) : -- TRIPERBLOCK, 4); -- -- if (b->usesegments) { -- /* Initialize the pool of subsegments. Take into account all eight */ -- /* pointers and one boundary marker. */ -- poolinit(&m->subsegs, 8 * sizeof(triangle) + sizeof(int), -- SUBSEGPERBLOCK, SUBSEGPERBLOCK, 4); -- -- /* Initialize the "outer space" triangle and omnipresent subsegment. */ -- dummyinit(m, b, m->triangles.itembytes, m->subsegs.itembytes); -- } else { -- /* Initialize the "outer space" triangle. */ -- dummyinit(m, b, m->triangles.itembytes, 0); -- } --} -- --/*****************************************************************************/ --/* */ --/* triangledealloc() Deallocate space for a triangle, marking it dead. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --void triangledealloc(struct mesh *m, triangle *dyingtriangle) --#else /* not ANSI_DECLARATORS */ --void triangledealloc(m, dyingtriangle) --struct mesh *m; --triangle *dyingtriangle; --#endif /* not ANSI_DECLARATORS */ -- --{ -- /* Mark the triangle as dead. This makes it possible to detect dead */ -- /* triangles when traversing the list of all triangles. */ -- killtri(dyingtriangle); -- pooldealloc(&m->triangles, (void *) dyingtriangle); --} -- --/*****************************************************************************/ --/* */ --/* triangletraverse() Traverse the triangles, skipping dead ones. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --triangle *triangletraverse(struct mesh *m) --#else /* not ANSI_DECLARATORS */ --triangle *triangletraverse(m) --struct mesh *m; --#endif /* not ANSI_DECLARATORS */ -- --{ -- triangle *newtriangle; -- -- do { -- newtriangle = (triangle *) traverse(&m->triangles); -- if (newtriangle == (triangle *) NULL) { -- return (triangle *) NULL; -- } -- } while (deadtri(newtriangle)); /* Skip dead ones. */ -- return newtriangle; --} -- --/*****************************************************************************/ --/* */ --/* subsegdealloc() Deallocate space for a subsegment, marking it dead. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --void subsegdealloc(struct mesh *m, subseg *dyingsubseg) --#else /* not ANSI_DECLARATORS */ --void subsegdealloc(m, dyingsubseg) --struct mesh *m; --subseg *dyingsubseg; --#endif /* not ANSI_DECLARATORS */ -- --{ -- /* Mark the subsegment as dead. This makes it possible to detect dead */ -- /* subsegments when traversing the list of all subsegments. */ -- killsubseg(dyingsubseg); -- pooldealloc(&m->subsegs, (void *) dyingsubseg); --} -- --/*****************************************************************************/ --/* */ --/* subsegtraverse() Traverse the subsegments, skipping dead ones. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --subseg *subsegtraverse(struct mesh *m) --#else /* not ANSI_DECLARATORS */ --subseg *subsegtraverse(m) --struct mesh *m; --#endif /* not ANSI_DECLARATORS */ -- --{ -- subseg *newsubseg; -- -- do { -- newsubseg = (subseg *) traverse(&m->subsegs); -- if (newsubseg == (subseg *) NULL) { -- return (subseg *) NULL; -- } -- } while (deadsubseg(newsubseg)); /* Skip dead ones. */ -- return newsubseg; --} -- --/*****************************************************************************/ --/* */ --/* vertexdealloc() Deallocate space for a vertex, marking it dead. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --void vertexdealloc(struct mesh *m, vertex dyingvertex) --#else /* not ANSI_DECLARATORS */ --void vertexdealloc(m, dyingvertex) --struct mesh *m; --vertex dyingvertex; --#endif /* not ANSI_DECLARATORS */ -- --{ -- /* Mark the vertex as dead. This makes it possible to detect dead */ -- /* vertices when traversing the list of all vertices. */ -- setvertextype(dyingvertex, DEADVERTEX); -- pooldealloc(&m->vertices, (void *) dyingvertex); --} -- --/*****************************************************************************/ --/* */ --/* vertextraverse() Traverse the vertices, skipping dead ones. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --vertex vertextraverse(struct mesh *m) --#else /* not ANSI_DECLARATORS */ --vertex vertextraverse(m) --struct mesh *m; --#endif /* not ANSI_DECLARATORS */ -- --{ -- vertex newvertex; -- -- do { -- newvertex = (vertex) traverse(&m->vertices); -- if (newvertex == (vertex) NULL) { -- return (vertex) NULL; -- } -- } while (vertextype(newvertex) == DEADVERTEX); /* Skip dead ones. */ -- return newvertex; --} -- --/*****************************************************************************/ --/* */ --/* badsubsegdealloc() Deallocate space for a bad subsegment, marking it */ --/* dead. */ --/* */ --/*****************************************************************************/ -- --#ifndef CDT_ONLY -- --#ifdef ANSI_DECLARATORS --void badsubsegdealloc(struct mesh *m, struct badsubseg *dyingseg) --#else /* not ANSI_DECLARATORS */ --void badsubsegdealloc(m, dyingseg) --struct mesh *m; --struct badsubseg *dyingseg; --#endif /* not ANSI_DECLARATORS */ -- --{ -- /* Set subsegment's origin to NULL. This makes it possible to detect dead */ -- /* badsubsegs when traversing the list of all badsubsegs . */ -- dyingseg->subsegorg = (vertex) NULL; -- pooldealloc(&m->badsubsegs, (void *) dyingseg); --} -- --#endif /* not CDT_ONLY */ -- --/*****************************************************************************/ --/* */ --/* badsubsegtraverse() Traverse the bad subsegments, skipping dead ones. */ --/* */ --/*****************************************************************************/ -- --#ifndef CDT_ONLY -- --#ifdef ANSI_DECLARATORS --struct badsubseg *badsubsegtraverse(struct mesh *m) --#else /* not ANSI_DECLARATORS */ --struct badsubseg *badsubsegtraverse(m) --struct mesh *m; --#endif /* not ANSI_DECLARATORS */ -- --{ -- struct badsubseg *newseg; -- -- do { -- newseg = (struct badsubseg *) traverse(&m->badsubsegs); -- if (newseg == (struct badsubseg *) NULL) { -- return (struct badsubseg *) NULL; -- } -- } while (newseg->subsegorg == (vertex) NULL); /* Skip dead ones. */ -- return newseg; --} -- --#endif /* not CDT_ONLY */ -- --/*****************************************************************************/ --/* */ --/* getvertex() Get a specific vertex, by number, from the list. */ --/* */ --/* The first vertex is number 'firstnumber'. */ --/* */ --/* Note that this takes O(n) time (with a small constant, if VERTEXPERBLOCK */ --/* is large). I don't care to take the trouble to make it work in constant */ --/* time. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --vertex getvertex(struct mesh *m, struct behavior *b, int number) --#else /* not ANSI_DECLARATORS */ --vertex getvertex(m, b, number) --struct mesh *m; --struct behavior *b; --int number; --#endif /* not ANSI_DECLARATORS */ -- --{ -- void **getblock; -- char *foundvertex; -- TRIANGLE_PTRINT alignptr; -- int current; -- -- getblock = m->vertices.firstblock; -- current = b->firstnumber; -- -- /* Find the right block. */ -- if (current + m->vertices.itemsfirstblock <= number) { -- getblock = (void **) *getblock; -- current += m->vertices.itemsfirstblock; -- while (current + m->vertices.itemsperblock <= number) { -- getblock = (void **) *getblock; -- current += m->vertices.itemsperblock; -- } -- } -- -- /* Now find the right vertex. */ -- alignptr = (TRIANGLE_PTRINT) (getblock + 1); -- foundvertex = (char *) (alignptr + (TRIANGLE_PTRINT) m->vertices.alignbytes - -- (alignptr % (TRIANGLE_PTRINT) m->vertices.alignbytes)); -- return (vertex) (foundvertex + m->vertices.itembytes * (number - current)); --} -- --/*****************************************************************************/ --/* */ --/* triangledeinit() Free all remaining allocated memory. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --void triangledeinit(struct mesh *m, struct behavior *b) --#else /* not ANSI_DECLARATORS */ --void triangledeinit(m, b) --struct mesh *m; --struct behavior *b; --#endif /* not ANSI_DECLARATORS */ -- --{ -- pooldeinit(&m->triangles); -- trifree((void *) m->dummytribase); -- if (b->usesegments) { -- pooldeinit(&m->subsegs); -- trifree((void *) m->dummysubbase); -- } -- pooldeinit(&m->vertices); --#ifndef CDT_ONLY -- if (b->quality) { -- pooldeinit(&m->badsubsegs); -- if ((b->minangle > 0.0) || b->vararea || b->fixedarea || b->usertest) { -- pooldeinit(&m->badtriangles); -- pooldeinit(&m->flipstackers); -- } -- } --#endif /* not CDT_ONLY */ --} -- --/** **/ --/** **/ --/********* Memory management routines end here *********/ -- --/********* Constructors begin here *********/ --/** **/ --/** **/ -- --/*****************************************************************************/ --/* */ --/* maketriangle() Create a new triangle with orientation zero. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --void maketriangle(struct mesh *m, struct behavior *b, struct otri *newotri) --#else /* not ANSI_DECLARATORS */ --void maketriangle(m, b, newotri) --struct mesh *m; --struct behavior *b; --struct otri *newotri; --#endif /* not ANSI_DECLARATORS */ -- --{ -- int i; -- -- newotri->tri = (triangle *) poolalloc(&m->triangles); -- /* Initialize the three adjoining triangles to be "outer space". */ -- newotri->tri[0] = (triangle) m->dummytri; -- newotri->tri[1] = (triangle) m->dummytri; -- newotri->tri[2] = (triangle) m->dummytri; -- /* Three NULL vertices. */ -- newotri->tri[3] = (triangle) NULL; -- newotri->tri[4] = (triangle) NULL; -- newotri->tri[5] = (triangle) NULL; -- if (b->usesegments) { -- /* Initialize the three adjoining subsegments to be the omnipresent */ -- /* subsegment. */ -- newotri->tri[6] = (triangle) m->dummysub; -- newotri->tri[7] = (triangle) m->dummysub; -- newotri->tri[8] = (triangle) m->dummysub; -- } -- for (i = 0; i < m->eextras; i++) { -- setelemattribute(*newotri, i, 0.0); -- } -- if (b->vararea) { -- setareabound(*newotri, -1.0); -- } -- -- newotri->orient = 0; --} -- --/*****************************************************************************/ --/* */ --/* makesubseg() Create a new subsegment with orientation zero. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --void makesubseg(struct mesh *m, struct osub *newsubseg) --#else /* not ANSI_DECLARATORS */ --void makesubseg(m, newsubseg) --struct mesh *m; --struct osub *newsubseg; --#endif /* not ANSI_DECLARATORS */ -- --{ -- newsubseg->ss = (subseg *) poolalloc(&m->subsegs); -- /* Initialize the two adjoining subsegments to be the omnipresent */ -- /* subsegment. */ -- newsubseg->ss[0] = (subseg) m->dummysub; -- newsubseg->ss[1] = (subseg) m->dummysub; -- /* Four NULL vertices. */ -- newsubseg->ss[2] = (subseg) NULL; -- newsubseg->ss[3] = (subseg) NULL; -- newsubseg->ss[4] = (subseg) NULL; -- newsubseg->ss[5] = (subseg) NULL; -- /* Initialize the two adjoining triangles to be "outer space." */ -- newsubseg->ss[6] = (subseg) m->dummytri; -- newsubseg->ss[7] = (subseg) m->dummytri; -- /* Set the boundary marker to zero. */ -- setmark(*newsubseg, 0); -- -- newsubseg->ssorient = 0; --} -- --/** **/ --/** **/ --/********* Constructors end here *********/ -- --/********* Geometric primitives begin here *********/ --/** **/ --/** **/ -- --/* The adaptive exact arithmetic geometric predicates implemented herein are */ --/* described in detail in my paper, "Adaptive Precision Floating-Point */ --/* Arithmetic and Fast Robust Geometric Predicates." See the header for a */ --/* full citation. */ -- --/* Which of the following two methods of finding the absolute values is */ --/* fastest is compiler-dependent. A few compilers can inline and optimize */ --/* the fabs() call; but most will incur the overhead of a function call, */ --/* which is disastrously slow. A faster way on IEEE machines might be to */ --/* mask the appropriate bit, but that's difficult to do in C without */ --/* forcing the value to be stored to memory (rather than be kept in the */ --/* register to which the optimizer assigned it). */ -- --#define Absolute(a) ((a) >= 0.0 ? (a) : -(a)) --/* #define Absolute(a) fabs(a) */ -- --/* Many of the operations are broken up into two pieces, a main part that */ --/* performs an approximate operation, and a "tail" that computes the */ --/* roundoff error of that operation. */ --/* */ --/* The operations Fast_Two_Sum(), Fast_Two_Diff(), Two_Sum(), Two_Diff(), */ --/* Split(), and Two_Product() are all implemented as described in the */ --/* reference. Each of these macros requires certain variables to be */ --/* defined in the calling routine. The variables `bvirt', `c', `abig', */ --/* `_i', `_j', `_k', `_l', `_m', and `_n' are declared `INEXACT' because */ --/* they store the result of an operation that may incur roundoff error. */ --/* The input parameter `x' (or the highest numbered `x_' parameter) must */ --/* also be declared `INEXACT'. */ -- --#define Fast_Two_Sum_Tail(a, b, x, y) \ -- bvirt = x - a; \ -- y = b - bvirt -- --#define Fast_Two_Sum(a, b, x, y) \ -- x = (REAL) (a + b); \ -- Fast_Two_Sum_Tail(a, b, x, y) -- --#define Two_Sum_Tail(a, b, x, y) \ -- bvirt = (REAL) (x - a); \ -- avirt = x - bvirt; \ -- bround = b - bvirt; \ -- around = a - avirt; \ -- y = around + bround -- --#define Two_Sum(a, b, x, y) \ -- x = (REAL) (a + b); \ -- Two_Sum_Tail(a, b, x, y) -- --#define Two_Diff_Tail(a, b, x, y) \ -- bvirt = (REAL) (a - x); \ -- avirt = x + bvirt; \ -- bround = bvirt - b; \ -- around = a - avirt; \ -- y = around + bround -- --#define Two_Diff(a, b, x, y) \ -- x = (REAL) (a - b); \ -- Two_Diff_Tail(a, b, x, y) -- --#define Split(a, ahi, alo) \ -- c = (REAL) (splitter * a); \ -- abig = (REAL) (c - a); \ -- ahi = c - abig; \ -- alo = a - ahi -- --#define Two_Product_Tail(a, b, x, y) \ -- Split(a, ahi, alo); \ -- Split(b, bhi, blo); \ -- err1 = x - (ahi * bhi); \ -- err2 = err1 - (alo * bhi); \ -- err3 = err2 - (ahi * blo); \ -- y = (alo * blo) - err3 -- --#define Two_Product(a, b, x, y) \ -- x = (REAL) (a * b); \ -- Two_Product_Tail(a, b, x, y) -- --/* Two_Product_Presplit() is Two_Product() where one of the inputs has */ --/* already been split. Avoids redundant splitting. */ -- --#define Two_Product_Presplit(a, b, bhi, blo, x, y) \ -- x = (REAL) (a * b); \ -- Split(a, ahi, alo); \ -- err1 = x - (ahi * bhi); \ -- err2 = err1 - (alo * bhi); \ -- err3 = err2 - (ahi * blo); \ -- y = (alo * blo) - err3 -- --/* Square() can be done more quickly than Two_Product(). */ -- --#define Square_Tail(a, x, y) \ -- Split(a, ahi, alo); \ -- err1 = x - (ahi * ahi); \ -- err3 = err1 - ((ahi + ahi) * alo); \ -- y = (alo * alo) - err3 -- --#define Square(a, x, y) \ -- x = (REAL) (a * a); \ -- Square_Tail(a, x, y) -- --/* Macros for summing expansions of various fixed lengths. These are all */ --/* unrolled versions of Expansion_Sum(). */ -- --#define Two_One_Sum(a1, a0, b, x2, x1, x0) \ -- Two_Sum(a0, b , _i, x0); \ -- Two_Sum(a1, _i, x2, x1) -- --#define Two_One_Diff(a1, a0, b, x2, x1, x0) \ -- Two_Diff(a0, b , _i, x0); \ -- Two_Sum( a1, _i, x2, x1) -- --#define Two_Two_Sum(a1, a0, b1, b0, x3, x2, x1, x0) \ -- Two_One_Sum(a1, a0, b0, _j, _0, x0); \ -- Two_One_Sum(_j, _0, b1, x3, x2, x1) -- --#define Two_Two_Diff(a1, a0, b1, b0, x3, x2, x1, x0) \ -- Two_One_Diff(a1, a0, b0, _j, _0, x0); \ -- Two_One_Diff(_j, _0, b1, x3, x2, x1) -- --/* Macro for multiplying a two-component expansion by a single component. */ -- --#define Two_One_Product(a1, a0, b, x3, x2, x1, x0) \ -- Split(b, bhi, blo); \ -- Two_Product_Presplit(a0, b, bhi, blo, _i, x0); \ -- Two_Product_Presplit(a1, b, bhi, blo, _j, _0); \ -- Two_Sum(_i, _0, _k, x1); \ -- Fast_Two_Sum(_j, _k, x3, x2) -- --/*****************************************************************************/ --/* */ --/* exactinit() Initialize the variables used for exact arithmetic. */ --/* */ --/* `epsilon' is the largest power of two such that 1.0 + epsilon = 1.0 in */ --/* floating-point arithmetic. `epsilon' bounds the relative roundoff */ --/* error. It is used for floating-point error analysis. */ --/* */ --/* `splitter' is used to split floating-point numbers into two half- */ --/* length significands for exact multiplication. */ --/* */ --/* I imagine that a highly optimizing compiler might be too smart for its */ --/* own good, and somehow cause this routine to fail, if it pretends that */ --/* floating-point arithmetic is too much like real arithmetic. */ --/* */ --/* Don't change this routine unless you fully understand it. */ --/* */ --/*****************************************************************************/ -- --void exactinit() --{ -- REAL half; -- REAL check, lastcheck; -- int every_other; --#ifdef LINUX -- int cword; --#endif /* LINUX */ -- --#ifdef CPU86 --#ifdef SINGLE -- _control87(_PC_24, _MCW_PC); /* Set FPU control word for single precision. */ --#else /* not SINGLE */ -- _control87(_PC_53, _MCW_PC); /* Set FPU control word for double precision. */ --#endif /* not SINGLE */ --#endif /* CPU86 */ --#ifdef LINUX --#ifdef SINGLE -- /* cword = 4223; */ -- cword = 4210; /* set FPU control word for single precision */ --#else /* not SINGLE */ -- /* cword = 4735; */ -- cword = 4722; /* set FPU control word for double precision */ --#endif /* not SINGLE */ -- _FPU_SETCW(cword); --#endif /* LINUX */ -- -- every_other = 1; -- half = 0.5; -- epsilon = 1.0; -- splitter = 1.0; -- check = 1.0; -- /* Repeatedly divide `epsilon' by two until it is too small to add to */ -- /* one without causing roundoff. (Also check if the sum is equal to */ -- /* the previous sum, for machines that round up instead of using exact */ -- /* rounding. Not that these routines will work on such machines.) */ -- do { -- lastcheck = check; -- epsilon *= half; -- if (every_other) { -- splitter *= 2.0; -- } -- every_other = !every_other; -- check = 1.0 + epsilon; -- } while ((check != 1.0) && (check != lastcheck)); -- splitter += 1.0; -- /* Error bounds for orientation and incircle tests. */ -- resulterrbound = (3.0 + 8.0 * epsilon) * epsilon; -- ccwerrboundA = (3.0 + 16.0 * epsilon) * epsilon; -- ccwerrboundB = (2.0 + 12.0 * epsilon) * epsilon; -- ccwerrboundC = (9.0 + 64.0 * epsilon) * epsilon * epsilon; -- iccerrboundA = (10.0 + 96.0 * epsilon) * epsilon; -- iccerrboundB = (4.0 + 48.0 * epsilon) * epsilon; -- iccerrboundC = (44.0 + 576.0 * epsilon) * epsilon * epsilon; -- o3derrboundA = (7.0 + 56.0 * epsilon) * epsilon; -- o3derrboundB = (3.0 + 28.0 * epsilon) * epsilon; -- o3derrboundC = (26.0 + 288.0 * epsilon) * epsilon * epsilon; --} -- --/*****************************************************************************/ --/* */ --/* fast_expansion_sum_zeroelim() Sum two expansions, eliminating zero */ --/* components from the output expansion. */ --/* */ --/* Sets h = e + f. See my Robust Predicates paper for details. */ --/* */ --/* If round-to-even is used (as with IEEE 754), maintains the strongly */ --/* nonoverlapping property. (That is, if e is strongly nonoverlapping, h */ --/* will be also.) Does NOT maintain the nonoverlapping or nonadjacent */ --/* properties. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --static int fast_expansion_sum_zeroelim(int elen, REAL *e, int flen, REAL *f, REAL *h) --#else /* not ANSI_DECLARATORS */ --int fast_expansion_sum_zeroelim(elen, e, flen, f, h) /* h cannot be e or f. */ --int elen; --REAL *e; --int flen; --REAL *f; --REAL *h; --#endif /* not ANSI_DECLARATORS */ -- --{ -- REAL Q; -- INEXACT REAL Qnew; -- INEXACT REAL hh; -- INEXACT REAL bvirt; -- REAL avirt, bround, around; -- int eindex, findex, hindex; -- REAL enow, fnow; -- -- enow = e[0]; -- fnow = f[0]; -- eindex = findex = 0; -- if ( (fnow > enow) == (fnow > -enow) ) { -- Q = enow; -- enow = e[++eindex]; -- } else { -- Q = fnow; -- fnow = f[++findex]; -- } -- hindex = 0; -- if ((eindex < elen) && (findex < flen)) { -- if ((fnow > enow) == (fnow > -enow)) { -- Fast_Two_Sum(enow, Q, Qnew, hh); -- enow = e[++eindex]; -- } else { -- Fast_Two_Sum(fnow, Q, Qnew, hh); -- fnow = f[++findex]; -- } -- Q = Qnew; -- if (hh != 0.0) { -- h[hindex++] = hh; -- } -- while ((eindex < elen) && (findex < flen)) { -- if ((fnow > enow) == (fnow > -enow)) { -- Two_Sum(Q, enow, Qnew, hh); -- enow = e[++eindex]; -- } else { -- Two_Sum(Q, fnow, Qnew, hh); -- fnow = f[++findex]; -- } -- Q = Qnew; -- if (hh != 0.0) { -- h[hindex++] = hh; -- } -- } -- } -- while (eindex < elen) { -- Two_Sum(Q, enow, Qnew, hh); -- enow = e[++eindex]; -- Q = Qnew; -- if (hh != 0.0) { -- h[hindex++] = hh; -- } -- } -- while (findex < flen) { -- Two_Sum(Q, fnow, Qnew, hh); -- fnow = f[++findex]; -- Q = Qnew; -- if (hh != 0.0) { -- h[hindex++] = hh; -- } -- } -- if ((Q != 0.0) || (hindex == 0)) { -- h[hindex++] = Q; -- } -- return hindex; --} -- --/*****************************************************************************/ --/* */ --/* scale_expansion_zeroelim() Multiply an expansion by a scalar, */ --/* eliminating zero components from the */ --/* output expansion. */ --/* */ --/* Sets h = be. See my Robust Predicates paper for details. */ --/* */ --/* Maintains the nonoverlapping property. If round-to-even is used (as */ --/* with IEEE 754), maintains the strongly nonoverlapping and nonadjacent */ --/* properties as well. (That is, if e has one of these properties, so */ --/* will h.) */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --int scale_expansion_zeroelim(int elen, REAL *e, REAL b, REAL *h) --#else /* not ANSI_DECLARATORS */ --int scale_expansion_zeroelim(elen, e, b, h) /* e and h cannot be the same. */ --int elen; --REAL *e; --REAL b; --REAL *h; --#endif /* not ANSI_DECLARATORS */ -- --{ -- INEXACT REAL Q, sum; -- REAL hh; -- INEXACT REAL product1; -- REAL product0; -- int eindex, hindex; -- REAL enow; -- INEXACT REAL bvirt; -- REAL avirt, bround, around; -- INEXACT REAL c; -- INEXACT REAL abig; -- REAL ahi, alo, bhi, blo; -- REAL err1, err2, err3; -- -- Split(b, bhi, blo); -- Two_Product_Presplit(e[0], b, bhi, blo, Q, hh); -- hindex = 0; -- if (hh != 0) { -- h[hindex++] = hh; -- } -- for (eindex = 1; eindex < elen; eindex++) { -- enow = e[eindex]; -- Two_Product_Presplit(enow, b, bhi, blo, product1, product0); -- Two_Sum(Q, product0, sum, hh); -- if (hh != 0) { -- h[hindex++] = hh; -- } -- Fast_Two_Sum(product1, sum, Q, hh); -- if (hh != 0) { -- h[hindex++] = hh; -- } -- } -- if ((Q != 0.0) || (hindex == 0)) { -- h[hindex++] = Q; -- } -- return hindex; --} -- --/*****************************************************************************/ --/* */ --/* estimate() Produce a one-word estimate of an expansion's value. */ --/* */ --/* See my Robust Predicates paper for details. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --REAL estimate(int elen, REAL *e) --#else /* not ANSI_DECLARATORS */ --REAL estimate(elen, e) --int elen; --REAL *e; --#endif /* not ANSI_DECLARATORS */ -- --{ -- REAL Q; -- int eindex; -- -- Q = e[0]; -- for (eindex = 1; eindex < elen; eindex++) { -- Q += e[eindex]; -- } -- return Q; --} -- --/*****************************************************************************/ --/* */ --/* counterclockwise() Return a positive value if the points pa, pb, and */ --/* pc occur in counterclockwise order; a negative */ --/* value if they occur in clockwise order; and zero */ --/* if they are collinear. The result is also a rough */ --/* approximation of twice the signed area of the */ --/* triangle defined by the three points. */ --/* */ --/* Uses exact arithmetic if necessary to ensure a correct answer. The */ --/* result returned is the determinant of a matrix. This determinant is */ --/* computed adaptively, in the sense that exact arithmetic is used only to */ --/* the degree it is needed to ensure that the returned value has the */ --/* correct sign. Hence, this function is usually quite fast, but will run */ --/* more slowly when the input points are collinear or nearly so. */ --/* */ --/* See my Robust Predicates paper for details. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --REAL counterclockwiseadapt(vertex pa, vertex pb, vertex pc, REAL detsum) --#else /* not ANSI_DECLARATORS */ --REAL counterclockwiseadapt(pa, pb, pc, detsum) --vertex pa; --vertex pb; --vertex pc; --REAL detsum; --#endif /* not ANSI_DECLARATORS */ -- --{ -- INEXACT REAL acx, acy, bcx, bcy; -- REAL acxtail, acytail, bcxtail, bcytail; -- INEXACT REAL detleft, detright; -- REAL detlefttail, detrighttail; -- REAL det, errbound; -- REAL B[4] = {0.}, C1[8] = {0.}, C2[12] = {0.}, D[16] = {0.}; -- INEXACT REAL B3; -- int C1length, C2length, Dlength; -- REAL u[4] = {0.}; -- INEXACT REAL u3; -- INEXACT REAL s1, t1; -- REAL s0, t0; -- -- INEXACT REAL bvirt; -- REAL avirt, bround, around; -- INEXACT REAL c; -- INEXACT REAL abig; -- REAL ahi, alo, bhi, blo; -- REAL err1, err2, err3; -- INEXACT REAL _i, _j; -- REAL _0; -- -- acx = (REAL) (pa[0] - pc[0]); -- bcx = (REAL) (pb[0] - pc[0]); -- acy = (REAL) (pa[1] - pc[1]); -- bcy = (REAL) (pb[1] - pc[1]); -- -- Two_Product(acx, bcy, detleft, detlefttail); -- Two_Product(acy, bcx, detright, detrighttail); -- -- Two_Two_Diff(detleft, detlefttail, detright, detrighttail, -- B3, B[2], B[1], B[0]); -- B[3] = B3; -- -- det = estimate(4, B); -- errbound = ccwerrboundB * detsum; -- if ((det >= errbound) || (-det >= errbound)) { -- return det; -- } -- -- Two_Diff_Tail(pa[0], pc[0], acx, acxtail); -- Two_Diff_Tail(pb[0], pc[0], bcx, bcxtail); -- Two_Diff_Tail(pa[1], pc[1], acy, acytail); -- Two_Diff_Tail(pb[1], pc[1], bcy, bcytail); -- -- if ((acxtail == 0.0) && (acytail == 0.0) -- && (bcxtail == 0.0) && (bcytail == 0.0)) { -- return det; -- } -- -- errbound = ccwerrboundC * detsum + resulterrbound * Absolute(det); -- det += (acx * bcytail + bcy * acxtail) -- - (acy * bcxtail + bcx * acytail); -- if ((det >= errbound) || (-det >= errbound)) { -- return det; -- } -- -- Two_Product(acxtail, bcy, s1, s0); -- Two_Product(acytail, bcx, t1, t0); -- Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]); -- u[3] = u3; -- C1length = fast_expansion_sum_zeroelim(4, B, 4, u, C1); -- -- Two_Product(acx, bcytail, s1, s0); -- Two_Product(acy, bcxtail, t1, t0); -- Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]); -- u[3] = u3; -- C2length = fast_expansion_sum_zeroelim(C1length, C1, 4, u, C2); -- -- Two_Product(acxtail, bcytail, s1, s0); -- Two_Product(acytail, bcxtail, t1, t0); -- Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]); -- u[3] = u3; -- Dlength = fast_expansion_sum_zeroelim(C2length, C2, 4, u, D); -- -- return(D[Dlength - 1]); --} -- --#ifdef ANSI_DECLARATORS --REAL counterclockwise(struct mesh *m, struct behavior *b, -- vertex pa, vertex pb, vertex pc) --#else /* not ANSI_DECLARATORS */ --REAL counterclockwise(m, b, pa, pb, pc) --struct mesh *m; --struct behavior *b; --vertex pa; --vertex pb; --vertex pc; --#endif /* not ANSI_DECLARATORS */ -- --{ -- REAL detleft, detright, det; -- REAL detsum, errbound; -- -- m->counterclockcount++; -- -- detleft = (pa[0] - pc[0]) * (pb[1] - pc[1]); -- detright = (pa[1] - pc[1]) * (pb[0] - pc[0]); -- det = detleft - detright; -- -- if (b->noexact) { -- return det; -- } -- -- if (detleft > 0.0) { -- if (detright <= 0.0) { -- return det; -- } else { -- detsum = detleft + detright; -- } -- } else if (detleft < 0.0) { -- if (detright >= 0.0) { -- return det; -- } else { -- detsum = -detleft - detright; -- } -- } else { -- return det; -- } -- -- errbound = ccwerrboundA * detsum; -- if ((det >= errbound) || (-det >= errbound)) { -- return det; -- } -- -- return counterclockwiseadapt(pa, pb, pc, detsum); --} -- --/*****************************************************************************/ --/* */ --/* incircle() Return a positive value if the point pd lies inside the */ --/* circle passing through pa, pb, and pc; a negative value if */ --/* it lies outside; and zero if the four points are cocircular.*/ --/* The points pa, pb, and pc must be in counterclockwise */ --/* order, or the sign of the result will be reversed. */ --/* */ --/* Uses exact arithmetic if necessary to ensure a correct answer. The */ --/* result returned is the determinant of a matrix. This determinant is */ --/* computed adaptively, in the sense that exact arithmetic is used only to */ --/* the degree it is needed to ensure that the returned value has the */ --/* correct sign. Hence, this function is usually quite fast, but will run */ --/* more slowly when the input points are cocircular or nearly so. */ --/* */ --/* See my Robust Predicates paper for details. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --REAL incircleadapt(vertex pa, vertex pb, vertex pc, vertex pd, REAL permanent) --#else /* not ANSI_DECLARATORS */ --REAL incircleadapt(pa, pb, pc, pd, permanent) --vertex pa; --vertex pb; --vertex pc; --vertex pd; --REAL permanent; --#endif /* not ANSI_DECLARATORS */ -- --{ -- INEXACT REAL adx, bdx, cdx, ady, bdy, cdy; -- REAL det, errbound; -- -- INEXACT REAL bdxcdy1, cdxbdy1, cdxady1, adxcdy1, adxbdy1, bdxady1; -- REAL bdxcdy0, cdxbdy0, cdxady0, adxcdy0, adxbdy0, bdxady0; -- REAL bc[4], ca[4], ab[4]; -- INEXACT REAL bc3, ca3, ab3; -- REAL axbc[8], axxbc[16] ={0.}, aybc[8], ayybc[16] = {0.}, adet[32] = {0.}; -- int axbclen, axxbclen, aybclen, ayybclen, alen; -- REAL bxca[8], bxxca[16] = {0.}, byca[8], byyca[16] = {0.}, bdet[32] = {0.}; -- int bxcalen, bxxcalen, bycalen, byycalen, blen; -- REAL cxab[8], cxxab[16] = {0.}, cyab[8], cyyab[16] = {0.}, cdet[32] = {0.}; -- int cxablen, cxxablen, cyablen, cyyablen, clen; -- REAL abdet[64] = {0,}; -- int ablen; -- REAL fin1[1152] = {0.}, fin2[1152] = {0.}; -- REAL *finnow, *finother, *finswap; -- int finlength; -- -- REAL adxtail, bdxtail, cdxtail, adytail, bdytail, cdytail; -- INEXACT REAL adxadx1, adyady1, bdxbdx1, bdybdy1, cdxcdx1, cdycdy1; -- REAL adxadx0, adyady0, bdxbdx0, bdybdy0, cdxcdx0, cdycdy0; -- REAL aa[4], bb[4], cc[4]; -- INEXACT REAL aa3, bb3, cc3; -- INEXACT REAL ti1, tj1; -- REAL ti0, tj0; -- REAL u[4] = {0.}, v[4] = {0.}; -- INEXACT REAL u3, v3; -- REAL temp8[8], temp16a[16] = {0.}, temp16b[16] = {0.}, temp16c[16] = {0.}; -- REAL temp32a[32] = {0.}, temp32b[32] = {0.}, temp48[48] = {0.}, temp64[64] = {0.}; -- int temp8len, temp16alen, temp16blen, temp16clen; -- int temp32alen, temp32blen, temp48len, temp64len; -- REAL axtbb[8], axtcc[8], aytbb[8], aytcc[8]; -- int axtbblen, axtcclen, aytbblen, aytcclen; -- REAL bxtaa[8], bxtcc[8], bytaa[8], bytcc[8]; -- int bxtaalen, bxtcclen, bytaalen, bytcclen; -- REAL cxtaa[8], cxtbb[8], cytaa[8], cytbb[8]; -- int cxtaalen, cxtbblen, cytaalen, cytbblen; -- REAL axtbc[8], aytbc[8], bxtca[8], bytca[8], cxtab[8], cytab[8]; -- int axtbclen = 8, aytbclen = 8, bxtcalen = 8, bytcalen = 8, cxtablen = 8, cytablen = 8; -- REAL axtbct[16], aytbct[16], bxtcat[16], bytcat[16], cxtabt[16], cytabt[16]; -- int axtbctlen, aytbctlen, bxtcatlen, bytcatlen, cxtabtlen, cytabtlen; -- REAL axtbctt[8], aytbctt[8], bxtcatt[8]; -- REAL bytcatt[8], cxtabtt[8], cytabtt[8]; -- int axtbcttlen, aytbcttlen, bxtcattlen, bytcattlen, cxtabttlen, cytabttlen; -- REAL abt[8], bct[8], cat[8]; -- int abtlen, bctlen, catlen; -- REAL abtt[4], bctt[4], catt[4]; -- int abttlen, bcttlen, cattlen; -- INEXACT REAL abtt3, bctt3, catt3; -- REAL negate; -- -- INEXACT REAL bvirt; -- REAL avirt, bround, around; -- INEXACT REAL c; -- INEXACT REAL abig; -- REAL ahi, alo, bhi, blo; -- REAL err1, err2, err3; -- INEXACT REAL _i, _j; -- REAL _0; -- -- adx = (REAL) (pa[0] - pd[0]); -- bdx = (REAL) (pb[0] - pd[0]); -- cdx = (REAL) (pc[0] - pd[0]); -- ady = (REAL) (pa[1] - pd[1]); -- bdy = (REAL) (pb[1] - pd[1]); -- cdy = (REAL) (pc[1] - pd[1]); -- -- Two_Product(bdx, cdy, bdxcdy1, bdxcdy0); -- Two_Product(cdx, bdy, cdxbdy1, cdxbdy0); -- Two_Two_Diff(bdxcdy1, bdxcdy0, cdxbdy1, cdxbdy0, bc3, bc[2], bc[1], bc[0]); -- bc[3] = bc3; -- axbclen = scale_expansion_zeroelim(4, bc, adx, axbc); -- axxbclen = scale_expansion_zeroelim(axbclen, axbc, adx, axxbc); -- aybclen = scale_expansion_zeroelim(4, bc, ady, aybc); -- ayybclen = scale_expansion_zeroelim(aybclen, aybc, ady, ayybc); -- alen = fast_expansion_sum_zeroelim(axxbclen, axxbc, ayybclen, ayybc, adet); -- -- Two_Product(cdx, ady, cdxady1, cdxady0); -- Two_Product(adx, cdy, adxcdy1, adxcdy0); -- Two_Two_Diff(cdxady1, cdxady0, adxcdy1, adxcdy0, ca3, ca[2], ca[1], ca[0]); -- ca[3] = ca3; -- bxcalen = scale_expansion_zeroelim(4, ca, bdx, bxca); -- bxxcalen = scale_expansion_zeroelim(bxcalen, bxca, bdx, bxxca); -- bycalen = scale_expansion_zeroelim(4, ca, bdy, byca); -- byycalen = scale_expansion_zeroelim(bycalen, byca, bdy, byyca); -- blen = fast_expansion_sum_zeroelim(bxxcalen, bxxca, byycalen, byyca, bdet); -- -- Two_Product(adx, bdy, adxbdy1, adxbdy0); -- Two_Product(bdx, ady, bdxady1, bdxady0); -- Two_Two_Diff(adxbdy1, adxbdy0, bdxady1, bdxady0, ab3, ab[2], ab[1], ab[0]); -- ab[3] = ab3; -- cxablen = scale_expansion_zeroelim(4, ab, cdx, cxab); -- cxxablen = scale_expansion_zeroelim(cxablen, cxab, cdx, cxxab); -- cyablen = scale_expansion_zeroelim(4, ab, cdy, cyab); -- cyyablen = scale_expansion_zeroelim(cyablen, cyab, cdy, cyyab); -- clen = fast_expansion_sum_zeroelim(cxxablen, cxxab, cyyablen, cyyab, cdet); -- -- ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet); -- finlength = fast_expansion_sum_zeroelim(ablen, abdet, clen, cdet, fin1); -- -- det = estimate(finlength, fin1); -- errbound = iccerrboundB * permanent; -- if ((det >= errbound) || (-det >= errbound)) { -- return det; -- } -- -- Two_Diff_Tail(pa[0], pd[0], adx, adxtail); -- Two_Diff_Tail(pa[1], pd[1], ady, adytail); -- Two_Diff_Tail(pb[0], pd[0], bdx, bdxtail); -- Two_Diff_Tail(pb[1], pd[1], bdy, bdytail); -- Two_Diff_Tail(pc[0], pd[0], cdx, cdxtail); -- Two_Diff_Tail(pc[1], pd[1], cdy, cdytail); -- if ((adxtail == 0.0) && (bdxtail == 0.0) && (cdxtail == 0.0) -- && (adytail == 0.0) && (bdytail == 0.0) && (cdytail == 0.0)) { -- return det; -- } -- -- errbound = iccerrboundC * permanent + resulterrbound * Absolute(det); -- det += ((adx * adx + ady * ady) * ((bdx * cdytail + cdy * bdxtail) -- - (bdy * cdxtail + cdx * bdytail)) -- + 2.0 * (adx * adxtail + ady * adytail) * (bdx * cdy - bdy * cdx)) -- + ((bdx * bdx + bdy * bdy) * ((cdx * adytail + ady * cdxtail) -- - (cdy * adxtail + adx * cdytail)) -- + 2.0 * (bdx * bdxtail + bdy * bdytail) * (cdx * ady - cdy * adx)) -- + ((cdx * cdx + cdy * cdy) * ((adx * bdytail + bdy * adxtail) -- - (ady * bdxtail + bdx * adytail)) -- + 2.0 * (cdx * cdxtail + cdy * cdytail) * (adx * bdy - ady * bdx)); -- if ((det >= errbound) || (-det >= errbound)) { -- return det; -- } -- -- finnow = fin1; -- finother = fin2; -- -- if ((bdxtail != 0.0) || (bdytail != 0.0) -- || (cdxtail != 0.0) || (cdytail != 0.0)) { -- Square(adx, adxadx1, adxadx0); -- Square(ady, adyady1, adyady0); -- Two_Two_Sum(adxadx1, adxadx0, adyady1, adyady0, aa3, aa[2], aa[1], aa[0]); -- aa[3] = aa3; -- } -- if ((cdxtail != 0.0) || (cdytail != 0.0) -- || (adxtail != 0.0) || (adytail != 0.0)) { -- Square(bdx, bdxbdx1, bdxbdx0); -- Square(bdy, bdybdy1, bdybdy0); -- Two_Two_Sum(bdxbdx1, bdxbdx0, bdybdy1, bdybdy0, bb3, bb[2], bb[1], bb[0]); -- bb[3] = bb3; -- } -- if ((adxtail != 0.0) || (adytail != 0.0) -- || (bdxtail != 0.0) || (bdytail != 0.0)) { -- Square(cdx, cdxcdx1, cdxcdx0); -- Square(cdy, cdycdy1, cdycdy0); -- Two_Two_Sum(cdxcdx1, cdxcdx0, cdycdy1, cdycdy0, cc3, cc[2], cc[1], cc[0]); -- cc[3] = cc3; -- } -- -- if (adxtail != 0.0) { -- axtbclen = scale_expansion_zeroelim(4, bc, adxtail, axtbc); -- temp16alen = scale_expansion_zeroelim(axtbclen, axtbc, 2.0 * adx, -- temp16a); -- -- axtcclen = scale_expansion_zeroelim(4, cc, adxtail, axtcc); -- temp16blen = scale_expansion_zeroelim(axtcclen, axtcc, bdy, temp16b); -- -- axtbblen = scale_expansion_zeroelim(4, bb, adxtail, axtbb); -- temp16clen = scale_expansion_zeroelim(axtbblen, axtbb, -cdy, temp16c); -- -- temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a, -- temp16blen, temp16b, temp32a); -- temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c, -- temp32alen, temp32a, temp48); -- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, -- temp48, finother); -- finswap = finnow; finnow = finother; finother = finswap; -- } -- if (adytail != 0.0) { -- aytbclen = scale_expansion_zeroelim(4, bc, adytail, aytbc); -- temp16alen = scale_expansion_zeroelim(aytbclen, aytbc, 2.0 * ady, -- temp16a); -- -- aytbblen = scale_expansion_zeroelim(4, bb, adytail, aytbb); -- temp16blen = scale_expansion_zeroelim(aytbblen, aytbb, cdx, temp16b); -- -- aytcclen = scale_expansion_zeroelim(4, cc, adytail, aytcc); -- temp16clen = scale_expansion_zeroelim(aytcclen, aytcc, -bdx, temp16c); -- -- temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a, -- temp16blen, temp16b, temp32a); -- temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c, -- temp32alen, temp32a, temp48); -- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, -- temp48, finother); -- finswap = finnow; finnow = finother; finother = finswap; -- } -- if (bdxtail != 0.0) { -- bxtcalen = scale_expansion_zeroelim(4, ca, bdxtail, bxtca); -- temp16alen = scale_expansion_zeroelim(bxtcalen, bxtca, 2.0 * bdx, -- temp16a); -- -- bxtaalen = scale_expansion_zeroelim(4, aa, bdxtail, bxtaa); -- temp16blen = scale_expansion_zeroelim(bxtaalen, bxtaa, cdy, temp16b); -- -- bxtcclen = scale_expansion_zeroelim(4, cc, bdxtail, bxtcc); -- temp16clen = scale_expansion_zeroelim(bxtcclen, bxtcc, -ady, temp16c); -- -- temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a, -- temp16blen, temp16b, temp32a); -- temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c, -- temp32alen, temp32a, temp48); -- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, -- temp48, finother); -- finswap = finnow; finnow = finother; finother = finswap; -- } -- if (bdytail != 0.0) { -- bytcalen = scale_expansion_zeroelim(4, ca, bdytail, bytca); -- temp16alen = scale_expansion_zeroelim(bytcalen, bytca, 2.0 * bdy, -- temp16a); -- -- bytcclen = scale_expansion_zeroelim(4, cc, bdytail, bytcc); -- temp16blen = scale_expansion_zeroelim(bytcclen, bytcc, adx, temp16b); -- -- bytaalen = scale_expansion_zeroelim(4, aa, bdytail, bytaa); -- temp16clen = scale_expansion_zeroelim(bytaalen, bytaa, -cdx, temp16c); -- -- temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a, -- temp16blen, temp16b, temp32a); -- temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c, -- temp32alen, temp32a, temp48); -- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, -- temp48, finother); -- finswap = finnow; finnow = finother; finother = finswap; -- } -- if (cdxtail != 0.0) { -- cxtablen = scale_expansion_zeroelim(4, ab, cdxtail, cxtab); -- temp16alen = scale_expansion_zeroelim(cxtablen, cxtab, 2.0 * cdx, -- temp16a); -- -- cxtbblen = scale_expansion_zeroelim(4, bb, cdxtail, cxtbb); -- temp16blen = scale_expansion_zeroelim(cxtbblen, cxtbb, ady, temp16b); -- -- cxtaalen = scale_expansion_zeroelim(4, aa, cdxtail, cxtaa); -- temp16clen = scale_expansion_zeroelim(cxtaalen, cxtaa, -bdy, temp16c); -- -- temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a, -- temp16blen, temp16b, temp32a); -- temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c, -- temp32alen, temp32a, temp48); -- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, -- temp48, finother); -- finswap = finnow; finnow = finother; finother = finswap; -- } -- if (cdytail != 0.0) { -- cytablen = scale_expansion_zeroelim(4, ab, cdytail, cytab); -- temp16alen = scale_expansion_zeroelim(cytablen, cytab, 2.0 * cdy, -- temp16a); -- -- cytaalen = scale_expansion_zeroelim(4, aa, cdytail, cytaa); -- temp16blen = scale_expansion_zeroelim(cytaalen, cytaa, bdx, temp16b); -- -- cytbblen = scale_expansion_zeroelim(4, bb, cdytail, cytbb); -- temp16clen = scale_expansion_zeroelim(cytbblen, cytbb, -adx, temp16c); -- -- temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a, -- temp16blen, temp16b, temp32a); -- temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c, -- temp32alen, temp32a, temp48); -- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, -- temp48, finother); -- finswap = finnow; finnow = finother; finother = finswap; -- } -- -- if ((adxtail != 0.0) || (adytail != 0.0)) { -- if ((bdxtail != 0.0) || (bdytail != 0.0) -- || (cdxtail != 0.0) || (cdytail != 0.0)) { -- Two_Product(bdxtail, cdy, ti1, ti0); -- Two_Product(bdx, cdytail, tj1, tj0); -- Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]); -- u[3] = u3; -- negate = -bdy; -- Two_Product(cdxtail, negate, ti1, ti0); -- negate = -bdytail; -- Two_Product(cdx, negate, tj1, tj0); -- Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]); -- v[3] = v3; -- bctlen = fast_expansion_sum_zeroelim(4, u, 4, v, bct); -- -- Two_Product(bdxtail, cdytail, ti1, ti0); -- Two_Product(cdxtail, bdytail, tj1, tj0); -- Two_Two_Diff(ti1, ti0, tj1, tj0, bctt3, bctt[2], bctt[1], bctt[0]); -- bctt[3] = bctt3; -- bcttlen = 4; -- } else { -- bct[0] = 0.0; -- bctlen = 1; -- bctt[0] = 0.0; -- bcttlen = 1; -- } -- -- if (adxtail != 0.0) { -- temp16alen = scale_expansion_zeroelim(axtbclen, axtbc, adxtail, temp16a); -- axtbctlen = scale_expansion_zeroelim(bctlen, bct, adxtail, axtbct); -- temp32alen = scale_expansion_zeroelim(axtbctlen, axtbct, 2.0 * adx, -- temp32a); -- temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a, -- temp32alen, temp32a, temp48); -- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, -- temp48, finother); -- finswap = finnow; finnow = finother; finother = finswap; -- if (bdytail != 0.0) { -- temp8len = scale_expansion_zeroelim(4, cc, adxtail, temp8); -- temp16alen = scale_expansion_zeroelim(temp8len, temp8, bdytail, -- temp16a); -- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen, -- temp16a, finother); -- finswap = finnow; finnow = finother; finother = finswap; -- } -- if (cdytail != 0.0) { -- temp8len = scale_expansion_zeroelim(4, bb, -adxtail, temp8); -- temp16alen = scale_expansion_zeroelim(temp8len, temp8, cdytail, -- temp16a); -- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen, -- temp16a, finother); -- finswap = finnow; finnow = finother; finother = finswap; -- } -- -- temp32alen = scale_expansion_zeroelim(axtbctlen, axtbct, adxtail, -- temp32a); -- axtbcttlen = scale_expansion_zeroelim(bcttlen, bctt, adxtail, axtbctt); -- temp16alen = scale_expansion_zeroelim(axtbcttlen, axtbctt, 2.0 * adx, -- temp16a); -- temp16blen = scale_expansion_zeroelim(axtbcttlen, axtbctt, adxtail, -- temp16b); -- temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a, -- temp16blen, temp16b, temp32b); -- temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a, -- temp32blen, temp32b, temp64); -- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len, -- temp64, finother); -- finswap = finnow; finnow = finother; finother = finswap; -- } -- if (adytail != 0.0) { -- temp16alen = scale_expansion_zeroelim(aytbclen, aytbc, adytail, temp16a); -- aytbctlen = scale_expansion_zeroelim(bctlen, bct, adytail, aytbct); -- temp32alen = scale_expansion_zeroelim(aytbctlen, aytbct, 2.0 * ady, -- temp32a); -- temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a, -- temp32alen, temp32a, temp48); -- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, -- temp48, finother); -- finswap = finnow; finnow = finother; finother = finswap; -- -- -- temp32alen = scale_expansion_zeroelim(aytbctlen, aytbct, adytail, -- temp32a); -- aytbcttlen = scale_expansion_zeroelim(bcttlen, bctt, adytail, aytbctt); -- temp16alen = scale_expansion_zeroelim(aytbcttlen, aytbctt, 2.0 * ady, -- temp16a); -- temp16blen = scale_expansion_zeroelim(aytbcttlen, aytbctt, adytail, -- temp16b); -- temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a, -- temp16blen, temp16b, temp32b); -- temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a, -- temp32blen, temp32b, temp64); -- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len, -- temp64, finother); -- finswap = finnow; finnow = finother; finother = finswap; -- } -- } -- if ((bdxtail != 0.0) || (bdytail != 0.0)) { -- if ((cdxtail != 0.0) || (cdytail != 0.0) -- || (adxtail != 0.0) || (adytail != 0.0)) { -- Two_Product(cdxtail, ady, ti1, ti0); -- Two_Product(cdx, adytail, tj1, tj0); -- Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]); -- u[3] = u3; -- negate = -cdy; -- Two_Product(adxtail, negate, ti1, ti0); -- negate = -cdytail; -- Two_Product(adx, negate, tj1, tj0); -- Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]); -- v[3] = v3; -- catlen = fast_expansion_sum_zeroelim(4, u, 4, v, cat); -- -- Two_Product(cdxtail, adytail, ti1, ti0); -- Two_Product(adxtail, cdytail, tj1, tj0); -- Two_Two_Diff(ti1, ti0, tj1, tj0, catt3, catt[2], catt[1], catt[0]); -- catt[3] = catt3; -- cattlen = 4; -- } else { -- cat[0] = 0.0; -- catlen = 1; -- catt[0] = 0.0; -- cattlen = 1; -- } -- -- if (bdxtail != 0.0) { -- temp16alen = scale_expansion_zeroelim(bxtcalen, bxtca, bdxtail, temp16a); -- bxtcatlen = scale_expansion_zeroelim(catlen, cat, bdxtail, bxtcat); -- temp32alen = scale_expansion_zeroelim(bxtcatlen, bxtcat, 2.0 * bdx, -- temp32a); -- temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a, -- temp32alen, temp32a, temp48); -- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, -- temp48, finother); -- finswap = finnow; finnow = finother; finother = finswap; -- if (cdytail != 0.0) { -- temp8len = scale_expansion_zeroelim(4, aa, bdxtail, temp8); -- temp16alen = scale_expansion_zeroelim(temp8len, temp8, cdytail, -- temp16a); -- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen, -- temp16a, finother); -- finswap = finnow; finnow = finother; finother = finswap; -- } -- if (adytail != 0.0) { -- temp8len = scale_expansion_zeroelim(4, cc, -bdxtail, temp8); -- temp16alen = scale_expansion_zeroelim(temp8len, temp8, adytail, -- temp16a); -- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen, -- temp16a, finother); -- finswap = finnow; finnow = finother; finother = finswap; -- } -- -- temp32alen = scale_expansion_zeroelim(bxtcatlen, bxtcat, bdxtail, -- temp32a); -- bxtcattlen = scale_expansion_zeroelim(cattlen, catt, bdxtail, bxtcatt); -- temp16alen = scale_expansion_zeroelim(bxtcattlen, bxtcatt, 2.0 * bdx, -- temp16a); -- temp16blen = scale_expansion_zeroelim(bxtcattlen, bxtcatt, bdxtail, -- temp16b); -- temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a, -- temp16blen, temp16b, temp32b); -- temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a, -- temp32blen, temp32b, temp64); -- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len, -- temp64, finother); -- finswap = finnow; finnow = finother; finother = finswap; -- } -- if (bdytail != 0.0) { -- temp16alen = scale_expansion_zeroelim(bytcalen, bytca, bdytail, temp16a); -- bytcatlen = scale_expansion_zeroelim(catlen, cat, bdytail, bytcat); -- temp32alen = scale_expansion_zeroelim(bytcatlen, bytcat, 2.0 * bdy, -- temp32a); -- temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a, -- temp32alen, temp32a, temp48); -- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, -- temp48, finother); -- finswap = finnow; finnow = finother; finother = finswap; -- -- -- temp32alen = scale_expansion_zeroelim(bytcatlen, bytcat, bdytail, -- temp32a); -- bytcattlen = scale_expansion_zeroelim(cattlen, catt, bdytail, bytcatt); -- temp16alen = scale_expansion_zeroelim(bytcattlen, bytcatt, 2.0 * bdy, -- temp16a); -- temp16blen = scale_expansion_zeroelim(bytcattlen, bytcatt, bdytail, -- temp16b); -- temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a, -- temp16blen, temp16b, temp32b); -- temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a, -- temp32blen, temp32b, temp64); -- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len, -- temp64, finother); -- finswap = finnow; finnow = finother; finother = finswap; -- } -- } -- if ((cdxtail != 0.0) || (cdytail != 0.0)) { -- if ((adxtail != 0.0) || (adytail != 0.0) -- || (bdxtail != 0.0) || (bdytail != 0.0)) { -- Two_Product(adxtail, bdy, ti1, ti0); -- Two_Product(adx, bdytail, tj1, tj0); -- Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]); -- u[3] = u3; -- negate = -ady; -- Two_Product(bdxtail, negate, ti1, ti0); -- negate = -adytail; -- Two_Product(bdx, negate, tj1, tj0); -- Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]); -- v[3] = v3; -- abtlen = fast_expansion_sum_zeroelim(4, u, 4, v, abt); -- -- Two_Product(adxtail, bdytail, ti1, ti0); -- Two_Product(bdxtail, adytail, tj1, tj0); -- Two_Two_Diff(ti1, ti0, tj1, tj0, abtt3, abtt[2], abtt[1], abtt[0]); -- abtt[3] = abtt3; -- abttlen = 4; -- } else { -- abt[0] = 0.0; -- abtlen = 1; -- abtt[0] = 0.0; -- abttlen = 1; -- } -- -- if (cdxtail != 0.0) { -- temp16alen = scale_expansion_zeroelim(cxtablen, cxtab, cdxtail, temp16a); -- cxtabtlen = scale_expansion_zeroelim(abtlen, abt, cdxtail, cxtabt); -- temp32alen = scale_expansion_zeroelim(cxtabtlen, cxtabt, 2.0 * cdx, -- temp32a); -- temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a, -- temp32alen, temp32a, temp48); -- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, -- temp48, finother); -- finswap = finnow; finnow = finother; finother = finswap; -- if (adytail != 0.0) { -- temp8len = scale_expansion_zeroelim(4, bb, cdxtail, temp8); -- temp16alen = scale_expansion_zeroelim(temp8len, temp8, adytail, -- temp16a); -- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen, -- temp16a, finother); -- finswap = finnow; finnow = finother; finother = finswap; -- } -- if (bdytail != 0.0) { -- temp8len = scale_expansion_zeroelim(4, aa, -cdxtail, temp8); -- temp16alen = scale_expansion_zeroelim(temp8len, temp8, bdytail, -- temp16a); -- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen, -- temp16a, finother); -- finswap = finnow; finnow = finother; finother = finswap; -- } -- -- temp32alen = scale_expansion_zeroelim(cxtabtlen, cxtabt, cdxtail, -- temp32a); -- cxtabttlen = scale_expansion_zeroelim(abttlen, abtt, cdxtail, cxtabtt); -- temp16alen = scale_expansion_zeroelim(cxtabttlen, cxtabtt, 2.0 * cdx, -- temp16a); -- temp16blen = scale_expansion_zeroelim(cxtabttlen, cxtabtt, cdxtail, -- temp16b); -- temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a, -- temp16blen, temp16b, temp32b); -- temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a, -- temp32blen, temp32b, temp64); -- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len, -- temp64, finother); -- finswap = finnow; finnow = finother; finother = finswap; -- } -- if (cdytail != 0.0) { -- temp16alen = scale_expansion_zeroelim(cytablen, cytab, cdytail, temp16a); -- cytabtlen = scale_expansion_zeroelim(abtlen, abt, cdytail, cytabt); -- temp32alen = scale_expansion_zeroelim(cytabtlen, cytabt, 2.0 * cdy, -- temp32a); -- temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a, -- temp32alen, temp32a, temp48); -- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len, -- temp48, finother); -- finswap = finnow; finnow = finother; finother = finswap; -- -- -- temp32alen = scale_expansion_zeroelim(cytabtlen, cytabt, cdytail, -- temp32a); -- cytabttlen = scale_expansion_zeroelim(abttlen, abtt, cdytail, cytabtt); -- temp16alen = scale_expansion_zeroelim(cytabttlen, cytabtt, 2.0 * cdy, -- temp16a); -- temp16blen = scale_expansion_zeroelim(cytabttlen, cytabtt, cdytail, -- temp16b); -- temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a, -- temp16blen, temp16b, temp32b); -- temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a, -- temp32blen, temp32b, temp64); -- finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len, -- temp64, finother); -- finnow = finother; -- } -- } -- -- return finnow[finlength - 1]; --} -- --#ifdef ANSI_DECLARATORS --REAL incircle(struct mesh *m, struct behavior *b, -- vertex pa, vertex pb, vertex pc, vertex pd) --#else /* not ANSI_DECLARATORS */ --REAL incircle(m, b, pa, pb, pc, pd) --struct mesh *m; --struct behavior *b; --vertex pa; --vertex pb; --vertex pc; --vertex pd; --#endif /* not ANSI_DECLARATORS */ -- --{ -- REAL adx, bdx, cdx, ady, bdy, cdy; -- REAL bdxcdy, cdxbdy, cdxady, adxcdy, adxbdy, bdxady; -- REAL alift, blift, clift; -- REAL det; -- REAL permanent, errbound; -- -- m->incirclecount++; -- -- adx = pa[0] - pd[0]; -- bdx = pb[0] - pd[0]; -- cdx = pc[0] - pd[0]; -- ady = pa[1] - pd[1]; -- bdy = pb[1] - pd[1]; -- cdy = pc[1] - pd[1]; -- -- bdxcdy = bdx * cdy; -- cdxbdy = cdx * bdy; -- alift = adx * adx + ady * ady; -- -- cdxady = cdx * ady; -- adxcdy = adx * cdy; -- blift = bdx * bdx + bdy * bdy; -- -- adxbdy = adx * bdy; -- bdxady = bdx * ady; -- clift = cdx * cdx + cdy * cdy; -- -- det = alift * (bdxcdy - cdxbdy) -- + blift * (cdxady - adxcdy) -- + clift * (adxbdy - bdxady); -- -- if (b->noexact) { -- return det; -- } -- -- permanent = (Absolute(bdxcdy) + Absolute(cdxbdy)) * alift -- + (Absolute(cdxady) + Absolute(adxcdy)) * blift -- + (Absolute(adxbdy) + Absolute(bdxady)) * clift; -- errbound = iccerrboundA * permanent; -- if ((det > errbound) || (-det > errbound)) { -- return det; -- } -- -- return incircleadapt(pa, pb, pc, pd, permanent); --} -- --/*****************************************************************************/ --/* */ --/* orient3d() Return a positive value if the point pd lies below the */ --/* plane passing through pa, pb, and pc; "below" is defined so */ --/* that pa, pb, and pc appear in counterclockwise order when */ --/* viewed from above the plane. Returns a negative value if */ --/* pd lies above the plane. Returns zero if the points are */ --/* coplanar. The result is also a rough approximation of six */ --/* times the signed volume of the tetrahedron defined by the */ --/* four points. */ --/* */ --/* Uses exact arithmetic if necessary to ensure a correct answer. The */ --/* result returned is the determinant of a matrix. This determinant is */ --/* computed adaptively, in the sense that exact arithmetic is used only to */ --/* the degree it is needed to ensure that the returned value has the */ --/* correct sign. Hence, this function is usually quite fast, but will run */ --/* more slowly when the input points are coplanar or nearly so. */ --/* */ --/* See my Robust Predicates paper for details. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --REAL orient3dadapt(vertex pa, vertex pb, vertex pc, vertex pd, -- REAL aheight, REAL bheight, REAL cheight, REAL dheight, -- REAL permanent) --#else /* not ANSI_DECLARATORS */ --REAL orient3dadapt(pa, pb, pc, pd, -- aheight, bheight, cheight, dheight, permanent) --vertex pa; --vertex pb; --vertex pc; --vertex pd; --REAL aheight; --REAL bheight; --REAL cheight; --REAL dheight; --REAL permanent; --#endif /* not ANSI_DECLARATORS */ -- --{ -- INEXACT REAL adx, bdx, cdx, ady, bdy, cdy, adheight, bdheight, cdheight; -- REAL det, errbound; -- -- INEXACT REAL bdxcdy1, cdxbdy1, cdxady1, adxcdy1, adxbdy1, bdxady1; -- REAL bdxcdy0, cdxbdy0, cdxady0, adxcdy0, adxbdy0, bdxady0; -- REAL bc[4], ca[4], ab[4]; -- INEXACT REAL bc3, ca3, ab3; -- REAL adet[8]={0.}, bdet[8]={0.}, cdet[8]={0.}; -- int alen, blen, clen; -- REAL abdet[16]={0.}; -- int ablen; -- REAL *finnow, *finother, *finswap; -- REAL fin1[192], fin2[192]; -- int finlength; -- -- REAL adxtail, bdxtail, cdxtail; -- REAL adytail, bdytail, cdytail; -- REAL adheighttail, bdheighttail, cdheighttail; -- INEXACT REAL at_blarge, at_clarge; -- INEXACT REAL bt_clarge, bt_alarge; -- INEXACT REAL ct_alarge, ct_blarge; -- REAL at_b[4]={0.}, at_c[4]={0.}, bt_c[4]={0.}, bt_a[4]={0.}, ct_a[4]={0.}, ct_b[4]={0.}; -- int at_blen, at_clen, bt_clen, bt_alen, ct_alen, ct_blen; -- INEXACT REAL bdxt_cdy1, cdxt_bdy1, cdxt_ady1; -- INEXACT REAL adxt_cdy1, adxt_bdy1, bdxt_ady1; -- REAL bdxt_cdy0, cdxt_bdy0, cdxt_ady0; -- REAL adxt_cdy0, adxt_bdy0, bdxt_ady0; -- INEXACT REAL bdyt_cdx1, cdyt_bdx1, cdyt_adx1; -- INEXACT REAL adyt_cdx1, adyt_bdx1, bdyt_adx1; -- REAL bdyt_cdx0, cdyt_bdx0, cdyt_adx0; -- REAL adyt_cdx0, adyt_bdx0, bdyt_adx0; -- REAL bct[8], cat[8], abt[8]; -- int bctlen, catlen, abtlen; -- INEXACT REAL bdxt_cdyt1, cdxt_bdyt1, cdxt_adyt1; -- INEXACT REAL adxt_cdyt1, adxt_bdyt1, bdxt_adyt1; -- REAL bdxt_cdyt0, cdxt_bdyt0, cdxt_adyt0; -- REAL adxt_cdyt0, adxt_bdyt0, bdxt_adyt0; -- REAL u[4]={0.}, v[12]={0.}, w[16]={0.}; -- INEXACT REAL u3; -- int vlength, wlength; -- REAL negate; -- -- INEXACT REAL bvirt; -- REAL avirt, bround, around; -- INEXACT REAL c; -- INEXACT REAL abig; -- REAL ahi, alo, bhi, blo; -- REAL err1, err2, err3; -- INEXACT REAL _i, _j, _k; -- REAL _0; -- -- adx = (REAL) (pa[0] - pd[0]); -- bdx = (REAL) (pb[0] - pd[0]); -- cdx = (REAL) (pc[0] - pd[0]); -- ady = (REAL) (pa[1] - pd[1]); -- bdy = (REAL) (pb[1] - pd[1]); -- cdy = (REAL) (pc[1] - pd[1]); -- adheight = (REAL) (aheight - dheight); -- bdheight = (REAL) (bheight - dheight); -- cdheight = (REAL) (cheight - dheight); -- -- Two_Product(bdx, cdy, bdxcdy1, bdxcdy0); -- Two_Product(cdx, bdy, cdxbdy1, cdxbdy0); -- Two_Two_Diff(bdxcdy1, bdxcdy0, cdxbdy1, cdxbdy0, bc3, bc[2], bc[1], bc[0]); -- bc[3] = bc3; -- alen = scale_expansion_zeroelim(4, bc, adheight, adet); -- -- Two_Product(cdx, ady, cdxady1, cdxady0); -- Two_Product(adx, cdy, adxcdy1, adxcdy0); -- Two_Two_Diff(cdxady1, cdxady0, adxcdy1, adxcdy0, ca3, ca[2], ca[1], ca[0]); -- ca[3] = ca3; -- blen = scale_expansion_zeroelim(4, ca, bdheight, bdet); -- -- Two_Product(adx, bdy, adxbdy1, adxbdy0); -- Two_Product(bdx, ady, bdxady1, bdxady0); -- Two_Two_Diff(adxbdy1, adxbdy0, bdxady1, bdxady0, ab3, ab[2], ab[1], ab[0]); -- ab[3] = ab3; -- clen = scale_expansion_zeroelim(4, ab, cdheight, cdet); -- -- ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet); -- finlength = fast_expansion_sum_zeroelim(ablen, abdet, clen, cdet, fin1); -- -- det = estimate(finlength, fin1); -- errbound = o3derrboundB * permanent; -- if ((det >= errbound) || (-det >= errbound)) { -- return det; -- } -- -- Two_Diff_Tail(pa[0], pd[0], adx, adxtail); -- Two_Diff_Tail(pb[0], pd[0], bdx, bdxtail); -- Two_Diff_Tail(pc[0], pd[0], cdx, cdxtail); -- Two_Diff_Tail(pa[1], pd[1], ady, adytail); -- Two_Diff_Tail(pb[1], pd[1], bdy, bdytail); -- Two_Diff_Tail(pc[1], pd[1], cdy, cdytail); -- Two_Diff_Tail(aheight, dheight, adheight, adheighttail); -- Two_Diff_Tail(bheight, dheight, bdheight, bdheighttail); -- Two_Diff_Tail(cheight, dheight, cdheight, cdheighttail); -- -- if ((adxtail == 0.0) && (bdxtail == 0.0) && (cdxtail == 0.0) && -- (adytail == 0.0) && (bdytail == 0.0) && (cdytail == 0.0) && -- (adheighttail == 0.0) && -- (bdheighttail == 0.0) && -- (cdheighttail == 0.0)) { -- return det; -- } -- -- errbound = o3derrboundC * permanent + resulterrbound * Absolute(det); -- det += (adheight * ((bdx * cdytail + cdy * bdxtail) - -- (bdy * cdxtail + cdx * bdytail)) + -- adheighttail * (bdx * cdy - bdy * cdx)) + -- (bdheight * ((cdx * adytail + ady * cdxtail) - -- (cdy * adxtail + adx * cdytail)) + -- bdheighttail * (cdx * ady - cdy * adx)) + -- (cdheight * ((adx * bdytail + bdy * adxtail) - -- (ady * bdxtail + bdx * adytail)) + -- cdheighttail * (adx * bdy - ady * bdx)); -- if ((det >= errbound) || (-det >= errbound)) { -- return det; -- } -- -- finnow = fin1; -- finother = fin2; -- -- if (adxtail == 0.0) { -- if (adytail == 0.0) { -- at_b[0] = 0.0; -- at_blen = 1; -- at_c[0] = 0.0; -- at_clen = 1; -- } else { -- negate = -adytail; -- Two_Product(negate, bdx, at_blarge, at_b[0]); -- at_b[1] = at_blarge; -- at_blen = 2; -- Two_Product(adytail, cdx, at_clarge, at_c[0]); -- at_c[1] = at_clarge; -- at_clen = 2; -- } -- } else { -- if (adytail == 0.0) { -- Two_Product(adxtail, bdy, at_blarge, at_b[0]); -- at_b[1] = at_blarge; -- at_blen = 2; -- negate = -adxtail; -- Two_Product(negate, cdy, at_clarge, at_c[0]); -- at_c[1] = at_clarge; -- at_clen = 2; -- } else { -- Two_Product(adxtail, bdy, adxt_bdy1, adxt_bdy0); -- Two_Product(adytail, bdx, adyt_bdx1, adyt_bdx0); -- Two_Two_Diff(adxt_bdy1, adxt_bdy0, adyt_bdx1, adyt_bdx0, -- at_blarge, at_b[2], at_b[1], at_b[0]); -- at_b[3] = at_blarge; -- at_blen = 4; -- Two_Product(adytail, cdx, adyt_cdx1, adyt_cdx0); -- Two_Product(adxtail, cdy, adxt_cdy1, adxt_cdy0); -- Two_Two_Diff(adyt_cdx1, adyt_cdx0, adxt_cdy1, adxt_cdy0, -- at_clarge, at_c[2], at_c[1], at_c[0]); -- at_c[3] = at_clarge; -- at_clen = 4; -- } -- } -- if (bdxtail == 0.0) { -- if (bdytail == 0.0) { -- bt_c[0] = 0.0; -- bt_clen = 1; -- bt_a[0] = 0.0; -- bt_alen = 1; -- } else { -- negate = -bdytail; -- Two_Product(negate, cdx, bt_clarge, bt_c[0]); -- bt_c[1] = bt_clarge; -- bt_clen = 2; -- Two_Product(bdytail, adx, bt_alarge, bt_a[0]); -- bt_a[1] = bt_alarge; -- bt_alen = 2; -- } -- } else { -- if (bdytail == 0.0) { -- Two_Product(bdxtail, cdy, bt_clarge, bt_c[0]); -- bt_c[1] = bt_clarge; -- bt_clen = 2; -- negate = -bdxtail; -- Two_Product(negate, ady, bt_alarge, bt_a[0]); -- bt_a[1] = bt_alarge; -- bt_alen = 2; -- } else { -- Two_Product(bdxtail, cdy, bdxt_cdy1, bdxt_cdy0); -- Two_Product(bdytail, cdx, bdyt_cdx1, bdyt_cdx0); -- Two_Two_Diff(bdxt_cdy1, bdxt_cdy0, bdyt_cdx1, bdyt_cdx0, -- bt_clarge, bt_c[2], bt_c[1], bt_c[0]); -- bt_c[3] = bt_clarge; -- bt_clen = 4; -- Two_Product(bdytail, adx, bdyt_adx1, bdyt_adx0); -- Two_Product(bdxtail, ady, bdxt_ady1, bdxt_ady0); -- Two_Two_Diff(bdyt_adx1, bdyt_adx0, bdxt_ady1, bdxt_ady0, -- bt_alarge, bt_a[2], bt_a[1], bt_a[0]); -- bt_a[3] = bt_alarge; -- bt_alen = 4; -- } -- } -- if (cdxtail == 0.0) { -- if (cdytail == 0.0) { -- ct_a[0] = 0.0; -- ct_alen = 1; -- ct_b[0] = 0.0; -- ct_blen = 1; -- } else { -- negate = -cdytail; -- Two_Product(negate, adx, ct_alarge, ct_a[0]); -- ct_a[1] = ct_alarge; -- ct_alen = 2; -- Two_Product(cdytail, bdx, ct_blarge, ct_b[0]); -- ct_b[1] = ct_blarge; -- ct_blen = 2; -- } -- } else { -- if (cdytail == 0.0) { -- Two_Product(cdxtail, ady, ct_alarge, ct_a[0]); -- ct_a[1] = ct_alarge; -- ct_alen = 2; -- negate = -cdxtail; -- Two_Product(negate, bdy, ct_blarge, ct_b[0]); -- ct_b[1] = ct_blarge; -- ct_blen = 2; -- } else { -- Two_Product(cdxtail, ady, cdxt_ady1, cdxt_ady0); -- Two_Product(cdytail, adx, cdyt_adx1, cdyt_adx0); -- Two_Two_Diff(cdxt_ady1, cdxt_ady0, cdyt_adx1, cdyt_adx0, -- ct_alarge, ct_a[2], ct_a[1], ct_a[0]); -- ct_a[3] = ct_alarge; -- ct_alen = 4; -- Two_Product(cdytail, bdx, cdyt_bdx1, cdyt_bdx0); -- Two_Product(cdxtail, bdy, cdxt_bdy1, cdxt_bdy0); -- Two_Two_Diff(cdyt_bdx1, cdyt_bdx0, cdxt_bdy1, cdxt_bdy0, -- ct_blarge, ct_b[2], ct_b[1], ct_b[0]); -- ct_b[3] = ct_blarge; -- ct_blen = 4; -- } -- } -- -- bctlen = fast_expansion_sum_zeroelim(bt_clen, bt_c, ct_blen, ct_b, bct); -- wlength = scale_expansion_zeroelim(bctlen, bct, adheight, w); -- finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w, -- finother); -- finswap = finnow; finnow = finother; finother = finswap; -- -- catlen = fast_expansion_sum_zeroelim(ct_alen, ct_a, at_clen, at_c, cat); -- wlength = scale_expansion_zeroelim(catlen, cat, bdheight, w); -- finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w, -- finother); -- finswap = finnow; finnow = finother; finother = finswap; -- -- abtlen = fast_expansion_sum_zeroelim(at_blen, at_b, bt_alen, bt_a, abt); -- wlength = scale_expansion_zeroelim(abtlen, abt, cdheight, w); -- finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w, -- finother); -- finswap = finnow; finnow = finother; finother = finswap; -- -- if (adheighttail != 0.0) { -- vlength = scale_expansion_zeroelim(4, bc, adheighttail, v); -- finlength = fast_expansion_sum_zeroelim(finlength, finnow, vlength, v, -- finother); -- finswap = finnow; finnow = finother; finother = finswap; -- } -- if (bdheighttail != 0.0) { -- vlength = scale_expansion_zeroelim(4, ca, bdheighttail, v); -- finlength = fast_expansion_sum_zeroelim(finlength, finnow, vlength, v, -- finother); -- finswap = finnow; finnow = finother; finother = finswap; -- } -- if (cdheighttail != 0.0) { -- vlength = scale_expansion_zeroelim(4, ab, cdheighttail, v); -- finlength = fast_expansion_sum_zeroelim(finlength, finnow, vlength, v, -- finother); -- finswap = finnow; finnow = finother; finother = finswap; -- } -- -- if (adxtail != 0.0) { -- if (bdytail != 0.0) { -- Two_Product(adxtail, bdytail, adxt_bdyt1, adxt_bdyt0); -- Two_One_Product(adxt_bdyt1, adxt_bdyt0, cdheight, u3, u[2], u[1], u[0]); -- u[3] = u3; -- finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, -- finother); -- finswap = finnow; finnow = finother; finother = finswap; -- if (cdheighttail != 0.0) { -- Two_One_Product(adxt_bdyt1, adxt_bdyt0, cdheighttail, -- u3, u[2], u[1], u[0]); -- u[3] = u3; -- finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, -- finother); -- finswap = finnow; finnow = finother; finother = finswap; -- } -- } -- if (cdytail != 0.0) { -- negate = -adxtail; -- Two_Product(negate, cdytail, adxt_cdyt1, adxt_cdyt0); -- Two_One_Product(adxt_cdyt1, adxt_cdyt0, bdheight, u3, u[2], u[1], u[0]); -- u[3] = u3; -- finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, -- finother); -- finswap = finnow; finnow = finother; finother = finswap; -- if (bdheighttail != 0.0) { -- Two_One_Product(adxt_cdyt1, adxt_cdyt0, bdheighttail, -- u3, u[2], u[1], u[0]); -- u[3] = u3; -- finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, -- finother); -- finswap = finnow; finnow = finother; finother = finswap; -- } -- } -- } -- if (bdxtail != 0.0) { -- if (cdytail != 0.0) { -- Two_Product(bdxtail, cdytail, bdxt_cdyt1, bdxt_cdyt0); -- Two_One_Product(bdxt_cdyt1, bdxt_cdyt0, adheight, u3, u[2], u[1], u[0]); -- u[3] = u3; -- finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, -- finother); -- finswap = finnow; finnow = finother; finother = finswap; -- if (adheighttail != 0.0) { -- Two_One_Product(bdxt_cdyt1, bdxt_cdyt0, adheighttail, -- u3, u[2], u[1], u[0]); -- u[3] = u3; -- finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, -- finother); -- finswap = finnow; finnow = finother; finother = finswap; -- } -- } -- if (adytail != 0.0) { -- negate = -bdxtail; -- Two_Product(negate, adytail, bdxt_adyt1, bdxt_adyt0); -- Two_One_Product(bdxt_adyt1, bdxt_adyt0, cdheight, u3, u[2], u[1], u[0]); -- u[3] = u3; -- finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, -- finother); -- finswap = finnow; finnow = finother; finother = finswap; -- if (cdheighttail != 0.0) { -- Two_One_Product(bdxt_adyt1, bdxt_adyt0, cdheighttail, -- u3, u[2], u[1], u[0]); -- u[3] = u3; -- finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, -- finother); -- finswap = finnow; finnow = finother; finother = finswap; -- } -- } -- } -- if (cdxtail != 0.0) { -- if (adytail != 0.0) { -- Two_Product(cdxtail, adytail, cdxt_adyt1, cdxt_adyt0); -- Two_One_Product(cdxt_adyt1, cdxt_adyt0, bdheight, u3, u[2], u[1], u[0]); -- u[3] = u3; -- finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, -- finother); -- finswap = finnow; finnow = finother; finother = finswap; -- if (bdheighttail != 0.0) { -- Two_One_Product(cdxt_adyt1, cdxt_adyt0, bdheighttail, -- u3, u[2], u[1], u[0]); -- u[3] = u3; -- finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, -- finother); -- finswap = finnow; finnow = finother; finother = finswap; -- } -- } -- if (bdytail != 0.0) { -- negate = -cdxtail; -- Two_Product(negate, bdytail, cdxt_bdyt1, cdxt_bdyt0); -- Two_One_Product(cdxt_bdyt1, cdxt_bdyt0, adheight, u3, u[2], u[1], u[0]); -- u[3] = u3; -- finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, -- finother); -- finswap = finnow; finnow = finother; finother = finswap; -- if (adheighttail != 0.0) { -- Two_One_Product(cdxt_bdyt1, cdxt_bdyt0, adheighttail, -- u3, u[2], u[1], u[0]); -- u[3] = u3; -- finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u, -- finother); -- finswap = finnow; finnow = finother; finother = finswap; -- } -- } -- } -- -- if (adheighttail != 0.0) { -- wlength = scale_expansion_zeroelim(bctlen, bct, adheighttail, w); -- finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w, -- finother); -- finswap = finnow; finnow = finother; finother = finswap; -- } -- if (bdheighttail != 0.0) { -- wlength = scale_expansion_zeroelim(catlen, cat, bdheighttail, w); -- finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w, -- finother); -- finswap = finnow; finnow = finother; finother = finswap; -- } -- if (cdheighttail != 0.0) { -- wlength = scale_expansion_zeroelim(abtlen, abt, cdheighttail, w); -- finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w, -- finother); -- finnow = finother; -- } -- -- return finnow[finlength - 1]; --} -- --#ifdef ANSI_DECLARATORS --REAL orient3d(struct mesh *m, struct behavior *b, -- vertex pa, vertex pb, vertex pc, vertex pd, -- REAL aheight, REAL bheight, REAL cheight, REAL dheight) --#else /* not ANSI_DECLARATORS */ --REAL orient3d(m, b, pa, pb, pc, pd, aheight, bheight, cheight, dheight) --struct mesh *m; --struct behavior *b; --vertex pa; --vertex pb; --vertex pc; --vertex pd; --REAL aheight; --REAL bheight; --REAL cheight; --REAL dheight; --#endif /* not ANSI_DECLARATORS */ -- --{ -- REAL adx, bdx, cdx, ady, bdy, cdy, adheight, bdheight, cdheight; -- REAL bdxcdy, cdxbdy, cdxady, adxcdy, adxbdy, bdxady; -- REAL det; -- REAL permanent, errbound; -- -- m->orient3dcount++; -- -- adx = pa[0] - pd[0]; -- bdx = pb[0] - pd[0]; -- cdx = pc[0] - pd[0]; -- ady = pa[1] - pd[1]; -- bdy = pb[1] - pd[1]; -- cdy = pc[1] - pd[1]; -- adheight = aheight - dheight; -- bdheight = bheight - dheight; -- cdheight = cheight - dheight; -- -- bdxcdy = bdx * cdy; -- cdxbdy = cdx * bdy; -- -- cdxady = cdx * ady; -- adxcdy = adx * cdy; -- -- adxbdy = adx * bdy; -- bdxady = bdx * ady; -- -- det = adheight * (bdxcdy - cdxbdy) -- + bdheight * (cdxady - adxcdy) -- + cdheight * (adxbdy - bdxady); -- -- if (b->noexact) { -- return det; -- } -- -- permanent = (Absolute(bdxcdy) + Absolute(cdxbdy)) * Absolute(adheight) -- + (Absolute(cdxady) + Absolute(adxcdy)) * Absolute(bdheight) -- + (Absolute(adxbdy) + Absolute(bdxady)) * Absolute(cdheight); -- errbound = o3derrboundA * permanent; -- if ((det > errbound) || (-det > errbound)) { -- return det; -- } -- -- return orient3dadapt(pa, pb, pc, pd, aheight, bheight, cheight, dheight, -- permanent); --} -- --/*****************************************************************************/ --/* */ --/* nonregular() Return a positive value if the point pd is incompatible */ --/* with the circle or plane passing through pa, pb, and pc */ --/* (meaning that pd is inside the circle or below the */ --/* plane); a negative value if it is compatible; and zero if */ --/* the four points are cocircular/coplanar. The points pa, */ --/* pb, and pc must be in counterclockwise order, or the sign */ --/* of the result will be reversed. */ --/* */ --/* If the -w switch is used, the points are lifted onto the parabolic */ --/* lifting map, then they are dropped according to their weights, then the */ --/* 3D orientation test is applied. If the -W switch is used, the points' */ --/* heights are already provided, so the 3D orientation test is applied */ --/* directly. If neither switch is used, the incircle test is applied. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --REAL nonregular(struct mesh *m, struct behavior *b, -- vertex pa, vertex pb, vertex pc, vertex pd) --#else /* not ANSI_DECLARATORS */ --REAL nonregular(m, b, pa, pb, pc, pd) --struct mesh *m; --struct behavior *b; --vertex pa; --vertex pb; --vertex pc; --vertex pd; --#endif /* not ANSI_DECLARATORS */ -- --{ -- if (b->weighted == 0) { -- return incircle(m, b, pa, pb, pc, pd); -- } else if (b->weighted == 1) { -- return orient3d(m, b, pa, pb, pc, pd, -- pa[0] * pa[0] + pa[1] * pa[1] - pa[2], -- pb[0] * pb[0] + pb[1] * pb[1] - pb[2], -- pc[0] * pc[0] + pc[1] * pc[1] - pc[2], -- pd[0] * pd[0] + pd[1] * pd[1] - pd[2]); -- } else { -- return orient3d(m, b, pa, pb, pc, pd, pa[2], pb[2], pc[2], pd[2]); -- } --} -- --/*****************************************************************************/ --/* */ --/* findcircumcenter() Find the circumcenter of a triangle. */ --/* */ --/* The result is returned both in terms of x-y coordinates and xi-eta */ --/* (barycentric) coordinates. The xi-eta coordinate system is defined in */ --/* terms of the triangle: the origin of the triangle is the origin of the */ --/* coordinate system; the destination of the triangle is one unit along the */ --/* xi axis; and the apex of the triangle is one unit along the eta axis. */ --/* This procedure also returns the square of the length of the triangle's */ --/* shortest edge. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --void findcircumcenter(struct mesh *m, struct behavior *b, -- vertex torg, vertex tdest, vertex tapex, -- vertex circumcenter, REAL *xi, REAL *eta, int offcenter) --#else /* not ANSI_DECLARATORS */ --void findcircumcenter(m, b, torg, tdest, tapex, circumcenter, xi, eta, -- offcenter) --struct mesh *m; --struct behavior *b; --vertex torg; --vertex tdest; --vertex tapex; --vertex circumcenter; --REAL *xi; --REAL *eta; --int offcenter; --#endif /* not ANSI_DECLARATORS */ -- --{ -- REAL xdo, ydo, xao, yao; -- REAL dodist, aodist, dadist; -- REAL denominator; -- REAL dx, dy, dxoff, dyoff; -- -- m->circumcentercount++; -- -- /* Compute the circumcenter of the triangle. */ -- xdo = tdest[0] - torg[0]; -- ydo = tdest[1] - torg[1]; -- xao = tapex[0] - torg[0]; -- yao = tapex[1] - torg[1]; -- dodist = xdo * xdo + ydo * ydo; -- aodist = xao * xao + yao * yao; -- dadist = (tdest[0] - tapex[0]) * (tdest[0] - tapex[0]) + -- (tdest[1] - tapex[1]) * (tdest[1] - tapex[1]); -- if (b->noexact) { -- denominator = 0.5 / (xdo * yao - xao * ydo); -- } else { -- /* Use the counterclockwise() routine to ensure a positive (and */ -- /* reasonably accurate) result, avoiding any possibility of */ -- /* division by zero. */ -- denominator = 0.5 / counterclockwise(m, b, tdest, tapex, torg); -- /* Don't count the above as an orientation test. */ -- m->counterclockcount--; -- } -- dx = (yao * dodist - ydo * aodist) * denominator; -- dy = (xdo * aodist - xao * dodist) * denominator; -- -- /* Find the (squared) length of the triangle's shortest edge. This */ -- /* serves as a conservative estimate of the insertion radius of the */ -- /* circumcenter's parent. The estimate is used to ensure that */ -- /* the algorithm terminates even if very small angles appear in */ -- /* the input PSLG. */ -- if ((dodist < aodist) && (dodist < dadist)) { -- if (offcenter && (b->offconstant > 0.0)) { -- /* Find the position of the off-center, as described by Alper Ungor. */ -- dxoff = 0.5 * xdo - b->offconstant * ydo; -- dyoff = 0.5 * ydo + b->offconstant * xdo; -- /* If the off-center is closer to the origin than the */ -- /* circumcenter, use the off-center instead. */ -- if (dxoff * dxoff + dyoff * dyoff < dx * dx + dy * dy) { -- dx = dxoff; -- dy = dyoff; -- } -- } -- } else if (aodist < dadist) { -- if (offcenter && (b->offconstant > 0.0)) { -- dxoff = 0.5 * xao + b->offconstant * yao; -- dyoff = 0.5 * yao - b->offconstant * xao; -- /* If the off-center is closer to the origin than the */ -- /* circumcenter, use the off-center instead. */ -- if (dxoff * dxoff + dyoff * dyoff < dx * dx + dy * dy) { -- dx = dxoff; -- dy = dyoff; -- } -- } -- } else { -- if (offcenter && (b->offconstant > 0.0)) { -- dxoff = 0.5 * (tapex[0] - tdest[0]) - -- b->offconstant * (tapex[1] - tdest[1]); -- dyoff = 0.5 * (tapex[1] - tdest[1]) + -- b->offconstant * (tapex[0] - tdest[0]); -- /* If the off-center is closer to the destination than the */ -- /* circumcenter, use the off-center instead. */ -- if (dxoff * dxoff + dyoff * dyoff < -- (dx - xdo) * (dx - xdo) + (dy - ydo) * (dy - ydo)) { -- dx = xdo + dxoff; -- dy = ydo + dyoff; -- } -- } -- } -- -- circumcenter[0] = torg[0] + dx; -- circumcenter[1] = torg[1] + dy; -- -- /* To interpolate vertex attributes for the new vertex inserted at */ -- /* the circumcenter, define a coordinate system with a xi-axis, */ -- /* directed from the triangle's origin to its destination, and */ -- /* an eta-axis, directed from its origin to its apex. */ -- /* Calculate the xi and eta coordinates of the circumcenter. */ -- *xi = (yao * dx - xao * dy) * (2.0 * denominator); -- *eta = (xdo * dy - ydo * dx) * (2.0 * denominator); --} -- --/** **/ --/** **/ --/********* Geometric primitives end here *********/ -- --/*****************************************************************************/ --/* */ --/* triangleinit() Initialize some variables. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --void triangleinit(struct mesh *m) --#else /* not ANSI_DECLARATORS */ --void triangleinit(m) --struct mesh *m; --#endif /* not ANSI_DECLARATORS */ -- --{ -- poolzero(&m->vertices); -- poolzero(&m->triangles); -- poolzero(&m->subsegs); -- poolzero(&m->viri); -- poolzero(&m->badsubsegs); -- poolzero(&m->badtriangles); -- poolzero(&m->flipstackers); -- poolzero(&m->splaynodes); -- -- m->recenttri.tri = (triangle *) NULL; /* No triangle has been visited yet. */ -- m->undeads = 0; /* No eliminated input vertices yet. */ -- m->samples = 1; /* Point location should take at least one sample. */ -- m->checksegments = 0; /* There are no segments in the triangulation yet. */ -- m->checkquality = 0; /* The quality triangulation stage has not begun. */ -- m->incirclecount = m->counterclockcount = m->orient3dcount = 0; -- m->hyperbolacount = m->circletopcount = m->circumcentercount = 0; -- randomseed = 1; -- -- exactinit(); /* Initialize exact arithmetic constants. */ --} -- --/*****************************************************************************/ --/* */ --/* randomnation() Generate a random number between 0 and `choices' - 1. */ --/* */ --/* This is a simple linear congruential random number generator. Hence, it */ --/* is a bad random number generator, but good enough for most randomized */ --/* geometric algorithms. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --TRIANGLE_PTRINT randomnation(unsigned int choices) --#else /* not ANSI_DECLARATORS */ --TRIANGLE_PTRINT randomnation(choices) --unsigned int choices; --#endif /* not ANSI_DECLARATORS */ -- --{ -- randomseed = (randomseed * 1366l + 150889l) % 714025l; -- return ( randomseed * (choices + 1 ) )/ 714025l; --} -- --/********* Mesh quality testing routines begin here *********/ --/** **/ --/** **/ -- --/*****************************************************************************/ --/* */ --/* checkmesh() Test the mesh for topological consistency. */ --/* */ --/*****************************************************************************/ -- --#ifndef REDUCED -- --#ifdef ANSI_DECLARATORS --void checkmesh(struct mesh *m, struct behavior *b) --#else /* not ANSI_DECLARATORS */ --void checkmesh(m, b) --struct mesh *m; --struct behavior *b; --#endif /* not ANSI_DECLARATORS */ -- --{ -- struct otri triangleloop; -- struct otri oppotri, oppooppotri; -- vertex triorg, tridest, triapex; -- vertex oppoorg, oppodest; -- int horrors; -- int saveexact; -- triangle ptr; /* Temporary variable used by sym(). */ -- -- /* Temporarily turn on exact arithmetic if it's off. */ -- saveexact = b->noexact; -- b->noexact = 0; -- if (!b->quiet) { -- printf(" Checking consistency of mesh...\n"); -- } -- horrors = 0; -- /* Run through the list of triangles, checking each one. */ -- traversalinit(&m->triangles); -- triangleloop.tri = triangletraverse(m); -- while (triangleloop.tri != (triangle *) NULL) { -- /* Check all three edges of the triangle. */ -- for (triangleloop.orient = 0; triangleloop.orient < 3; -- triangleloop.orient++) { -- org(triangleloop, triorg); -- dest(triangleloop, tridest); -- if (triangleloop.orient == 0) { /* Only test for inversion once. */ -- /* Test if the triangle is flat or inverted. */ -- apex(triangleloop, triapex); -- if (counterclockwise(m, b, triorg, tridest, triapex) <= 0.0) { -- printf(" !! !! Inverted "); -- printtriangle(m, b, &triangleloop); -- horrors++; -- } -- } -- /* Find the neighboring triangle on this edge. */ -- sym(triangleloop, oppotri); -- if (oppotri.tri != m->dummytri) { -- /* Check that the triangle's neighbor knows it's a neighbor. */ -- sym(oppotri, oppooppotri); -- if ((triangleloop.tri != oppooppotri.tri) -- || (triangleloop.orient != oppooppotri.orient)) { -- printf(" !! !! Asymmetric triangle-triangle bond:\n"); -- if (triangleloop.tri == oppooppotri.tri) { -- printf(" (Right triangle, wrong orientation)\n"); -- } -- printf(" First "); -- printtriangle(m, b, &triangleloop); -- printf(" Second (nonreciprocating) "); -- printtriangle(m, b, &oppotri); -- horrors++; -- } -- /* Check that both triangles agree on the identities */ -- /* of their shared vertices. */ -- org(oppotri, oppoorg); -- dest(oppotri, oppodest); -- if ((triorg != oppodest) || (tridest != oppoorg)) { -- printf(" !! !! Mismatched edge coordinates between two triangles:\n" -- ); -- printf(" First mismatched "); -- printtriangle(m, b, &triangleloop); -- printf(" Second mismatched "); -- printtriangle(m, b, &oppotri); -- horrors++; -- } -- } -- } -- triangleloop.tri = triangletraverse(m); -- } -- if (horrors == 0) { -- if (!b->quiet) { -- printf(" In my studied opinion, the mesh appears to be consistent.\n"); -- } -- } else if (horrors == 1) { -- printf(" !! !! !! !! Precisely one festering wound discovered.\n"); -- } else { -- printf(" !! !! !! !! %d abominations witnessed.\n", horrors); -- } -- /* Restore the status of exact arithmetic. */ -- b->noexact = saveexact; --} -- --#endif /* not REDUCED */ -- --/*****************************************************************************/ --/* */ --/* checkdelaunay() Ensure that the mesh is (constrained) Delaunay. */ --/* */ --/*****************************************************************************/ -- --#ifndef REDUCED -- --#ifdef ANSI_DECLARATORS --void checkdelaunay(struct mesh *m, struct behavior *b) --#else /* not ANSI_DECLARATORS */ --void checkdelaunay(m, b) --struct mesh *m; --struct behavior *b; --#endif /* not ANSI_DECLARATORS */ -- --{ -- struct otri triangleloop; -- struct otri oppotri; -- struct osub opposubseg; -- vertex triorg, tridest, triapex; -- vertex oppoapex; -- int shouldbedelaunay; -- int horrors; -- int saveexact; -- triangle ptr; /* Temporary variable used by sym(). */ -- subseg sptr; /* Temporary variable used by tspivot(). */ -- -- /* Temporarily turn on exact arithmetic if it's off. */ -- saveexact = b->noexact; -- b->noexact = 0; -- if (!b->quiet) { -- printf(" Checking Delaunay property of mesh...\n"); -- } -- horrors = 0; -- /* Run through the list of triangles, checking each one. */ -- traversalinit(&m->triangles); -- triangleloop.tri = triangletraverse(m); -- while (triangleloop.tri != (triangle *) NULL) { -- /* Check all three edges of the triangle. */ -- for (triangleloop.orient = 0; triangleloop.orient < 3; -- triangleloop.orient++) { -- org(triangleloop, triorg); -- dest(triangleloop, tridest); -- apex(triangleloop, triapex); -- sym(triangleloop, oppotri); -- apex(oppotri, oppoapex); -- /* Only test that the edge is locally Delaunay if there is an */ -- /* adjoining triangle whose pointer is larger (to ensure that */ -- /* each pair isn't tested twice). */ -- shouldbedelaunay = (oppotri.tri != m->dummytri) && -- !deadtri(oppotri.tri) && (triangleloop.tri < oppotri.tri) && -- (triorg != m->infvertex1) && (triorg != m->infvertex2) && -- (triorg != m->infvertex3) && -- (tridest != m->infvertex1) && (tridest != m->infvertex2) && -- (tridest != m->infvertex3) && -- (triapex != m->infvertex1) && (triapex != m->infvertex2) && -- (triapex != m->infvertex3) && -- (oppoapex != m->infvertex1) && (oppoapex != m->infvertex2) && -- (oppoapex != m->infvertex3); -- if (m->checksegments && shouldbedelaunay) { -- /* If a subsegment separates the triangles, then the edge is */ -- /* constrained, so no local Delaunay test should be done. */ -- tspivot(triangleloop, opposubseg); -- if (opposubseg.ss != m->dummysub){ -- shouldbedelaunay = 0; -- } -- } -- if (shouldbedelaunay) { -- if (nonregular(m, b, triorg, tridest, triapex, oppoapex) > 0.0) { -- if (!b->weighted) { -- printf(" !! !! Non-Delaunay pair of triangles:\n"); -- printf(" First non-Delaunay "); -- printtriangle(m, b, &triangleloop); -- printf(" Second non-Delaunay "); -- } else { -- printf(" !! !! Non-regular pair of triangles:\n"); -- printf(" First non-regular "); -- printtriangle(m, b, &triangleloop); -- printf(" Second non-regular "); -- } -- printtriangle(m, b, &oppotri); -- horrors++; -- } -- } -- } -- triangleloop.tri = triangletraverse(m); -- } -- if (horrors == 0) { -- if (!b->quiet) { -- printf( -- " By virtue of my perceptive intelligence, I declare the mesh Delaunay.\n"); -- } -- } else if (horrors == 1) { -- printf( -- " !! !! !! !! Precisely one terrifying transgression identified.\n"); -- } else { -- printf(" !! !! !! !! %d obscenities viewed with horror.\n", horrors); -- } -- /* Restore the status of exact arithmetic. */ -- b->noexact = saveexact; --} -- --#endif /* not REDUCED */ -- --/*****************************************************************************/ --/* */ --/* enqueuebadtriang() Add a bad triangle data structure to the end of a */ --/* queue. */ --/* */ --/* The queue is actually a set of 4096 queues. I use multiple queues to */ --/* give priority to smaller angles. I originally implemented a heap, but */ --/* the queues are faster by a larger margin than I'd suspected. */ --/* */ --/*****************************************************************************/ -- --#ifndef CDT_ONLY -- --#ifdef ANSI_DECLARATORS --void enqueuebadtriang(struct mesh *m, struct behavior *b, -- struct badtriang *badtri) --#else /* not ANSI_DECLARATORS */ --void enqueuebadtriang(m, b, badtri) --struct mesh *m; --struct behavior *b; --struct badtriang *badtri; --#endif /* not ANSI_DECLARATORS */ -- --{ -- REAL length, multiplier; -- int exponent, expincrement; -- int queuenumber; -- int posexponent; -- int i; -- -- if (b->verbose > 2) { -- printf(" Queueing bad triangle:\n"); -- printf(" (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n", -- badtri->triangorg[0], badtri->triangorg[1], -- badtri->triangdest[0], badtri->triangdest[1], -- badtri->triangapex[0], badtri->triangapex[1]); -- } -- -- /* Determine the appropriate queue to put the bad triangle into. */ -- /* Recall that the key is the square of its shortest edge length. */ -- if (badtri->key >= 1.0) { -- length = badtri->key; -- posexponent = 1; -- } else { -- /* `badtri->key' is 2.0 to a negative exponent, so we'll record that */ -- /* fact and use the reciprocal of `badtri->key', which is > 1.0. */ -- length = 1.0 / badtri->key; -- posexponent = 0; -- } -- /* `length' is approximately 2.0 to what exponent? The following code */ -- /* determines the answer in time logarithmic in the exponent. */ -- exponent = 0; -- while (length > 2.0) { -- /* Find an approximation by repeated squaring of two. */ -- expincrement = 1; -- multiplier = 0.5; -- while (length * multiplier * multiplier > 1.0) { -- expincrement *= 2; -- multiplier *= multiplier; -- } -- /* Reduce the value of `length', then iterate if necessary. */ -- exponent += expincrement; -- length *= multiplier; -- } -- /* `length' is approximately squareroot(2.0) to what exponent? */ -- exponent = (int) ( 2.0 * exponent + (length > SQUAREROOTTWO) ); -- /* `exponent' is now in the range 0...2047 for IEEE double precision. */ -- /* Choose a queue in the range 0...4095. The shortest edges have the */ -- /* highest priority (queue 4095). */ -- if (posexponent) { -- queuenumber = 2047 - exponent; -- } else { -- queuenumber = 2048 + exponent; -- } -- -- /* Are we inserting into an empty queue? */ -- if (m->queuefront[queuenumber] == (struct badtriang *) NULL) { -- /* Yes, we are inserting into an empty queue. */ -- /* Will this become the highest-priority queue? */ -- if (queuenumber > m->firstnonemptyq) { -- /* Yes, this is the highest-priority queue. */ -- m->nextnonemptyq[queuenumber] = m->firstnonemptyq; -- m->firstnonemptyq = queuenumber; -- } else { -- /* No, this is not the highest-priority queue. */ -- /* Find the queue with next higher priority. */ -- i = queuenumber + 1; -- while (m->queuefront[i] == (struct badtriang *) NULL) { -- i++; -- } -- /* Mark the newly nonempty queue as following a higher-priority queue. */ -- m->nextnonemptyq[queuenumber] = m->nextnonemptyq[i]; -- m->nextnonemptyq[i] = queuenumber; -- } -- /* Put the bad triangle at the beginning of the (empty) queue. */ -- m->queuefront[queuenumber] = badtri; -- } else { -- /* Add the bad triangle to the end of an already nonempty queue. */ -- m->queuetail[queuenumber]->nexttriang = badtri; -- } -- /* Maintain a pointer to the last triangle of the queue. */ -- m->queuetail[queuenumber] = badtri; -- /* Newly enqueued bad triangle has no successor in the queue. */ -- badtri->nexttriang = (struct badtriang *) NULL; --} -- --#endif /* not CDT_ONLY */ -- --/*****************************************************************************/ --/* */ --/* enqueuebadtri() Add a bad triangle to the end of a queue. */ --/* */ --/* Allocates a badtriang data structure for the triangle, then passes it to */ --/* enqueuebadtriang(). */ --/* */ --/*****************************************************************************/ -- --#ifndef CDT_ONLY -- --#ifdef ANSI_DECLARATORS --void enqueuebadtri(struct mesh *m, struct behavior *b, struct otri *enqtri, -- REAL minedge, vertex enqapex, vertex enqorg, vertex enqdest) --#else /* not ANSI_DECLARATORS */ --void enqueuebadtri(m, b, enqtri, minedge, enqapex, enqorg, enqdest) --struct mesh *m; --struct behavior *b; --struct otri *enqtri; --REAL minedge; --vertex enqapex; --vertex enqorg; --vertex enqdest; --#endif /* not ANSI_DECLARATORS */ -- --{ -- struct badtriang *newbad; -- -- /* Allocate space for the bad triangle. */ -- newbad = (struct badtriang *) poolalloc(&m->badtriangles); -- newbad->poortri = encode(*enqtri); -- newbad->key = minedge; -- newbad->triangapex = enqapex; -- newbad->triangorg = enqorg; -- newbad->triangdest = enqdest; -- enqueuebadtriang(m, b, newbad); --} -- --#endif /* not CDT_ONLY */ -- --/*****************************************************************************/ --/* */ --/* dequeuebadtriang() Remove a triangle from the front of the queue. */ --/* */ --/*****************************************************************************/ -- --#ifndef CDT_ONLY -- --#ifdef ANSI_DECLARATORS --struct badtriang *dequeuebadtriang(struct mesh *m) --#else /* not ANSI_DECLARATORS */ --struct badtriang *dequeuebadtriang(m) --struct mesh *m; --#endif /* not ANSI_DECLARATORS */ -- --{ -- struct badtriang *result; -- -- /* If no queues are nonempty, return NULL. */ -- if (m->firstnonemptyq < 0) { -- return (struct badtriang *) NULL; -- } -- /* Find the first triangle of the highest-priority queue. */ -- result = m->queuefront[m->firstnonemptyq]; -- /* Remove the triangle from the queue. */ -- m->queuefront[m->firstnonemptyq] = result->nexttriang; -- /* If this queue is now empty, note the new highest-priority */ -- /* nonempty queue. */ -- if (result == m->queuetail[m->firstnonemptyq]) { -- m->firstnonemptyq = m->nextnonemptyq[m->firstnonemptyq]; -- } -- return result; --} -- --#endif /* not CDT_ONLY */ -- --/*****************************************************************************/ --/* */ --/* checkseg4encroach() Check a subsegment to see if it is encroached; add */ --/* it to the list if it is. */ --/* */ --/* A subsegment is encroached if there is a vertex in its diametral lens. */ --/* For Ruppert's algorithm (-D switch), the "diametral lens" is the */ --/* diametral circle. For Chew's algorithm (default), the diametral lens is */ --/* just big enough to enclose two isosceles triangles whose bases are the */ --/* subsegment. Each of the two isosceles triangles has two angles equal */ --/* to `b->minangle'. */ --/* */ --/* Chew's algorithm does not require diametral lenses at all--but they save */ --/* time. Any vertex inside a subsegment's diametral lens implies that the */ --/* triangle adjoining the subsegment will be too skinny, so it's only a */ --/* matter of time before the encroaching vertex is deleted by Chew's */ --/* algorithm. It's faster to simply not insert the doomed vertex in the */ --/* first place, which is why I use diametral lenses with Chew's algorithm. */ --/* */ --/* Returns a nonzero value if the subsegment is encroached. */ --/* */ --/*****************************************************************************/ -- --#ifndef CDT_ONLY -- --#ifdef ANSI_DECLARATORS --int checkseg4encroach(struct mesh *m, struct behavior *b, -- struct osub *testsubseg) --#else /* not ANSI_DECLARATORS */ --int checkseg4encroach(m, b, testsubseg) --struct mesh *m; --struct behavior *b; --struct osub *testsubseg; --#endif /* not ANSI_DECLARATORS */ -- --{ -- struct otri neighbortri; -- struct osub testsym; -- struct badsubseg *encroachedseg; -- REAL dotproduct; -- int encroached; -- int sides; -- vertex eorg, edest, eapex; -- triangle ptr; /* Temporary variable used by stpivot(). */ -- -- encroached = 0; -- sides = 0; -- -- sorg(*testsubseg, eorg); -- sdest(*testsubseg, edest); -- /* Check one neighbor of the subsegment. */ -- stpivot(*testsubseg, neighbortri); -- /* Does the neighbor exist, or is this a boundary edge? */ -- if (neighbortri.tri != m->dummytri) { -- sides++; -- /* Find a vertex opposite this subsegment. */ -- apex(neighbortri, eapex); -- /* Check whether the apex is in the diametral lens of the subsegment */ -- /* (the diametral circle if `conformdel' is set). A dot product */ -- /* of two sides of the triangle is used to check whether the angle */ -- /* at the apex is greater than (180 - 2 `minangle') degrees (for */ -- /* lenses; 90 degrees for diametral circles). */ -- dotproduct = (eorg[0] - eapex[0]) * (edest[0] - eapex[0]) + -- (eorg[1] - eapex[1]) * (edest[1] - eapex[1]); -- if (dotproduct < 0.0) { -- if (b->conformdel || -- (dotproduct * dotproduct >= -- (2.0 * b->goodangle - 1.0) * (2.0 * b->goodangle - 1.0) * -- ((eorg[0] - eapex[0]) * (eorg[0] - eapex[0]) + -- (eorg[1] - eapex[1]) * (eorg[1] - eapex[1])) * -- ((edest[0] - eapex[0]) * (edest[0] - eapex[0]) + -- (edest[1] - eapex[1]) * (edest[1] - eapex[1])))) { -- encroached = 1; -- } -- } -- } -- /* Check the other neighbor of the subsegment. */ -- ssym(*testsubseg, testsym); -- stpivot(testsym, neighbortri); -- /* Does the neighbor exist, or is this a boundary edge? */ -- if (neighbortri.tri != m->dummytri) { -- sides++; -- /* Find the other vertex opposite this subsegment. */ -- apex(neighbortri, eapex); -- /* Check whether the apex is in the diametral lens of the subsegment */ -- /* (or the diametral circle, if `conformdel' is set). */ -- dotproduct = (eorg[0] - eapex[0]) * (edest[0] - eapex[0]) + -- (eorg[1] - eapex[1]) * (edest[1] - eapex[1]); -- if (dotproduct < 0.0) { -- if (b->conformdel || -- (dotproduct * dotproduct >= -- (2.0 * b->goodangle - 1.0) * (2.0 * b->goodangle - 1.0) * -- ((eorg[0] - eapex[0]) * (eorg[0] - eapex[0]) + -- (eorg[1] - eapex[1]) * (eorg[1] - eapex[1])) * -- ((edest[0] - eapex[0]) * (edest[0] - eapex[0]) + -- (edest[1] - eapex[1]) * (edest[1] - eapex[1])))) { -- encroached += 2; -- } -- } -- } -- -- if (encroached && (!b->nobisect || ((b->nobisect == 1) && (sides == 2)))) { -- if (b->verbose > 2) { -- printf( -- " Queueing encroached subsegment (%.12g, %.12g) (%.12g, %.12g).\n", -- eorg[0], eorg[1], edest[0], edest[1]); -- } -- /* Add the subsegment to the list of encroached subsegments. */ -- /* Be sure to get the orientation right. */ -- encroachedseg = (struct badsubseg *) poolalloc(&m->badsubsegs); -- if (encroached == 1) { -- encroachedseg->encsubseg = sencode(*testsubseg); -- encroachedseg->subsegorg = eorg; -- encroachedseg->subsegdest = edest; -- } else { -- encroachedseg->encsubseg = sencode(testsym); -- encroachedseg->subsegorg = edest; -- encroachedseg->subsegdest = eorg; -- } -- } -- -- return encroached; --} -- --#endif /* not CDT_ONLY */ -- --/*****************************************************************************/ --/* */ --/* testtriangle() Test a triangle for quality and size. */ --/* */ --/* Tests a triangle to see if it satisfies the minimum angle condition and */ --/* the maximum area condition. Triangles that aren't up to spec are added */ --/* to the bad triangle queue. */ --/* */ --/*****************************************************************************/ -- --#ifndef CDT_ONLY -- --#ifdef ANSI_DECLARATORS --void testtriangle(struct mesh *m, struct behavior *b, struct otri *testtri) --#else /* not ANSI_DECLARATORS */ --void testtriangle(m, b, testtri) --struct mesh *m; --struct behavior *b; --struct otri *testtri; --#endif /* not ANSI_DECLARATORS */ -- --{ -- struct otri tri1, tri2; -- struct osub testsub; -- vertex torg, tdest, tapex; -- vertex base1, base2; -- vertex org1, dest1, org2, dest2; -- vertex joinvertex; -- REAL dxod, dyod, dxda, dyda, dxao, dyao; -- REAL dxod2, dyod2, dxda2, dyda2, dxao2, dyao2; -- REAL apexlen, orglen, destlen, minedge; -- REAL angle; -- REAL area; -- REAL dist1, dist2; -- subseg sptr; /* Temporary variable used by tspivot(). */ -- triangle ptr; /* Temporary variable used by oprev() and dnext(). */ -- -- org(*testtri, torg); -- dest(*testtri, tdest); -- apex(*testtri, tapex); -- dxod = torg[0] - tdest[0]; -- dyod = torg[1] - tdest[1]; -- dxda = tdest[0] - tapex[0]; -- dyda = tdest[1] - tapex[1]; -- dxao = tapex[0] - torg[0]; -- dyao = tapex[1] - torg[1]; -- dxod2 = dxod * dxod; -- dyod2 = dyod * dyod; -- dxda2 = dxda * dxda; -- dyda2 = dyda * dyda; -- dxao2 = dxao * dxao; -- dyao2 = dyao * dyao; -- /* Find the lengths of the triangle's three edges. */ -- apexlen = dxod2 + dyod2; -- orglen = dxda2 + dyda2; -- destlen = dxao2 + dyao2; -- -- if ((apexlen < orglen) && (apexlen < destlen)) { -- /* The edge opposite the apex is shortest. */ -- minedge = apexlen; -- /* Find the square of the cosine of the angle at the apex. */ -- angle = dxda * dxao + dyda * dyao; -- angle = angle * angle / (orglen * destlen); -- base1 = torg; -- base2 = tdest; -- otricopy(*testtri, tri1); -- } else if (orglen < destlen) { -- /* The edge opposite the origin is shortest. */ -- minedge = orglen; -- /* Find the square of the cosine of the angle at the origin. */ -- angle = dxod * dxao + dyod * dyao; -- angle = angle * angle / (apexlen * destlen); -- base1 = tdest; -- base2 = tapex; -- lnext(*testtri, tri1); -- } else { -- /* The edge opposite the destination is shortest. */ -- minedge = destlen; -- /* Find the square of the cosine of the angle at the destination. */ -- angle = dxod * dxda + dyod * dyda; -- angle = angle * angle / (apexlen * orglen); -- base1 = tapex; -- base2 = torg; -- lprev(*testtri, tri1); -- } -- -- if (b->vararea || b->fixedarea || b->usertest) { -- /* Check whether the area is larger than permitted. */ -- area = 0.5 * (dxod * dyda - dyod * dxda); -- if (b->fixedarea && (area > b->maxarea)) { -- /* Add this triangle to the list of bad triangles. */ -- enqueuebadtri(m, b, testtri, minedge, tapex, torg, tdest); -- return; -- } -- -- /* Nonpositive area constraints are treated as unconstrained. */ -- if ((b->vararea) && (area > areabound(*testtri)) && -- (areabound(*testtri) > 0.0)) { -- /* Add this triangle to the list of bad triangles. */ -- enqueuebadtri(m, b, testtri, minedge, tapex, torg, tdest); -- return; -- } -- -- if (b->usertest) { -- /* Check whether the user thinks this triangle is too large. */ -- if (triunsuitable(torg, tdest, tapex, area)) { -- enqueuebadtri(m, b, testtri, minedge, tapex, torg, tdest); -- return; -- } -- } -- } -- -- /* Check whether the angle is smaller than permitted. */ -- if (angle > b->goodangle) { -- /* Use the rules of Miller, Pav, and Walkington to decide that certain */ -- /* triangles should not be split, even if they have bad angles. */ -- /* A skinny triangle is not split if its shortest edge subtends a */ -- /* small input angle, and both endpoints of the edge lie on a */ -- /* concentric circular shell. For convenience, I make a small */ -- /* adjustment to that rule: I check if the endpoints of the edge */ -- /* both lie in segment interiors, equidistant from the apex where */ -- /* the two segments meet. */ -- /* First, check if both points lie in segment interiors. */ -- if ((vertextype(base1) == SEGMENTVERTEX) && -- (vertextype(base2) == SEGMENTVERTEX)) { -- /* Check if both points lie in a common segment. If they do, the */ -- /* skinny triangle is enqueued to be split as usual. */ -- tspivot(tri1, testsub); -- if (testsub.ss == m->dummysub) { -- /* No common segment. Find a subsegment that contains `torg'. */ -- otricopy(tri1, tri2); -- do { -- oprevself(tri1); -- tspivot(tri1, testsub); -- } while (testsub.ss == m->dummysub); -- /* Find the endpoints of the containing segment. */ -- segorg(testsub, org1); -- segdest(testsub, dest1); -- /* Find a subsegment that contains `tdest'. */ -- do { -- dnextself(tri2); -- tspivot(tri2, testsub); -- } while (testsub.ss == m->dummysub); -- /* Find the endpoints of the containing segment. */ -- segorg(testsub, org2); -- segdest(testsub, dest2); -- /* Check if the two containing segments have an endpoint in common. */ -- joinvertex = (vertex) NULL; -- if ((dest1[0] == org2[0]) && (dest1[1] == org2[1])) { -- joinvertex = dest1; -- } else if ((org1[0] == dest2[0]) && (org1[1] == dest2[1])) { -- joinvertex = org1; -- } -- if (joinvertex != (vertex) NULL) { -- /* Compute the distance from the common endpoint (of the two */ -- /* segments) to each of the endpoints of the shortest edge. */ -- dist1 = ((base1[0] - joinvertex[0]) * (base1[0] - joinvertex[0]) + -- (base1[1] - joinvertex[1]) * (base1[1] - joinvertex[1])); -- dist2 = ((base2[0] - joinvertex[0]) * (base2[0] - joinvertex[0]) + -- (base2[1] - joinvertex[1]) * (base2[1] - joinvertex[1])); -- /* If the two distances are equal, don't split the triangle. */ -- if ((dist1 < 1.001 * dist2) && (dist1 > 0.999 * dist2)) { -- /* Return now to avoid enqueueing the bad triangle. */ -- return; -- } -- } -- } -- } -- -- /* Add this triangle to the list of bad triangles. */ -- enqueuebadtri(m, b, testtri, minedge, tapex, torg, tdest); -- } --} -- --#endif /* not CDT_ONLY */ -- --/** **/ --/** **/ --/********* Mesh quality testing routines end here *********/ -- --/********* Point location routines begin here *********/ --/** **/ --/** **/ -- --/*****************************************************************************/ --/* */ --/* makevertexmap() Construct a mapping from vertices to triangles to */ --/* improve the speed of point location for segment */ --/* insertion. */ --/* */ --/* Traverses all the triangles, and provides each corner of each triangle */ --/* with a pointer to that triangle. Of course, pointers will be */ --/* overwritten by other pointers because (almost) each vertex is a corner */ --/* of several triangles, but in the end every vertex will point to some */ --/* triangle that contains it. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --void makevertexmap(struct mesh *m, struct behavior *b) --#else /* not ANSI_DECLARATORS */ --void makevertexmap(m, b) --struct mesh *m; --struct behavior *b; --#endif /* not ANSI_DECLARATORS */ -- --{ -- struct otri triangleloop; -- vertex triorg; -- -- if (b->verbose) { -- printf(" Constructing mapping from vertices to triangles.\n"); -- } -- traversalinit(&m->triangles); -- triangleloop.tri = triangletraverse(m); -- while (triangleloop.tri != (triangle *) NULL) { -- /* Check all three vertices of the triangle. */ -- for (triangleloop.orient = 0; triangleloop.orient < 3; -- triangleloop.orient++) { -- org(triangleloop, triorg); -- setvertex2tri(triorg, encode(triangleloop)); -- } -- triangleloop.tri = triangletraverse(m); -- } --} -- --/*****************************************************************************/ --/* */ --/* preciselocate() Find a triangle or edge containing a given point. */ --/* */ --/* Begins its search from `searchtri'. It is important that `searchtri' */ --/* be a handle with the property that `searchpoint' is strictly to the left */ --/* of the edge denoted by `searchtri', or is collinear with that edge and */ --/* does not intersect that edge. (In particular, `searchpoint' should not */ --/* be the origin or destination of that edge.) */ --/* */ --/* These conditions are imposed because preciselocate() is normally used in */ --/* one of two situations: */ --/* */ --/* (1) To try to find the location to insert a new point. Normally, we */ --/* know an edge that the point is strictly to the left of. In the */ --/* incremental Delaunay algorithm, that edge is a bounding box edge. */ --/* In Ruppert's Delaunay refinement algorithm for quality meshing, */ --/* that edge is the shortest edge of the triangle whose circumcenter */ --/* is being inserted. */ --/* */ --/* (2) To try to find an existing point. In this case, any edge on the */ --/* convex hull is a good starting edge. You must screen out the */ --/* possibility that the vertex sought is an endpoint of the starting */ --/* edge before you call preciselocate(). */ --/* */ --/* On completion, `searchtri' is a triangle that contains `searchpoint'. */ --/* */ --/* This implementation differs from that given by Guibas and Stolfi. It */ --/* walks from triangle to triangle, crossing an edge only if `searchpoint' */ --/* is on the other side of the line containing that edge. After entering */ --/* a triangle, there are two edges by which one can leave that triangle. */ --/* If both edges are valid (`searchpoint' is on the other side of both */ --/* edges), one of the two is chosen by drawing a line perpendicular to */ --/* the entry edge (whose endpoints are `forg' and `fdest') passing through */ --/* `fapex'. Depending on which side of this perpendicular `searchpoint' */ --/* falls on, an exit edge is chosen. */ --/* */ --/* This implementation is empirically faster than the Guibas and Stolfi */ --/* point location routine (which I originally used), which tends to spiral */ --/* in toward its target. */ --/* */ --/* Returns ONVERTEX if the point lies on an existing vertex. `searchtri' */ --/* is a handle whose origin is the existing vertex. */ --/* */ --/* Returns ONEDGE if the point lies on a mesh edge. `searchtri' is a */ --/* handle whose primary edge is the edge on which the point lies. */ --/* */ --/* Returns INTRIANGLE if the point lies strictly within a triangle. */ --/* `searchtri' is a handle on the triangle that contains the point. */ --/* */ --/* Returns OUTSIDE if the point lies outside the mesh. `searchtri' is a */ --/* handle whose primary edge the point is to the right of. This might */ --/* occur when the circumcenter of a triangle falls just slightly outside */ --/* the mesh due to floating-point roundoff error. It also occurs when */ --/* seeking a hole or region point that a foolish user has placed outside */ --/* the mesh. */ --/* */ --/* If `stopatsubsegment' is nonzero, the search will stop if it tries to */ --/* walk through a subsegment, and will return OUTSIDE. */ --/* */ --/* WARNING: This routine is designed for convex triangulations, and will */ --/* not generally work after the holes and concavities have been carved. */ --/* However, it can still be used to find the circumcenter of a triangle, as */ --/* long as the search is begun from the triangle in question. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --enum locateresult preciselocate(struct mesh *m, struct behavior *b, -- vertex searchpoint, struct otri *searchtri, -- int stopatsubsegment) --#else /* not ANSI_DECLARATORS */ --enum locateresult preciselocate(m, b, searchpoint, searchtri, stopatsubsegment) --struct mesh *m; --struct behavior *b; --vertex searchpoint; --struct otri *searchtri; --int stopatsubsegment; --#endif /* not ANSI_DECLARATORS */ -- --{ -- struct otri backtracktri; -- struct osub checkedge; -- vertex forg, fdest, fapex; -- REAL orgorient, destorient; -- int moveleft; -- triangle ptr; /* Temporary variable used by sym(). */ -- subseg sptr; /* Temporary variable used by tspivot(). */ -- -- if (b->verbose > 2) { -- printf(" Searching for point (%.12g, %.12g).\n", -- searchpoint[0], searchpoint[1]); -- } -- /* Where are we? */ -- org(*searchtri, forg); -- dest(*searchtri, fdest); -- apex(*searchtri, fapex); -- while (1) { -- if (b->verbose > 2) { -- printf(" At (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n", -- forg[0], forg[1], fdest[0], fdest[1], fapex[0], fapex[1]); -- } -- /* Check whether the apex is the point we seek. */ -- if ((fapex[0] == searchpoint[0]) && (fapex[1] == searchpoint[1])) { -- lprevself(*searchtri); -- return ONVERTEX; -- } -- /* Does the point lie on the other side of the line defined by the */ -- /* triangle edge opposite the triangle's destination? */ -- destorient = counterclockwise(m, b, forg, fapex, searchpoint); -- /* Does the point lie on the other side of the line defined by the */ -- /* triangle edge opposite the triangle's origin? */ -- orgorient = counterclockwise(m, b, fapex, fdest, searchpoint); -- if (destorient > 0.0) { -- if (orgorient > 0.0) { -- /* Move left if the inner product of (fapex - searchpoint) and */ -- /* (fdest - forg) is positive. This is equivalent to drawing */ -- /* a line perpendicular to the line (forg, fdest) and passing */ -- /* through `fapex', and determining which side of this line */ -- /* `searchpoint' falls on. */ -- moveleft = (fapex[0] - searchpoint[0]) * (fdest[0] - forg[0]) + -- (fapex[1] - searchpoint[1]) * (fdest[1] - forg[1]) > 0.0; -- } else { -- moveleft = 1; -- } -- } else { -- if (orgorient > 0.0) { -- moveleft = 0; -- } else { -- /* The point we seek must be on the boundary of or inside this */ -- /* triangle. */ -- if (destorient == 0.0) { -- lprevself(*searchtri); -- return ONEDGE; -- } -- if (orgorient == 0.0) { -- lnextself(*searchtri); -- return ONEDGE; -- } -- return INTRIANGLE; -- } -- } -- -- /* Move to another triangle. Leave a trace `backtracktri' in case */ -- /* floating-point roundoff or some such bogey causes us to walk */ -- /* off a boundary of the triangulation. */ -- if (moveleft) { -- lprev(*searchtri, backtracktri); -- fdest = fapex; -- } else { -- lnext(*searchtri, backtracktri); -- forg = fapex; -- } -- sym(backtracktri, *searchtri); -- -- if (m->checksegments && stopatsubsegment) { -- /* Check for walking through a subsegment. */ -- tspivot(backtracktri, checkedge); -- if (checkedge.ss != m->dummysub) { -- /* Go back to the last triangle. */ -- otricopy(backtracktri, *searchtri); -- return OUTSIDE; -- } -- } -- /* Check for walking right out of the triangulation. */ -- if (searchtri->tri == m->dummytri) { -- /* Go back to the last triangle. */ -- otricopy(backtracktri, *searchtri); -- return OUTSIDE; -- } -- -- apex(*searchtri, fapex); -- } --} -- --/*****************************************************************************/ --/* */ --/* locate() Find a triangle or edge containing a given point. */ --/* */ --/* Searching begins from one of: the input `searchtri', a recently */ --/* encountered triangle `recenttri', or from a triangle chosen from a */ --/* random sample. The choice is made by determining which triangle's */ --/* origin is closest to the point we are searching for. Normally, */ --/* `searchtri' should be a handle on the convex hull of the triangulation. */ --/* */ --/* Details on the random sampling method can be found in the Mucke, Saias, */ --/* and Zhu paper cited in the header of this code. */ --/* */ --/* On completion, `searchtri' is a triangle that contains `searchpoint'. */ --/* */ --/* Returns ONVERTEX if the point lies on an existing vertex. `searchtri' */ --/* is a handle whose origin is the existing vertex. */ --/* */ --/* Returns ONEDGE if the point lies on a mesh edge. `searchtri' is a */ --/* handle whose primary edge is the edge on which the point lies. */ --/* */ --/* Returns INTRIANGLE if the point lies strictly within a triangle. */ --/* `searchtri' is a handle on the triangle that contains the point. */ --/* */ --/* Returns OUTSIDE if the point lies outside the mesh. `searchtri' is a */ --/* handle whose primary edge the point is to the right of. This might */ --/* occur when the circumcenter of a triangle falls just slightly outside */ --/* the mesh due to floating-point roundoff error. It also occurs when */ --/* seeking a hole or region point that a foolish user has placed outside */ --/* the mesh. */ --/* */ --/* WARNING: This routine is designed for convex triangulations, and will */ --/* not generally work after the holes and concavities have been carved. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --enum locateresult locate(struct mesh *m, struct behavior *b, -- vertex searchpoint, struct otri *searchtri) --#else /* not ANSI_DECLARATORS */ --enum locateresult locate(m, b, searchpoint, searchtri) --struct mesh *m; --struct behavior *b; --vertex searchpoint; --struct otri *searchtri; --#endif /* not ANSI_DECLARATORS */ -- --{ -- void **sampleblock; -- char *firsttri; -- struct otri sampletri; -- vertex torg, tdest; -- TRIANGLE_PTRINT alignptr; -- REAL searchdist, dist; -- REAL ahead; -- long samplesperblock, totalsamplesleft, samplesleft; -- long population, totalpopulation; -- triangle ptr; /* Temporary variable used by sym(). */ -- -- if (b->verbose > 2) { -- printf(" Randomly sampling for a triangle near point (%.12g, %.12g).\n", -- searchpoint[0], searchpoint[1]); -- } -- /* Record the distance from the suggested starting triangle to the */ -- /* point we seek. */ -- org(*searchtri, torg); -- searchdist = (searchpoint[0] - torg[0]) * (searchpoint[0] - torg[0]) + -- (searchpoint[1] - torg[1]) * (searchpoint[1] - torg[1]); -- if (b->verbose > 2) { -- printf(" Boundary triangle has origin (%.12g, %.12g).\n", -- torg[0], torg[1]); -- } -- -- /* If a recently encountered triangle has been recorded and has not been */ -- /* deallocated, test it as a good starting point. */ -- if (m->recenttri.tri != (triangle *) NULL) { -- if (!deadtri(m->recenttri.tri)) { -- org(m->recenttri, torg); -- if ((torg[0] == searchpoint[0]) && (torg[1] == searchpoint[1])) { -- otricopy(m->recenttri, *searchtri); -- return ONVERTEX; -- } -- dist = (searchpoint[0] - torg[0]) * (searchpoint[0] - torg[0]) + -- (searchpoint[1] - torg[1]) * (searchpoint[1] - torg[1]); -- if (dist < searchdist) { -- otricopy(m->recenttri, *searchtri); -- searchdist = dist; -- if (b->verbose > 2) { -- printf(" Choosing recent triangle with origin (%.12g, %.12g).\n", -- torg[0], torg[1]); -- } -- } -- } -- } -- -- /* The number of random samples taken is proportional to the cube root of */ -- /* the number of triangles in the mesh. The next bit of code assumes */ -- /* that the number of triangles increases monotonically (or at least */ -- /* doesn't decrease enough to matter). */ -- while (SAMPLEFACTOR * m->samples * m->samples * m->samples < -- m->triangles.items) { -- m->samples++; -- } -- -- /* We'll draw ceiling(samples * TRIPERBLOCK / maxitems) random samples */ -- /* from each block of triangles (except the first)--until we meet the */ -- /* sample quota. The ceiling means that blocks at the end might be */ -- /* neglected, but I don't care. */ -- samplesperblock = (m->samples * TRIPERBLOCK - 1) / m->triangles.maxitems + 1; -- /* We'll draw ceiling(samples * itemsfirstblock / maxitems) random samples */ -- /* from the first block of triangles. */ -- samplesleft = (m->samples * m->triangles.itemsfirstblock - 1) / -- m->triangles.maxitems + 1; -- totalsamplesleft = m->samples; -- population = m->triangles.itemsfirstblock; -- totalpopulation = m->triangles.maxitems; -- sampleblock = m->triangles.firstblock; -- sampletri.orient = 0; -- while (totalsamplesleft > 0) { -- /* If we're in the last block, `population' needs to be corrected. */ -- if (population > totalpopulation) { -- population = totalpopulation; -- } -- /* Find a pointer to the first triangle in the block. */ -- alignptr = (TRIANGLE_PTRINT) (sampleblock + 1); -- firsttri = (char *) (alignptr + -- (TRIANGLE_PTRINT) m->triangles.alignbytes - -- (alignptr % -- (TRIANGLE_PTRINT) m->triangles.alignbytes)); -- -- /* Choose `samplesleft' randomly sampled triangles in this block. */ -- do { -- sampletri.tri = (triangle *) (firsttri + -- (randomnation((unsigned int) population) * -- m->triangles.itembytes)); -- if (!deadtri(sampletri.tri)) { -- org(sampletri, torg); -- dist = (searchpoint[0] - torg[0]) * (searchpoint[0] - torg[0]) + -- (searchpoint[1] - torg[1]) * (searchpoint[1] - torg[1]); -- if (dist < searchdist) { -- otricopy(sampletri, *searchtri); -- searchdist = dist; -- if (b->verbose > 2) { -- printf(" Choosing triangle with origin (%.12g, %.12g).\n", -- torg[0], torg[1]); -- } -- } -- } -- -- samplesleft--; -- totalsamplesleft--; -- } while ((samplesleft > 0) && (totalsamplesleft > 0)); -- -- if (totalsamplesleft > 0) { -- sampleblock = (void **) *sampleblock; -- samplesleft = samplesperblock; -- totalpopulation -= population; -- population = TRIPERBLOCK; -- } -- } -- -- /* Where are we? */ -- org(*searchtri, torg); -- dest(*searchtri, tdest); -- /* Check the starting triangle's vertices. */ -- if ((torg[0] == searchpoint[0]) && (torg[1] == searchpoint[1])) { -- return ONVERTEX; -- } -- if ((tdest[0] == searchpoint[0]) && (tdest[1] == searchpoint[1])) { -- lnextself(*searchtri); -- return ONVERTEX; -- } -- /* Orient `searchtri' to fit the preconditions of calling preciselocate(). */ -- ahead = counterclockwise(m, b, torg, tdest, searchpoint); -- if (ahead < 0.0) { -- /* Turn around so that `searchpoint' is to the left of the */ -- /* edge specified by `searchtri'. */ -- symself(*searchtri); -- } else if (ahead == 0.0) { -- /* Check if `searchpoint' is between `torg' and `tdest'. */ -- if (((torg[0] < searchpoint[0]) == (searchpoint[0] < tdest[0])) && -- ((torg[1] < searchpoint[1]) == (searchpoint[1] < tdest[1]))) { -- return ONEDGE; -- } -- } -- return preciselocate(m, b, searchpoint, searchtri, 0); --} -- --/** **/ --/** **/ --/********* Point location routines end here *********/ -- --/********* Mesh transformation routines begin here *********/ --/** **/ --/** **/ -- --/*****************************************************************************/ --/* */ --/* insertsubseg() Create a new subsegment and insert it between two */ --/* triangles. */ --/* */ --/* The new subsegment is inserted at the edge described by the handle */ --/* `tri'. Its vertices are properly initialized. The marker `subsegmark' */ --/* is applied to the subsegment and, if appropriate, its vertices. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --void insertsubseg(struct mesh *m, struct behavior *b, struct otri *tri, -- int subsegmark) --#else /* not ANSI_DECLARATORS */ --void insertsubseg(m, b, tri, subsegmark) --struct mesh *m; --struct behavior *b; --struct otri *tri; /* Edge at which to insert the new subsegment. */ --int subsegmark; /* Marker for the new subsegment. */ --#endif /* not ANSI_DECLARATORS */ -- --{ -- struct otri oppotri; -- struct osub newsubseg; -- vertex triorg, tridest; -- triangle ptr; /* Temporary variable used by sym(). */ -- subseg sptr; /* Temporary variable used by tspivot(). */ -- -- org(*tri, triorg); -- dest(*tri, tridest); -- /* Mark vertices if possible. */ -- if (vertexmark(triorg) == 0) { -- setvertexmark(triorg, subsegmark); -- } -- if (vertexmark(tridest) == 0) { -- setvertexmark(tridest, subsegmark); -- } -- /* Check if there's already a subsegment here. */ -- tspivot(*tri, newsubseg); -- if (newsubseg.ss == m->dummysub) { -- /* Make new subsegment and initialize its vertices. */ -- makesubseg(m, &newsubseg); -- setsorg(newsubseg, tridest); -- setsdest(newsubseg, triorg); -- setsegorg(newsubseg, tridest); -- setsegdest(newsubseg, triorg); -- /* Bond new subsegment to the two triangles it is sandwiched between. */ -- /* Note that the facing triangle `oppotri' might be equal to */ -- /* `dummytri' (outer space), but the new subsegment is bonded to it */ -- /* all the same. */ -- tsbond(*tri, newsubseg); -- sym(*tri, oppotri); -- ssymself(newsubseg); -- tsbond(oppotri, newsubseg); -- setmark(newsubseg, subsegmark); -- if (b->verbose > 2) { -- printf(" Inserting new "); -- printsubseg(m, b, &newsubseg); -- } -- } else { -- if (mark(newsubseg) == 0) { -- setmark(newsubseg, subsegmark); -- } -- } --} -- --/*****************************************************************************/ --/* */ --/* Terminology */ --/* */ --/* A "local transformation" replaces a small set of triangles with another */ --/* set of triangles. This may or may not involve inserting or deleting a */ --/* vertex. */ --/* */ --/* The term "casing" is used to describe the set of triangles that are */ --/* attached to the triangles being transformed, but are not transformed */ --/* themselves. Think of the casing as a fixed hollow structure inside */ --/* which all the action happens. A "casing" is only defined relative to */ --/* a single transformation; each occurrence of a transformation will */ --/* involve a different casing. */ --/* */ --/*****************************************************************************/ -- --/*****************************************************************************/ --/* */ --/* flip() Transform two triangles to two different triangles by flipping */ --/* an edge counterclockwise within a quadrilateral. */ --/* */ --/* Imagine the original triangles, abc and bad, oriented so that the */ --/* shared edge ab lies in a horizontal plane, with the vertex b on the left */ --/* and the vertex a on the right. The vertex c lies below the edge, and */ --/* the vertex d lies above the edge. The `flipedge' handle holds the edge */ --/* ab of triangle abc, and is directed left, from vertex a to vertex b. */ --/* */ --/* The triangles abc and bad are deleted and replaced by the triangles cdb */ --/* and dca. The triangles that represent abc and bad are NOT deallocated; */ --/* they are reused for dca and cdb, respectively. Hence, any handles that */ --/* may have held the original triangles are still valid, although not */ --/* directed as they were before. */ --/* */ --/* Upon completion of this routine, the `flipedge' handle holds the edge */ --/* dc of triangle dca, and is directed down, from vertex d to vertex c. */ --/* (Hence, the two triangles have rotated counterclockwise.) */ --/* */ --/* WARNING: This transformation is geometrically valid only if the */ --/* quadrilateral adbc is convex. Furthermore, this transformation is */ --/* valid only if there is not a subsegment between the triangles abc and */ --/* bad. This routine does not check either of these preconditions, and */ --/* it is the responsibility of the calling routine to ensure that they are */ --/* met. If they are not, the streets shall be filled with wailing and */ --/* gnashing of teeth. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --void flip(struct mesh *m, struct behavior *b, struct otri *flipedge) --#else /* not ANSI_DECLARATORS */ --void flip(m, b, flipedge) --struct mesh *m; --struct behavior *b; --struct otri *flipedge; /* Handle for the triangle abc. */ --#endif /* not ANSI_DECLARATORS */ -- --{ -- struct otri botleft, botright; -- struct otri topleft, topright; -- struct otri top; -- struct otri botlcasing, botrcasing; -- struct otri toplcasing, toprcasing; -- struct osub botlsubseg, botrsubseg; -- struct osub toplsubseg, toprsubseg; -- vertex leftvertex, rightvertex, botvertex; -- vertex farvertex; -- triangle ptr; /* Temporary variable used by sym(). */ -- subseg sptr; /* Temporary variable used by tspivot(). */ -- -- /* Identify the vertices of the quadrilateral. */ -- org(*flipedge, rightvertex); -- dest(*flipedge, leftvertex); -- apex(*flipedge, botvertex); -- sym(*flipedge, top); --#ifdef SELF_CHECK -- if (top.tri == m->dummytri) { -- printf("Internal error in flip(): Attempt to flip on boundary.\n"); -- lnextself(*flipedge); -- return; -- } -- if (m->checksegments) { -- tspivot(*flipedge, toplsubseg); -- if (toplsubseg.ss != m->dummysub) { -- printf("Internal error in flip(): Attempt to flip a segment.\n"); -- lnextself(*flipedge); -- return; -- } -- } --#endif /* SELF_CHECK */ -- apex(top, farvertex); -- -- /* Identify the casing of the quadrilateral. */ -- lprev(top, topleft); -- sym(topleft, toplcasing); -- lnext(top, topright); -- sym(topright, toprcasing); -- lnext(*flipedge, botleft); -- sym(botleft, botlcasing); -- lprev(*flipedge, botright); -- sym(botright, botrcasing); -- /* Rotate the quadrilateral one-quarter turn counterclockwise. */ -- bond(topleft, botlcasing); -- bond(botleft, botrcasing); -- bond(botright, toprcasing); -- bond(topright, toplcasing); -- -- if (m->checksegments) { -- /* Check for subsegments and rebond them to the quadrilateral. */ -- tspivot(topleft, toplsubseg); -- tspivot(botleft, botlsubseg); -- tspivot(botright, botrsubseg); -- tspivot(topright, toprsubseg); -- if (toplsubseg.ss == m->dummysub) { -- tsdissolve(topright); -- } else { -- tsbond(topright, toplsubseg); -- } -- if (botlsubseg.ss == m->dummysub) { -- tsdissolve(topleft); -- } else { -- tsbond(topleft, botlsubseg); -- } -- if (botrsubseg.ss == m->dummysub) { -- tsdissolve(botleft); -- } else { -- tsbond(botleft, botrsubseg); -- } -- if (toprsubseg.ss == m->dummysub) { -- tsdissolve(botright); -- } else { -- tsbond(botright, toprsubseg); -- } -- } -- -- /* New vertex assignments for the rotated quadrilateral. */ -- setorg(*flipedge, farvertex); -- setdest(*flipedge, botvertex); -- setapex(*flipedge, rightvertex); -- setorg(top, botvertex); -- setdest(top, farvertex); -- setapex(top, leftvertex); -- if (b->verbose > 2) { -- printf(" Edge flip results in left "); -- printtriangle(m, b, &top); -- printf(" and right "); -- printtriangle(m, b, flipedge); -- } --} -- --/*****************************************************************************/ --/* */ --/* unflip() Transform two triangles to two different triangles by */ --/* flipping an edge clockwise within a quadrilateral. Reverses */ --/* the flip() operation so that the data structures representing */ --/* the triangles are back where they were before the flip(). */ --/* */ --/* Imagine the original triangles, abc and bad, oriented so that the */ --/* shared edge ab lies in a horizontal plane, with the vertex b on the left */ --/* and the vertex a on the right. The vertex c lies below the edge, and */ --/* the vertex d lies above the edge. The `flipedge' handle holds the edge */ --/* ab of triangle abc, and is directed left, from vertex a to vertex b. */ --/* */ --/* The triangles abc and bad are deleted and replaced by the triangles cdb */ --/* and dca. The triangles that represent abc and bad are NOT deallocated; */ --/* they are reused for cdb and dca, respectively. Hence, any handles that */ --/* may have held the original triangles are still valid, although not */ --/* directed as they were before. */ --/* */ --/* Upon completion of this routine, the `flipedge' handle holds the edge */ --/* cd of triangle cdb, and is directed up, from vertex c to vertex d. */ --/* (Hence, the two triangles have rotated clockwise.) */ --/* */ --/* WARNING: This transformation is geometrically valid only if the */ --/* quadrilateral adbc is convex. Furthermore, this transformation is */ --/* valid only if there is not a subsegment between the triangles abc and */ --/* bad. This routine does not check either of these preconditions, and */ --/* it is the responsibility of the calling routine to ensure that they are */ --/* met. If they are not, the streets shall be filled with wailing and */ --/* gnashing of teeth. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --void unflip(struct mesh *m, struct behavior *b, struct otri *flipedge) --#else /* not ANSI_DECLARATORS */ --void unflip(m, b, flipedge) --struct mesh *m; --struct behavior *b; --struct otri *flipedge; /* Handle for the triangle abc. */ --#endif /* not ANSI_DECLARATORS */ -- --{ -- struct otri botleft, botright; -- struct otri topleft, topright; -- struct otri top; -- struct otri botlcasing, botrcasing; -- struct otri toplcasing, toprcasing; -- struct osub botlsubseg, botrsubseg; -- struct osub toplsubseg, toprsubseg; -- vertex leftvertex, rightvertex, botvertex; -- vertex farvertex; -- triangle ptr; /* Temporary variable used by sym(). */ -- subseg sptr; /* Temporary variable used by tspivot(). */ -- -- /* Identify the vertices of the quadrilateral. */ -- org(*flipedge, rightvertex); -- dest(*flipedge, leftvertex); -- apex(*flipedge, botvertex); -- sym(*flipedge, top); --#ifdef SELF_CHECK -- if (top.tri == m->dummytri) { -- printf("Internal error in unflip(): Attempt to flip on boundary.\n"); -- lnextself(*flipedge); -- return; -- } -- if (m->checksegments) { -- tspivot(*flipedge, toplsubseg); -- if (toplsubseg.ss != m->dummysub) { -- printf("Internal error in unflip(): Attempt to flip a subsegment.\n"); -- lnextself(*flipedge); -- return; -- } -- } --#endif /* SELF_CHECK */ -- apex(top, farvertex); -- -- /* Identify the casing of the quadrilateral. */ -- lprev(top, topleft); -- sym(topleft, toplcasing); -- lnext(top, topright); -- sym(topright, toprcasing); -- lnext(*flipedge, botleft); -- sym(botleft, botlcasing); -- lprev(*flipedge, botright); -- sym(botright, botrcasing); -- /* Rotate the quadrilateral one-quarter turn clockwise. */ -- bond(topleft, toprcasing); -- bond(botleft, toplcasing); -- bond(botright, botlcasing); -- bond(topright, botrcasing); -- -- if (m->checksegments) { -- /* Check for subsegments and rebond them to the quadrilateral. */ -- tspivot(topleft, toplsubseg); -- tspivot(botleft, botlsubseg); -- tspivot(botright, botrsubseg); -- tspivot(topright, toprsubseg); -- if (toplsubseg.ss == m->dummysub) { -- tsdissolve(botleft); -- } else { -- tsbond(botleft, toplsubseg); -- } -- if (botlsubseg.ss == m->dummysub) { -- tsdissolve(botright); -- } else { -- tsbond(botright, botlsubseg); -- } -- if (botrsubseg.ss == m->dummysub) { -- tsdissolve(topright); -- } else { -- tsbond(topright, botrsubseg); -- } -- if (toprsubseg.ss == m->dummysub) { -- tsdissolve(topleft); -- } else { -- tsbond(topleft, toprsubseg); -- } -- } -- -- /* New vertex assignments for the rotated quadrilateral. */ -- setorg(*flipedge, botvertex); -- setdest(*flipedge, farvertex); -- setapex(*flipedge, leftvertex); -- setorg(top, farvertex); -- setdest(top, botvertex); -- setapex(top, rightvertex); -- if (b->verbose > 2) { -- printf(" Edge unflip results in left "); -- printtriangle(m, b, flipedge); -- printf(" and right "); -- printtriangle(m, b, &top); -- } --} -- --/*****************************************************************************/ --/* */ --/* insertvertex() Insert a vertex into a Delaunay triangulation, */ --/* performing flips as necessary to maintain the Delaunay */ --/* property. */ --/* */ --/* The point `insertvertex' is located. If `searchtri.tri' is not NULL, */ --/* the search for the containing triangle begins from `searchtri'. If */ --/* `searchtri.tri' is NULL, a full point location procedure is called. */ --/* If `insertvertex' is found inside a triangle, the triangle is split into */ --/* three; if `insertvertex' lies on an edge, the edge is split in two, */ --/* thereby splitting the two adjacent triangles into four. Edge flips are */ --/* used to restore the Delaunay property. If `insertvertex' lies on an */ --/* existing vertex, no action is taken, and the value DUPLICATEVERTEX is */ --/* returned. On return, `searchtri' is set to a handle whose origin is the */ --/* existing vertex. */ --/* */ --/* Normally, the parameter `splitseg' is set to NULL, implying that no */ --/* subsegment should be split. In this case, if `insertvertex' is found to */ --/* lie on a segment, no action is taken, and the value VIOLATINGVERTEX is */ --/* returned. On return, `searchtri' is set to a handle whose primary edge */ --/* is the violated subsegment. */ --/* */ --/* If the calling routine wishes to split a subsegment by inserting a */ --/* vertex in it, the parameter `splitseg' should be that subsegment. In */ --/* this case, `searchtri' MUST be the triangle handle reached by pivoting */ --/* from that subsegment; no point location is done. */ --/* */ --/* `segmentflaws' and `triflaws' are flags that indicate whether or not */ --/* there should be checks for the creation of encroached subsegments or bad */ --/* quality triangles. If a newly inserted vertex encroaches upon */ --/* subsegments, these subsegments are added to the list of subsegments to */ --/* be split if `segmentflaws' is set. If bad triangles are created, these */ --/* are added to the queue if `triflaws' is set. */ --/* */ --/* If a duplicate vertex or violated segment does not prevent the vertex */ --/* from being inserted, the return value will be ENCROACHINGVERTEX if the */ --/* vertex encroaches upon a subsegment (and checking is enabled), or */ --/* SUCCESSFULVERTEX otherwise. In either case, `searchtri' is set to a */ --/* handle whose origin is the newly inserted vertex. */ --/* */ --/* insertvertex() does not use flip() for reasons of speed; some */ --/* information can be reused from edge flip to edge flip, like the */ --/* locations of subsegments. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --enum insertvertexresult insertvertex(struct mesh *m, struct behavior *b, -- vertex newvertex, struct otri *searchtri, -- struct osub *splitseg, -- int segmentflaws, int triflaws) --#else /* not ANSI_DECLARATORS */ --enum insertvertexresult insertvertex(m, b, newvertex, searchtri, splitseg, -- segmentflaws, triflaws) --struct mesh *m; --struct behavior *b; --vertex newvertex; --struct otri *searchtri; --struct osub *splitseg; --int segmentflaws; --int triflaws; --#endif /* not ANSI_DECLARATORS */ -- --{ -- struct otri horiz; -- struct otri top; -- struct otri botleft, botright; -- struct otri topleft, topright; -- struct otri newbotleft, newbotright; -- struct otri newtopright; -- struct otri botlcasing, botrcasing; -- struct otri toplcasing, toprcasing; -- struct otri testtri; -- struct osub botlsubseg, botrsubseg; -- struct osub toplsubseg, toprsubseg; -- struct osub brokensubseg; -- struct osub checksubseg; -- struct osub rightsubseg; -- struct osub newsubseg; -- struct badsubseg *encroached; -- struct flipstacker *newflip; -- vertex first; -- vertex leftvertex, rightvertex, botvertex, topvertex, farvertex; -- vertex segmentorg, segmentdest; -- REAL attrib; -- REAL area; -- enum insertvertexresult success; -- enum locateresult intersect; -- int doflip; -- int mirrorflag; -- int enq; -- int i; -- triangle ptr; /* Temporary variable used by sym(). */ -- subseg sptr; /* Temporary variable used by spivot() and tspivot(). */ -- -- if (b->verbose > 1) { -- printf(" Inserting (%.12g, %.12g).\n", newvertex[0], newvertex[1]); -- } -- -- if (splitseg == (struct osub *) NULL) { -- /* Find the location of the vertex to be inserted. Check if a good */ -- /* starting triangle has already been provided by the caller. */ -- if (searchtri->tri == m->dummytri) { -- /* Find a boundary triangle. */ -- horiz.tri = m->dummytri; -- horiz.orient = 0; -- symself(horiz); -- /* Search for a triangle containing `newvertex'. */ -- intersect = locate(m, b, newvertex, &horiz); -- } else { -- /* Start searching from the triangle provided by the caller. */ -- otricopy(*searchtri, horiz); -- intersect = preciselocate(m, b, newvertex, &horiz, 1); -- } -- } else { -- /* The calling routine provides the subsegment in which */ -- /* the vertex is inserted. */ -- otricopy(*searchtri, horiz); -- intersect = ONEDGE; -- } -- -- if (intersect == ONVERTEX) { -- /* There's already a vertex there. Return in `searchtri' a triangle */ -- /* whose origin is the existing vertex. */ -- otricopy(horiz, *searchtri); -- otricopy(horiz, m->recenttri); -- return DUPLICATEVERTEX; -- } -- if ((intersect == ONEDGE) || (intersect == OUTSIDE)) { -- /* The vertex falls on an edge or boundary. */ -- if (m->checksegments && (splitseg == (struct osub *) NULL)) { -- /* Check whether the vertex falls on a subsegment. */ -- tspivot(horiz, brokensubseg); -- if (brokensubseg.ss != m->dummysub) { -- /* The vertex falls on a subsegment, and hence will not be inserted. */ -- if (segmentflaws) { -- enq = b->nobisect != 2; -- if (enq && (b->nobisect == 1)) { -- /* This subsegment may be split only if it is an */ -- /* internal boundary. */ -- sym(horiz, testtri); -- enq = testtri.tri != m->dummytri; -- } -- if (enq) { -- /* Add the subsegment to the list of encroached subsegments. */ -- encroached = (struct badsubseg *) poolalloc(&m->badsubsegs); -- encroached->encsubseg = sencode(brokensubseg); -- sorg(brokensubseg, encroached->subsegorg); -- sdest(brokensubseg, encroached->subsegdest); -- if (b->verbose > 2) { -- printf( -- " Queueing encroached subsegment (%.12g, %.12g) (%.12g, %.12g).\n", -- encroached->subsegorg[0], encroached->subsegorg[1], -- encroached->subsegdest[0], encroached->subsegdest[1]); -- } -- } -- } -- /* Return a handle whose primary edge contains the vertex, */ -- /* which has not been inserted. */ -- otricopy(horiz, *searchtri); -- otricopy(horiz, m->recenttri); -- return VIOLATINGVERTEX; -- } -- } -- -- /* Insert the vertex on an edge, dividing one triangle into two (if */ -- /* the edge lies on a boundary) or two triangles into four. */ -- lprev(horiz, botright); -- sym(botright, botrcasing); -- sym(horiz, topright); -- /* Is there a second triangle? (Or does this edge lie on a boundary?) */ -- mirrorflag = topright.tri != m->dummytri; -- if (mirrorflag) { -- lnextself(topright); -- sym(topright, toprcasing); -- maketriangle(m, b, &newtopright); -- } else { -- /* Splitting a boundary edge increases the number of boundary edges. */ -- m->hullsize++; -- } -- maketriangle(m, b, &newbotright); -- -- /* Set the vertices of changed and new triangles. */ -- org(horiz, rightvertex); -- dest(horiz, leftvertex); -- apex(horiz, botvertex); -- setorg(newbotright, botvertex); -- setdest(newbotright, rightvertex); -- setapex(newbotright, newvertex); -- setorg(horiz, newvertex); -- for (i = 0; i < m->eextras; i++) { -- /* Set the element attributes of a new triangle. */ -- setelemattribute(newbotright, i, elemattribute(botright, i)); -- } -- if (b->vararea) { -- /* Set the area constraint of a new triangle. */ -- setareabound(newbotright, areabound(botright)); -- } -- if (mirrorflag) { -- dest(topright, topvertex); -- setorg(newtopright, rightvertex); -- setdest(newtopright, topvertex); -- setapex(newtopright, newvertex); -- setorg(topright, newvertex); -- for (i = 0; i < m->eextras; i++) { -- /* Set the element attributes of another new triangle. */ -- setelemattribute(newtopright, i, elemattribute(topright, i)); -- } -- if (b->vararea) { -- /* Set the area constraint of another new triangle. */ -- setareabound(newtopright, areabound(topright)); -- } -- } -- -- /* There may be subsegments that need to be bonded */ -- /* to the new triangle(s). */ -- if (m->checksegments) { -- tspivot(botright, botrsubseg); -- if (botrsubseg.ss != m->dummysub) { -- tsdissolve(botright); -- tsbond(newbotright, botrsubseg); -- } -- if (mirrorflag) { -- tspivot(topright, toprsubseg); -- if (toprsubseg.ss != m->dummysub) { -- tsdissolve(topright); -- tsbond(newtopright, toprsubseg); -- } -- } -- } -- -- /* Bond the new triangle(s) to the surrounding triangles. */ -- bond(newbotright, botrcasing); -- lprevself(newbotright); -- bond(newbotright, botright); -- lprevself(newbotright); -- if (mirrorflag) { -- bond(newtopright, toprcasing); -- lnextself(newtopright); -- bond(newtopright, topright); -- lnextself(newtopright); -- bond(newtopright, newbotright); -- } -- -- if (splitseg != (struct osub *) NULL) { -- /* Split the subsegment into two. */ -- setsdest(*splitseg, newvertex); -- segorg(*splitseg, segmentorg); -- segdest(*splitseg, segmentdest); -- ssymself(*splitseg); -- spivot(*splitseg, rightsubseg); -- insertsubseg(m, b, &newbotright, mark(*splitseg)); -- tspivot(newbotright, newsubseg); -- setsegorg(newsubseg, segmentorg); -- setsegdest(newsubseg, segmentdest); -- sbond(*splitseg, newsubseg); -- ssymself(newsubseg); -- sbond(newsubseg, rightsubseg); -- ssymself(*splitseg); -- /* Transfer the subsegment's boundary marker to the vertex */ -- /* if required. */ -- if (vertexmark(newvertex) == 0) { -- setvertexmark(newvertex, mark(*splitseg)); -- } -- } -- -- if (m->checkquality) { -- poolrestart(&m->flipstackers); -- m->lastflip = (struct flipstacker *) poolalloc(&m->flipstackers); -- m->lastflip->flippedtri = encode(horiz); -- m->lastflip->prevflip = (struct flipstacker *) &insertvertex; -- } -- --#ifdef SELF_CHECK -- if (counterclockwise(m, b, rightvertex, leftvertex, botvertex) < 0.0) { -- printf("Internal error in insertvertex():\n"); -- printf( -- " Clockwise triangle prior to edge vertex insertion (bottom).\n"); -- } -- if (mirrorflag) { -- if (counterclockwise(m, b, leftvertex, rightvertex, topvertex) < 0.0) { -- printf("Internal error in insertvertex():\n"); -- printf(" Clockwise triangle prior to edge vertex insertion (top).\n"); -- } -- if (counterclockwise(m, b, rightvertex, topvertex, newvertex) < 0.0) { -- printf("Internal error in insertvertex():\n"); -- printf( -- " Clockwise triangle after edge vertex insertion (top right).\n"); -- } -- if (counterclockwise(m, b, topvertex, leftvertex, newvertex) < 0.0) { -- printf("Internal error in insertvertex():\n"); -- printf( -- " Clockwise triangle after edge vertex insertion (top left).\n"); -- } -- } -- if (counterclockwise(m, b, leftvertex, botvertex, newvertex) < 0.0) { -- printf("Internal error in insertvertex():\n"); -- printf( -- " Clockwise triangle after edge vertex insertion (bottom left).\n"); -- } -- if (counterclockwise(m, b, botvertex, rightvertex, newvertex) < 0.0) { -- printf("Internal error in insertvertex():\n"); -- printf( -- " Clockwise triangle after edge vertex insertion (bottom right).\n"); -- } --#endif /* SELF_CHECK */ -- if (b->verbose > 2) { -- printf(" Updating bottom left "); -- printtriangle(m, b, &botright); -- if (mirrorflag) { -- printf(" Updating top left "); -- printtriangle(m, b, &topright); -- printf(" Creating top right "); -- printtriangle(m, b, &newtopright); -- } -- printf(" Creating bottom right "); -- printtriangle(m, b, &newbotright); -- } -- -- /* Position `horiz' on the first edge to check for */ -- /* the Delaunay property. */ -- lnextself(horiz); -- } else { -- /* Insert the vertex in a triangle, splitting it into three. */ -- lnext(horiz, botleft); -- lprev(horiz, botright); -- sym(botleft, botlcasing); -- sym(botright, botrcasing); -- maketriangle(m, b, &newbotleft); -- maketriangle(m, b, &newbotright); -- -- /* Set the vertices of changed and new triangles. */ -- org(horiz, rightvertex); -- dest(horiz, leftvertex); -- apex(horiz, botvertex); -- setorg(newbotleft, leftvertex); -- setdest(newbotleft, botvertex); -- setapex(newbotleft, newvertex); -- setorg(newbotright, botvertex); -- setdest(newbotright, rightvertex); -- setapex(newbotright, newvertex); -- setapex(horiz, newvertex); -- for (i = 0; i < m->eextras; i++) { -- /* Set the element attributes of the new triangles. */ -- attrib = elemattribute(horiz, i); -- setelemattribute(newbotleft, i, attrib); -- setelemattribute(newbotright, i, attrib); -- } -- if (b->vararea) { -- /* Set the area constraint of the new triangles. */ -- area = areabound(horiz); -- setareabound(newbotleft, area); -- setareabound(newbotright, area); -- } -- -- /* There may be subsegments that need to be bonded */ -- /* to the new triangles. */ -- if (m->checksegments) { -- tspivot(botleft, botlsubseg); -- if (botlsubseg.ss != m->dummysub) { -- tsdissolve(botleft); -- tsbond(newbotleft, botlsubseg); -- } -- tspivot(botright, botrsubseg); -- if (botrsubseg.ss != m->dummysub) { -- tsdissolve(botright); -- tsbond(newbotright, botrsubseg); -- } -- } -- -- /* Bond the new triangles to the surrounding triangles. */ -- bond(newbotleft, botlcasing); -- bond(newbotright, botrcasing); -- lnextself(newbotleft); -- lprevself(newbotright); -- bond(newbotleft, newbotright); -- lnextself(newbotleft); -- bond(botleft, newbotleft); -- lprevself(newbotright); -- bond(botright, newbotright); -- -- if (m->checkquality) { -- poolrestart(&m->flipstackers); -- m->lastflip = (struct flipstacker *) poolalloc(&m->flipstackers); -- m->lastflip->flippedtri = encode(horiz); -- m->lastflip->prevflip = (struct flipstacker *) NULL; -- } -- --#ifdef SELF_CHECK -- if (counterclockwise(m, b, rightvertex, leftvertex, botvertex) < 0.0) { -- printf("Internal error in insertvertex():\n"); -- printf(" Clockwise triangle prior to vertex insertion.\n"); -- } -- if (counterclockwise(m, b, rightvertex, leftvertex, newvertex) < 0.0) { -- printf("Internal error in insertvertex():\n"); -- printf(" Clockwise triangle after vertex insertion (top).\n"); -- } -- if (counterclockwise(m, b, leftvertex, botvertex, newvertex) < 0.0) { -- printf("Internal error in insertvertex():\n"); -- printf(" Clockwise triangle after vertex insertion (left).\n"); -- } -- if (counterclockwise(m, b, botvertex, rightvertex, newvertex) < 0.0) { -- printf("Internal error in insertvertex():\n"); -- printf(" Clockwise triangle after vertex insertion (right).\n"); -- } --#endif /* SELF_CHECK */ -- if (b->verbose > 2) { -- printf(" Updating top "); -- printtriangle(m, b, &horiz); -- printf(" Creating left "); -- printtriangle(m, b, &newbotleft); -- printf(" Creating right "); -- printtriangle(m, b, &newbotright); -- } -- } -- -- /* The insertion is successful by default, unless an encroached */ -- /* subsegment is found. */ -- success = SUCCESSFULVERTEX; -- /* Circle around the newly inserted vertex, checking each edge opposite */ -- /* it for the Delaunay property. Non-Delaunay edges are flipped. */ -- /* `horiz' is always the edge being checked. `first' marks where to */ -- /* stop circling. */ -- org(horiz, first); -- rightvertex = first; -- dest(horiz, leftvertex); -- /* Circle until finished. */ -- while (1) { -- /* By default, the edge will be flipped. */ -- doflip = 1; -- -- if (m->checksegments) { -- /* Check for a subsegment, which cannot be flipped. */ -- tspivot(horiz, checksubseg); -- if (checksubseg.ss != m->dummysub) { -- /* The edge is a subsegment and cannot be flipped. */ -- doflip = 0; --#ifndef CDT_ONLY -- if (segmentflaws) { -- /* Does the new vertex encroach upon this subsegment? */ -- if (checkseg4encroach(m, b, &checksubseg)) { -- success = ENCROACHINGVERTEX; -- } -- } --#endif /* not CDT_ONLY */ -- } -- } -- -- if (doflip) { -- /* Check if the edge is a boundary edge. */ -- sym(horiz, top); -- if (top.tri == m->dummytri) { -- /* The edge is a boundary edge and cannot be flipped. */ -- doflip = 0; -- } else { -- /* Find the vertex on the other side of the edge. */ -- apex(top, farvertex); -- /* In the incremental Delaunay triangulation algorithm, any of */ -- /* `leftvertex', `rightvertex', and `farvertex' could be vertices */ -- /* of the triangular bounding box. These vertices must be */ -- /* treated as if they are infinitely distant, even though their */ -- /* "coordinates" are not. */ -- if ((leftvertex == m->infvertex1) || (leftvertex == m->infvertex2) || -- (leftvertex == m->infvertex3)) { -- /* `leftvertex' is infinitely distant. Check the convexity of */ -- /* the boundary of the triangulation. 'farvertex' might be */ -- /* infinite as well, but trust me, this same condition should */ -- /* be applied. */ -- doflip = counterclockwise(m, b, newvertex, rightvertex, farvertex) -- > 0.0; -- } else if ((rightvertex == m->infvertex1) || -- (rightvertex == m->infvertex2) || -- (rightvertex == m->infvertex3)) { -- /* `rightvertex' is infinitely distant. Check the convexity of */ -- /* the boundary of the triangulation. 'farvertex' might be */ -- /* infinite as well, but trust me, this same condition should */ -- /* be applied. */ -- doflip = counterclockwise(m, b, farvertex, leftvertex, newvertex) -- > 0.0; -- } else if ((farvertex == m->infvertex1) || -- (farvertex == m->infvertex2) || -- (farvertex == m->infvertex3)) { -- /* `farvertex' is infinitely distant and cannot be inside */ -- /* the circumcircle of the triangle `horiz'. */ -- doflip = 0; -- } else { -- /* Test whether the edge is locally Delaunay. */ -- doflip = incircle(m, b, leftvertex, newvertex, rightvertex, -- farvertex) > 0.0; -- } -- if (doflip) { -- /* We made it! Flip the edge `horiz' by rotating its containing */ -- /* quadrilateral (the two triangles adjacent to `horiz'). */ -- /* Identify the casing of the quadrilateral. */ -- lprev(top, topleft); -- sym(topleft, toplcasing); -- lnext(top, topright); -- sym(topright, toprcasing); -- lnext(horiz, botleft); -- sym(botleft, botlcasing); -- lprev(horiz, botright); -- sym(botright, botrcasing); -- /* Rotate the quadrilateral one-quarter turn counterclockwise. */ -- bond(topleft, botlcasing); -- bond(botleft, botrcasing); -- bond(botright, toprcasing); -- bond(topright, toplcasing); -- if (m->checksegments) { -- /* Check for subsegments and rebond them to the quadrilateral. */ -- tspivot(topleft, toplsubseg); -- tspivot(botleft, botlsubseg); -- tspivot(botright, botrsubseg); -- tspivot(topright, toprsubseg); -- if (toplsubseg.ss == m->dummysub) { -- tsdissolve(topright); -- } else { -- tsbond(topright, toplsubseg); -- } -- if (botlsubseg.ss == m->dummysub) { -- tsdissolve(topleft); -- } else { -- tsbond(topleft, botlsubseg); -- } -- if (botrsubseg.ss == m->dummysub) { -- tsdissolve(botleft); -- } else { -- tsbond(botleft, botrsubseg); -- } -- if (toprsubseg.ss == m->dummysub) { -- tsdissolve(botright); -- } else { -- tsbond(botright, toprsubseg); -- } -- } -- /* New vertex assignments for the rotated quadrilateral. */ -- setorg(horiz, farvertex); -- setdest(horiz, newvertex); -- setapex(horiz, rightvertex); -- setorg(top, newvertex); -- setdest(top, farvertex); -- setapex(top, leftvertex); -- for (i = 0; i < m->eextras; i++) { -- /* Take the average of the two triangles' attributes. */ -- attrib = 0.5 * (elemattribute(top, i) + elemattribute(horiz, i)); -- setelemattribute(top, i, attrib); -- setelemattribute(horiz, i, attrib); -- } -- if (b->vararea) { -- if ((areabound(top) <= 0.0) || (areabound(horiz) <= 0.0)) { -- area = -1.0; -- } else { -- /* Take the average of the two triangles' area constraints. */ -- /* This prevents small area constraints from migrating a */ -- /* long, long way from their original location due to flips. */ -- area = 0.5 * (areabound(top) + areabound(horiz)); -- } -- setareabound(top, area); -- setareabound(horiz, area); -- } -- -- if (m->checkquality) { -- newflip = (struct flipstacker *) poolalloc(&m->flipstackers); -- newflip->flippedtri = encode(horiz); -- newflip->prevflip = m->lastflip; -- m->lastflip = newflip; -- } -- --#ifdef SELF_CHECK -- if (newvertex != (vertex) NULL) { -- if (counterclockwise(m, b, leftvertex, newvertex, rightvertex) < -- 0.0) { -- printf("Internal error in insertvertex():\n"); -- printf(" Clockwise triangle prior to edge flip (bottom).\n"); -- } -- /* The following test has been removed because constrainededge() */ -- /* sometimes generates inverted triangles that insertvertex() */ -- /* removes. */ --/* -- if (counterclockwise(m, b, rightvertex, farvertex, leftvertex) < -- 0.0) { -- printf("Internal error in insertvertex():\n"); -- printf(" Clockwise triangle prior to edge flip (top).\n"); -- } --*/ -- if (counterclockwise(m, b, farvertex, leftvertex, newvertex) < -- 0.0) { -- printf("Internal error in insertvertex():\n"); -- printf(" Clockwise triangle after edge flip (left).\n"); -- } -- if (counterclockwise(m, b, newvertex, rightvertex, farvertex) < -- 0.0) { -- printf("Internal error in insertvertex():\n"); -- printf(" Clockwise triangle after edge flip (right).\n"); -- } -- } --#endif /* SELF_CHECK */ -- if (b->verbose > 2) { -- printf(" Edge flip results in left "); -- lnextself(topleft); -- printtriangle(m, b, &topleft); -- printf(" and right "); -- printtriangle(m, b, &horiz); -- } -- /* On the next iterations, consider the two edges that were */ -- /* exposed (this is, are now visible to the newly inserted */ -- /* vertex) by the edge flip. */ -- lprevself(horiz); -- leftvertex = farvertex; -- } -- } -- } -- if (!doflip) { -- /* The handle `horiz' is accepted as locally Delaunay. */ --#ifndef CDT_ONLY -- if (triflaws) { -- /* Check the triangle `horiz' for quality. */ -- testtriangle(m, b, &horiz); -- } --#endif /* not CDT_ONLY */ -- /* Look for the next edge around the newly inserted vertex. */ -- lnextself(horiz); -- sym(horiz, testtri); -- /* Check for finishing a complete revolution about the new vertex, or */ -- /* falling outside of the triangulation. The latter will happen */ -- /* when a vertex is inserted at a boundary. */ -- if ((leftvertex == first) || (testtri.tri == m->dummytri)) { -- /* We're done. Return a triangle whose origin is the new vertex. */ -- lnext(horiz, *searchtri); -- lnext(horiz, m->recenttri); -- return success; -- } -- /* Finish finding the next edge around the newly inserted vertex. */ -- lnext(testtri, horiz); -- rightvertex = leftvertex; -- dest(horiz, leftvertex); -- } -- } --} -- --/*****************************************************************************/ --/* */ --/* triangulatepolygon() Find the Delaunay triangulation of a polygon that */ --/* has a certain "nice" shape. This includes the */ --/* polygons that result from deletion of a vertex or */ --/* insertion of a segment. */ --/* */ --/* This is a conceptually difficult routine. The starting assumption is */ --/* that we have a polygon with n sides. n - 1 of these sides are currently */ --/* represented as edges in the mesh. One side, called the "base", need not */ --/* be. */ --/* */ --/* Inside the polygon is a structure I call a "fan", consisting of n - 1 */ --/* triangles that share a common origin. For each of these triangles, the */ --/* edge opposite the origin is one of the sides of the polygon. The */ --/* primary edge of each triangle is the edge directed from the origin to */ --/* the destination; note that this is not the same edge that is a side of */ --/* the polygon. `firstedge' is the primary edge of the first triangle. */ --/* From there, the triangles follow in counterclockwise order about the */ --/* polygon, until `lastedge', the primary edge of the last triangle. */ --/* `firstedge' and `lastedge' are probably connected to other triangles */ --/* beyond the extremes of the fan, but their identity is not important, as */ --/* long as the fan remains connected to them. */ --/* */ --/* Imagine the polygon oriented so that its base is at the bottom. This */ --/* puts `firstedge' on the far right, and `lastedge' on the far left. */ --/* The right vertex of the base is the destination of `firstedge', and the */ --/* left vertex of the base is the apex of `lastedge'. */ --/* */ --/* The challenge now is to find the right sequence of edge flips to */ --/* transform the fan into a Delaunay triangulation of the polygon. Each */ --/* edge flip effectively removes one triangle from the fan, committing it */ --/* to the polygon. The resulting polygon has one fewer edge. If `doflip' */ --/* is set, the final flip will be performed, resulting in a fan of one */ --/* (useless?) triangle. If `doflip' is not set, the final flip is not */ --/* performed, resulting in a fan of two triangles, and an unfinished */ --/* triangular polygon that is not yet filled out with a single triangle. */ --/* On completion of the routine, `lastedge' is the last remaining triangle, */ --/* or the leftmost of the last two. */ --/* */ --/* Although the flips are performed in the order described above, the */ --/* decisions about what flips to perform are made in precisely the reverse */ --/* order. The recursive triangulatepolygon() procedure makes a decision, */ --/* uses up to two recursive calls to triangulate the "subproblems" */ --/* (polygons with fewer edges), and then performs an edge flip. */ --/* */ --/* The "decision" it makes is which vertex of the polygon should be */ --/* connected to the base. This decision is made by testing every possible */ --/* vertex. Once the best vertex is found, the two edges that connect this */ --/* vertex to the base become the bases for two smaller polygons. These */ --/* are triangulated recursively. Unfortunately, this approach can take */ --/* O(n^2) time not only in the worst case, but in many common cases. It's */ --/* rarely a big deal for vertex deletion, where n is rarely larger than */ --/* ten, but it could be a big deal for segment insertion, especially if */ --/* there's a lot of long segments that each cut many triangles. I ought to */ --/* code a faster algorithm some day. */ --/* */ --/* The `edgecount' parameter is the number of sides of the polygon, */ --/* including its base. `triflaws' is a flag that determines whether the */ --/* new triangles should be tested for quality, and enqueued if they are */ --/* bad. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --void triangulatepolygon(struct mesh *m, struct behavior *b, -- struct otri *firstedge, struct otri *lastedge, -- int edgecount, int doflip, int triflaws) --#else /* not ANSI_DECLARATORS */ --void triangulatepolygon(m, b, firstedge, lastedge, edgecount, doflip, triflaws) --struct mesh *m; --struct behavior *b; --struct otri *firstedge; --struct otri *lastedge; --int edgecount; --int doflip; --int triflaws; --#endif /* not ANSI_DECLARATORS */ -- --{ -- struct otri testtri; -- struct otri besttri; -- struct otri tempedge; -- vertex leftbasevertex, rightbasevertex; -- vertex testvertex; -- vertex bestvertex; -- int bestnumber; -- int i; -- triangle ptr; /* Temporary variable used by sym(), onext(), and oprev(). */ -- -- /* Identify the base vertices. */ -- apex(*lastedge, leftbasevertex); -- dest(*firstedge, rightbasevertex); -- if (b->verbose > 2) { -- printf(" Triangulating interior polygon at edge\n"); -- printf(" (%.12g, %.12g) (%.12g, %.12g)\n", leftbasevertex[0], -- leftbasevertex[1], rightbasevertex[0], rightbasevertex[1]); -- } -- /* Find the best vertex to connect the base to. */ -- onext(*firstedge, besttri); -- dest(besttri, bestvertex); -- otricopy(besttri, testtri); -- bestnumber = 1; -- for (i = 2; i <= edgecount - 2; i++) { -- onextself(testtri); -- dest(testtri, testvertex); -- /* Is this a better vertex? */ -- if (incircle(m, b, leftbasevertex, rightbasevertex, bestvertex, -- testvertex) > 0.0) { -- otricopy(testtri, besttri); -- bestvertex = testvertex; -- bestnumber = i; -- } -- } -- if (b->verbose > 2) { -- printf(" Connecting edge to (%.12g, %.12g)\n", bestvertex[0], -- bestvertex[1]); -- } -- if (bestnumber > 1) { -- /* Recursively triangulate the smaller polygon on the right. */ -- oprev(besttri, tempedge); -- triangulatepolygon(m, b, firstedge, &tempedge, bestnumber + 1, 1, -- triflaws); -- } -- if (bestnumber < edgecount - 2) { -- /* Recursively triangulate the smaller polygon on the left. */ -- sym(besttri, tempedge); -- triangulatepolygon(m, b, &besttri, lastedge, edgecount - bestnumber, 1, -- triflaws); -- /* Find `besttri' again; it may have been lost to edge flips. */ -- sym(tempedge, besttri); -- } -- if (doflip) { -- /* Do one final edge flip. */ -- flip(m, b, &besttri); --#ifndef CDT_ONLY -- if (triflaws) { -- /* Check the quality of the newly committed triangle. */ -- sym(besttri, testtri); -- testtriangle(m, b, &testtri); -- } --#endif /* not CDT_ONLY */ -- } -- /* Return the base triangle. */ -- otricopy(besttri, *lastedge); --} -- --/*****************************************************************************/ --/* */ --/* deletevertex() Delete a vertex from a Delaunay triangulation, ensuring */ --/* that the triangulation remains Delaunay. */ --/* */ --/* The origin of `deltri' is deleted. The union of the triangles adjacent */ --/* to this vertex is a polygon, for which the Delaunay triangulation is */ --/* found. Two triangles are removed from the mesh. */ --/* */ --/* Only interior vertices that do not lie on segments or boundaries may be */ --/* deleted. */ --/* */ --/*****************************************************************************/ -- --#ifndef CDT_ONLY -- --#ifdef ANSI_DECLARATORS --void deletevertex(struct mesh *m, struct behavior *b, struct otri *deltri) --#else /* not ANSI_DECLARATORS */ --void deletevertex(m, b, deltri) --struct mesh *m; --struct behavior *b; --struct otri *deltri; --#endif /* not ANSI_DECLARATORS */ -- --{ -- struct otri countingtri; -- struct otri firstedge, lastedge; -- struct otri deltriright; -- struct otri lefttri, righttri; -- struct otri leftcasing, rightcasing; -- struct osub leftsubseg, rightsubseg; -- vertex delvertex; -- vertex neworg; -- int edgecount; -- triangle ptr; /* Temporary variable used by sym(), onext(), and oprev(). */ -- subseg sptr; /* Temporary variable used by tspivot(). */ -- -- org(*deltri, delvertex); -- if (b->verbose > 1) { -- printf(" Deleting (%.12g, %.12g).\n", delvertex[0], delvertex[1]); -- } -- vertexdealloc(m, delvertex); -- -- /* Count the degree of the vertex being deleted. */ -- onext(*deltri, countingtri); -- edgecount = 1; -- while (!otriequal(*deltri, countingtri)) { --#ifdef SELF_CHECK -- if (countingtri.tri == m->dummytri) { -- printf("Internal error in deletevertex():\n"); -- printf(" Attempt to delete boundary vertex.\n"); -- internalerror(); -- } --#endif /* SELF_CHECK */ -- edgecount++; -- onextself(countingtri); -- } -- --#ifdef SELF_CHECK -- if (edgecount < 3) { -- printf("Internal error in deletevertex():\n Vertex has degree %d.\n", -- edgecount); -- internalerror(); -- } --#endif /* SELF_CHECK */ -- if (edgecount > 3) { -- /* Triangulate the polygon defined by the union of all triangles */ -- /* adjacent to the vertex being deleted. Check the quality of */ -- /* the resulting triangles. */ -- onext(*deltri, firstedge); -- oprev(*deltri, lastedge); -- triangulatepolygon(m, b, &firstedge, &lastedge, edgecount, 0, -- !b->nobisect); -- } -- /* Splice out two triangles. */ -- lprev(*deltri, deltriright); -- dnext(*deltri, lefttri); -- sym(lefttri, leftcasing); -- oprev(deltriright, righttri); -- sym(righttri, rightcasing); -- bond(*deltri, leftcasing); -- bond(deltriright, rightcasing); -- tspivot(lefttri, leftsubseg); -- if (leftsubseg.ss != m->dummysub) { -- tsbond(*deltri, leftsubseg); -- } -- tspivot(righttri, rightsubseg); -- if (rightsubseg.ss != m->dummysub) { -- tsbond(deltriright, rightsubseg); -- } -- -- /* Set the new origin of `deltri' and check its quality. */ -- org(lefttri, neworg); -- setorg(*deltri, neworg); -- if (!b->nobisect) { -- testtriangle(m, b, deltri); -- } -- -- /* Delete the two spliced-out triangles. */ -- triangledealloc(m, lefttri.tri); -- triangledealloc(m, righttri.tri); --} -- --#endif /* not CDT_ONLY */ -- --/*****************************************************************************/ --/* */ --/* undovertex() Undo the most recent vertex insertion. */ --/* */ --/* Walks through the list of transformations (flips and a vertex insertion) */ --/* in the reverse of the order in which they were done, and undoes them. */ --/* The inserted vertex is removed from the triangulation and deallocated. */ --/* Two triangles (possibly just one) are also deallocated. */ --/* */ --/*****************************************************************************/ -- --#ifndef CDT_ONLY -- --#ifdef ANSI_DECLARATORS --void undovertex(struct mesh *m, struct behavior *b) --#else /* not ANSI_DECLARATORS */ --void undovertex(m, b) --struct mesh *m; --struct behavior *b; --#endif /* not ANSI_DECLARATORS */ -- --{ -- struct otri fliptri; -- struct otri botleft, botright, topright; -- struct otri botlcasing, botrcasing, toprcasing; -- struct otri gluetri; -- struct osub botlsubseg, botrsubseg, toprsubseg; -- vertex botvertex, rightvertex; -- triangle ptr; /* Temporary variable used by sym(). */ -- subseg sptr; /* Temporary variable used by tspivot(). */ -- -- /* Walk through the list of transformations (flips and a vertex insertion) */ -- /* in the reverse of the order in which they were done, and undo them. */ -- while (m->lastflip != (struct flipstacker *) NULL) { -- /* Find a triangle involved in the last unreversed transformation. */ -- decode(m->lastflip->flippedtri, fliptri); -- -- /* We are reversing one of three transformations: a trisection of one */ -- /* triangle into three (by inserting a vertex in the triangle), a */ -- /* bisection of two triangles into four (by inserting a vertex in an */ -- /* edge), or an edge flip. */ -- if (m->lastflip->prevflip == (struct flipstacker *) NULL) { -- /* Restore a triangle that was split into three triangles, */ -- /* so it is again one triangle. */ -- dprev(fliptri, botleft); -- lnextself(botleft); -- onext(fliptri, botright); -- lprevself(botright); -- sym(botleft, botlcasing); -- sym(botright, botrcasing); -- dest(botleft, botvertex); -- -- setapex(fliptri, botvertex); -- lnextself(fliptri); -- bond(fliptri, botlcasing); -- tspivot(botleft, botlsubseg); -- tsbond(fliptri, botlsubseg); -- lnextself(fliptri); -- bond(fliptri, botrcasing); -- tspivot(botright, botrsubseg); -- tsbond(fliptri, botrsubseg); -- -- /* Delete the two spliced-out triangles. */ -- triangledealloc(m, botleft.tri); -- triangledealloc(m, botright.tri); -- } else if (m->lastflip->prevflip == (struct flipstacker *) &insertvertex) { -- /* Restore two triangles that were split into four triangles, */ -- /* so they are again two triangles. */ -- lprev(fliptri, gluetri); -- sym(gluetri, botright); -- lnextself(botright); -- sym(botright, botrcasing); -- dest(botright, rightvertex); -- -- setorg(fliptri, rightvertex); -- bond(gluetri, botrcasing); -- tspivot(botright, botrsubseg); -- tsbond(gluetri, botrsubseg); -- -- /* Delete the spliced-out triangle. */ -- triangledealloc(m, botright.tri); -- -- sym(fliptri, gluetri); -- if (gluetri.tri != m->dummytri) { -- lnextself(gluetri); -- dnext(gluetri, topright); -- sym(topright, toprcasing); -- -- setorg(gluetri, rightvertex); -- bond(gluetri, toprcasing); -- tspivot(topright, toprsubseg); -- tsbond(gluetri, toprsubseg); -- -- /* Delete the spliced-out triangle. */ -- triangledealloc(m, topright.tri); -- } -- -- /* This is the end of the list, sneakily encoded. */ -- m->lastflip->prevflip = (struct flipstacker *) NULL; -- } else { -- /* Undo an edge flip. */ -- unflip(m, b, &fliptri); -- } -- -- /* Go on and process the next transformation. */ -- m->lastflip = m->lastflip->prevflip; -- } --} -- --#endif /* not CDT_ONLY */ -- --/** **/ --/** **/ --/********* Mesh transformation routines end here *********/ -- --/********* Divide-and-conquer Delaunay triangulation begins here *********/ --/** **/ --/** **/ -- --/*****************************************************************************/ --/* */ --/* The divide-and-conquer bounding box */ --/* */ --/* I originally implemented the divide-and-conquer and incremental Delaunay */ --/* triangulations using the edge-based data structure presented by Guibas */ --/* and Stolfi. Switching to a triangle-based data structure doubled the */ --/* speed. However, I had to think of a few extra tricks to maintain the */ --/* elegance of the original algorithms. */ --/* */ --/* The "bounding box" used by my variant of the divide-and-conquer */ --/* algorithm uses one triangle for each edge of the convex hull of the */ --/* triangulation. These bounding triangles all share a common apical */ --/* vertex, which is represented by NULL and which represents nothing. */ --/* The bounding triangles are linked in a circular fan about this NULL */ --/* vertex, and the edges on the convex hull of the triangulation appear */ --/* opposite the NULL vertex. You might find it easiest to imagine that */ --/* the NULL vertex is a point in 3D space behind the center of the */ --/* triangulation, and that the bounding triangles form a sort of cone. */ --/* */ --/* This bounding box makes it easy to represent degenerate cases. For */ --/* instance, the triangulation of two vertices is a single edge. This edge */ --/* is represented by two bounding box triangles, one on each "side" of the */ --/* edge. These triangles are also linked together in a fan about the NULL */ --/* vertex. */ --/* */ --/* The bounding box also makes it easy to traverse the convex hull, as the */ --/* divide-and-conquer algorithm needs to do. */ --/* */ --/*****************************************************************************/ -- --/*****************************************************************************/ --/* */ --/* vertexsort() Sort an array of vertices by x-coordinate, using the */ --/* y-coordinate as a secondary key. */ --/* */ --/* Uses quicksort. Randomized O(n log n) time. No, I did not make any of */ --/* the usual quicksort mistakes. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --void vertexsort(vertex *sortarray, int arraysize) --#else /* not ANSI_DECLARATORS */ --void vertexsort(sortarray, arraysize) --vertex *sortarray; --int arraysize; --#endif /* not ANSI_DECLARATORS */ -- --{ -- int left, right; -- int pivot; -- REAL pivotx, pivoty; -- vertex temp; -- -- if (arraysize == 2) { -- /* Recursive base case. */ -- if ((sortarray[0][0] > sortarray[1][0]) || -- ((sortarray[0][0] == sortarray[1][0]) && -- (sortarray[0][1] > sortarray[1][1]))) { -- temp = sortarray[1]; -- sortarray[1] = sortarray[0]; -- sortarray[0] = temp; -- } -- return; -- } -- /* Choose a random pivot to split the array. */ -- pivot = (int) randomnation((unsigned int) arraysize); -- if (pivot == arraysize)//JLM without this test, pivot can equal arraysize and segfault -- pivot--; -- pivotx = sortarray[pivot][0]; -- pivoty = sortarray[pivot][1]; -- /* Split the array. */ -- left = -1; -- right = arraysize; -- while (left < right) { -- /* Search for a vertex whose x-coordinate is too large for the left. */ -- do { -- left++; -- } while ((left <= right) && ((sortarray[left][0] < pivotx) || -- ((sortarray[left][0] == pivotx) && -- (sortarray[left][1] < pivoty)))); -- /* Search for a vertex whose x-coordinate is too small for the right. */ -- do { -- right--; -- } while ((left <= right) && ((sortarray[right][0] > pivotx) || -- ((sortarray[right][0] == pivotx) && -- (sortarray[right][1] > pivoty)))); -- if (left < right) { -- /* Swap the left and right vertices. */ -- temp = sortarray[left]; -- sortarray[left] = sortarray[right]; -- sortarray[right] = temp; -- } -- } -- if (left > 1) { -- /* Recursively sort the left subset. */ -- vertexsort(sortarray, left); -- } -- if (right < arraysize - 2) { -- /* Recursively sort the right subset. */ -- vertexsort(&sortarray[right + 1], arraysize - right - 1); -- } --} -- --/*****************************************************************************/ --/* */ --/* vertexmedian() An order statistic algorithm, almost. Shuffles an */ --/* array of vertices so that the first `median' vertices */ --/* occur lexicographically before the remaining vertices. */ --/* */ --/* Uses the x-coordinate as the primary key if axis == 0; the y-coordinate */ --/* if axis == 1. Very similar to the vertexsort() procedure, but runs in */ --/* randomized linear time. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --void vertexmedian(vertex *sortarray, int arraysize, int median, int axis) --#else /* not ANSI_DECLARATORS */ --void vertexmedian(sortarray, arraysize, median, axis) --vertex *sortarray; --int arraysize; --int median; --int axis; --#endif /* not ANSI_DECLARATORS */ -- --{ -- int left, right; -- int pivot; -- REAL pivot1, pivot2; -- vertex temp; -- -- if (arraysize == 2) { -- /* Recursive base case. */ -- if ((sortarray[0][axis] > sortarray[1][axis]) || -- ((sortarray[0][axis] == sortarray[1][axis]) && -- (sortarray[0][1 - axis] > sortarray[1][1 - axis]))) { -- temp = sortarray[1]; -- sortarray[1] = sortarray[0]; -- sortarray[0] = temp; -- } -- return; -- } -- /* Choose a random pivot to split the array. */ -- pivot = (int) randomnation((unsigned int) arraysize); -- if (pivot == arraysize)//JLM/SES without this test, pivot can equal arraysize and segfault -- pivot--; -- pivot1 = sortarray[pivot][axis]; -- pivot2 = sortarray[pivot][1 - axis]; -- /* Split the array. */ -- left = -1; -- right = arraysize; -- while (left < right) { -- /* Search for a vertex whose x-coordinate is too large for the left. */ -- do { -- left++; -- } while ((left <= right) && ((sortarray[left][axis] < pivot1) || -- ((sortarray[left][axis] == pivot1) && -- (sortarray[left][1 - axis] < pivot2)))); -- /* Search for a vertex whose x-coordinate is too small for the right. */ -- do { -- right--; -- } while ((left <= right) && ((sortarray[right][axis] > pivot1) || -- ((sortarray[right][axis] == pivot1) && -- (sortarray[right][1 - axis] > pivot2)))); -- if (left < right) { -- /* Swap the left and right vertices. */ -- temp = sortarray[left]; -- sortarray[left] = sortarray[right]; -- sortarray[right] = temp; -- } -- } -- /* Unlike in vertexsort(), at most one of the following */ -- /* conditionals is true. */ -- if (left > median) { -- /* Recursively shuffle the left subset. */ -- vertexmedian(sortarray, left, median, axis); -- } -- if (right < median - 1) { -- /* Recursively shuffle the right subset. */ -- vertexmedian(&sortarray[right + 1], arraysize - right - 1, -- median - right - 1, axis); -- } --} -- --/*****************************************************************************/ --/* */ --/* alternateaxes() Sorts the vertices as appropriate for the divide-and- */ --/* conquer algorithm with alternating cuts. */ --/* */ --/* Partitions by x-coordinate if axis == 0; by y-coordinate if axis == 1. */ --/* For the base case, subsets containing only two or three vertices are */ --/* always sorted by x-coordinate. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --void alternateaxes(vertex *sortarray, int arraysize, int axis) --#else /* not ANSI_DECLARATORS */ --void alternateaxes(sortarray, arraysize, axis) --vertex *sortarray; --int arraysize; --int axis; --#endif /* not ANSI_DECLARATORS */ -- --{ -- int divider; -- -- divider = arraysize >> 1; -- if (arraysize <= 3) { -- /* Recursive base case: subsets of two or three vertices will be */ -- /* handled specially, and should always be sorted by x-coordinate. */ -- axis = 0; -- } -- /* Partition with a horizontal or vertical cut. */ -- vertexmedian(sortarray, arraysize, divider, axis); -- /* Recursively partition the subsets with a cross cut. */ -- if (arraysize - divider >= 2) { -- if (divider >= 2) { -- alternateaxes(sortarray, divider, 1 - axis); -- } -- alternateaxes(&sortarray[divider], arraysize - divider, 1 - axis); -- } --} -- --/*****************************************************************************/ --/* */ --/* mergehulls() Merge two adjacent Delaunay triangulations into a */ --/* single Delaunay triangulation. */ --/* */ --/* This is similar to the algorithm given by Guibas and Stolfi, but uses */ --/* a triangle-based, rather than edge-based, data structure. */ --/* */ --/* The algorithm walks up the gap between the two triangulations, knitting */ --/* them together. As they are merged, some of their bounding triangles */ --/* are converted into real triangles of the triangulation. The procedure */ --/* pulls each hull's bounding triangles apart, then knits them together */ --/* like the teeth of two gears. The Delaunay property determines, at each */ --/* step, whether the next "tooth" is a bounding triangle of the left hull */ --/* or the right. When a bounding triangle becomes real, its apex is */ --/* changed from NULL to a real vertex. */ --/* */ --/* Only two new triangles need to be allocated. These become new bounding */ --/* triangles at the top and bottom of the seam. They are used to connect */ --/* the remaining bounding triangles (those that have not been converted */ --/* into real triangles) into a single fan. */ --/* */ --/* On entry, `farleft' and `innerleft' are bounding triangles of the left */ --/* triangulation. The origin of `farleft' is the leftmost vertex, and */ --/* the destination of `innerleft' is the rightmost vertex of the */ --/* triangulation. Similarly, `innerright' and `farright' are bounding */ --/* triangles of the right triangulation. The origin of `innerright' and */ --/* destination of `farright' are the leftmost and rightmost vertices. */ --/* */ --/* On completion, the origin of `farleft' is the leftmost vertex of the */ --/* merged triangulation, and the destination of `farright' is the rightmost */ --/* vertex. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --void mergehulls(struct mesh *m, struct behavior *b, struct otri *farleft, -- struct otri *innerleft, struct otri *innerright, -- struct otri *farright, int axis) --#else /* not ANSI_DECLARATORS */ --void mergehulls(m, b, farleft, innerleft, innerright, farright, axis) --struct mesh *m; --struct behavior *b; --struct otri *farleft; --struct otri *innerleft; --struct otri *innerright; --struct otri *farright; --int axis; --#endif /* not ANSI_DECLARATORS */ -- --{ -- struct otri leftcand, rightcand; -- struct otri baseedge; -- struct otri nextedge; -- struct otri sidecasing, topcasing, outercasing; -- struct otri checkedge; -- vertex innerleftdest; -- vertex innerrightorg; -- vertex innerleftapex, innerrightapex; -- vertex farleftpt, farrightpt; -- vertex farleftapex, farrightapex; -- vertex lowerleft, lowerright; -- vertex upperleft, upperright; -- vertex nextapex; -- vertex checkvertex; -- int changemade; -- int badedge; -- int leftfinished, rightfinished; -- triangle ptr; /* Temporary variable used by sym(). */ -- -- dest(*innerleft, innerleftdest); -- apex(*innerleft, innerleftapex); -- org(*innerright, innerrightorg); -- apex(*innerright, innerrightapex); -- /* Special treatment for horizontal cuts. */ -- if (b->dwyer && (axis == 1)) { -- org(*farleft, farleftpt); -- apex(*farleft, farleftapex); -- dest(*farright, farrightpt); -- apex(*farright, farrightapex); -- /* The pointers to the extremal vertices are shifted to point to the */ -- /* topmost and bottommost vertex of each hull, rather than the */ -- /* leftmost and rightmost vertices. */ -- while (farleftapex[1] < farleftpt[1]) { -- lnextself(*farleft); -- symself(*farleft); -- farleftpt = farleftapex; -- apex(*farleft, farleftapex); -- } -- sym(*innerleft, checkedge); -- apex(checkedge, checkvertex); -- while (checkvertex[1] > innerleftdest[1]) { -- lnext(checkedge, *innerleft); -- innerleftapex = innerleftdest; -- innerleftdest = checkvertex; -- sym(*innerleft, checkedge); -- apex(checkedge, checkvertex); -- } -- while (innerrightapex[1] < innerrightorg[1]) { -- lnextself(*innerright); -- symself(*innerright); -- innerrightorg = innerrightapex; -- apex(*innerright, innerrightapex); -- } -- sym(*farright, checkedge); -- apex(checkedge, checkvertex); -- while (checkvertex[1] > farrightpt[1]) { -- lnext(checkedge, *farright); -- farrightpt = checkvertex; -- sym(*farright, checkedge); -- apex(checkedge, checkvertex); -- } -- } -- /* Find a line tangent to and below both hulls. */ -- do { -- changemade = 0; -- /* Make innerleftdest the "bottommost" vertex of the left hull. */ -- if (counterclockwise(m, b, innerleftdest, innerleftapex, innerrightorg) > -- 0.0) { -- lprevself(*innerleft); -- symself(*innerleft); -- innerleftdest = innerleftapex; -- apex(*innerleft, innerleftapex); -- changemade = 1; -- } -- /* Make innerrightorg the "bottommost" vertex of the right hull. */ -- if (counterclockwise(m, b, innerrightapex, innerrightorg, innerleftdest) > -- 0.0) { -- lnextself(*innerright); -- symself(*innerright); -- innerrightorg = innerrightapex; -- apex(*innerright, innerrightapex); -- changemade = 1; -- } -- } while (changemade); -- /* Find the two candidates to be the next "gear tooth." */ -- sym(*innerleft, leftcand); -- sym(*innerright, rightcand); -- /* Create the bottom new bounding triangle. */ -- maketriangle(m, b, &baseedge); -- /* Connect it to the bounding boxes of the left and right triangulations. */ -- bond(baseedge, *innerleft); -- lnextself(baseedge); -- bond(baseedge, *innerright); -- lnextself(baseedge); -- setorg(baseedge, innerrightorg); -- setdest(baseedge, innerleftdest); -- /* Apex is intentionally left NULL. */ -- if (b->verbose > 2) { -- printf(" Creating base bounding "); -- printtriangle(m, b, &baseedge); -- } -- /* Fix the extreme triangles if necessary. */ -- org(*farleft, farleftpt); -- if (innerleftdest == farleftpt) { -- lnext(baseedge, *farleft); -- } -- dest(*farright, farrightpt); -- if (innerrightorg == farrightpt) { -- lprev(baseedge, *farright); -- } -- /* The vertices of the current knitting edge. */ -- lowerleft = innerleftdest; -- lowerright = innerrightorg; -- /* The candidate vertices for knitting. */ -- apex(leftcand, upperleft); -- apex(rightcand, upperright); -- /* Walk up the gap between the two triangulations, knitting them together. */ -- while (1) { -- /* Have we reached the top? (This isn't quite the right question, */ -- /* because even though the left triangulation might seem finished now, */ -- /* moving up on the right triangulation might reveal a new vertex of */ -- /* the left triangulation. And vice-versa.) */ -- leftfinished = counterclockwise(m, b, upperleft, lowerleft, lowerright) <= -- 0.0; -- rightfinished = counterclockwise(m, b, upperright, lowerleft, lowerright) -- <= 0.0; -- if (leftfinished && rightfinished) { -- /* Create the top new bounding triangle. */ -- maketriangle(m, b, &nextedge); -- setorg(nextedge, lowerleft); -- setdest(nextedge, lowerright); -- /* Apex is intentionally left NULL. */ -- /* Connect it to the bounding boxes of the two triangulations. */ -- bond(nextedge, baseedge); -- lnextself(nextedge); -- bond(nextedge, rightcand); -- lnextself(nextedge); -- bond(nextedge, leftcand); -- if (b->verbose > 2) { -- printf(" Creating top bounding "); -- printtriangle(m, b, &nextedge); -- } -- /* Special treatment for horizontal cuts. */ -- if (b->dwyer && (axis == 1)) { -- org(*farleft, farleftpt); -- apex(*farleft, farleftapex); -- dest(*farright, farrightpt); -- apex(*farright, farrightapex); -- sym(*farleft, checkedge); -- apex(checkedge, checkvertex); -- /* The pointers to the extremal vertices are restored to the */ -- /* leftmost and rightmost vertices (rather than topmost and */ -- /* bottommost). */ -- while (checkvertex[0] < farleftpt[0]) { -- lprev(checkedge, *farleft); -- farleftpt = checkvertex; -- sym(*farleft, checkedge); -- apex(checkedge, checkvertex); -- } -- while (farrightapex[0] > farrightpt[0]) { -- lprevself(*farright); -- symself(*farright); -- farrightpt = farrightapex; -- apex(*farright, farrightapex); -- } -- } -- return; -- } -- /* Consider eliminating edges from the left triangulation. */ -- if (!leftfinished) { -- /* What vertex would be exposed if an edge were deleted? */ -- lprev(leftcand, nextedge); -- symself(nextedge); -- apex(nextedge, nextapex); -- /* If nextapex is NULL, then no vertex would be exposed; the */ -- /* triangulation would have been eaten right through. */ -- if (nextapex != (vertex) NULL) { -- /* Check whether the edge is Delaunay. */ -- badedge = incircle(m, b, lowerleft, lowerright, upperleft, nextapex) > -- 0.0; -- while (badedge) { -- /* Eliminate the edge with an edge flip. As a result, the */ -- /* left triangulation will have one more boundary triangle. */ -- lnextself(nextedge); -- sym(nextedge, topcasing); -- lnextself(nextedge); -- sym(nextedge, sidecasing); -- bond(nextedge, topcasing); -- bond(leftcand, sidecasing); -- lnextself(leftcand); -- sym(leftcand, outercasing); -- lprevself(nextedge); -- bond(nextedge, outercasing); -- /* Correct the vertices to reflect the edge flip. */ -- setorg(leftcand, lowerleft); -- setdest(leftcand, NULL); -- setapex(leftcand, nextapex); -- setorg(nextedge, NULL); -- setdest(nextedge, upperleft); -- setapex(nextedge, nextapex); -- /* Consider the newly exposed vertex. */ -- upperleft = nextapex; -- /* What vertex would be exposed if another edge were deleted? */ -- otricopy(sidecasing, nextedge); -- apex(nextedge, nextapex); -- if (nextapex != (vertex) NULL) { -- /* Check whether the edge is Delaunay. */ -- badedge = incircle(m, b, lowerleft, lowerright, upperleft, -- nextapex) > 0.0; -- } else { -- /* Avoid eating right through the triangulation. */ -- badedge = 0; -- } -- } -- } -- } -- /* Consider eliminating edges from the right triangulation. */ -- if (!rightfinished) { -- /* What vertex would be exposed if an edge were deleted? */ -- lnext(rightcand, nextedge); -- symself(nextedge); -- apex(nextedge, nextapex); -- /* If nextapex is NULL, then no vertex would be exposed; the */ -- /* triangulation would have been eaten right through. */ -- if (nextapex != (vertex) NULL) { -- /* Check whether the edge is Delaunay. */ -- badedge = incircle(m, b, lowerleft, lowerright, upperright, nextapex) > -- 0.0; -- while (badedge) { -- /* Eliminate the edge with an edge flip. As a result, the */ -- /* right triangulation will have one more boundary triangle. */ -- lprevself(nextedge); -- sym(nextedge, topcasing); -- lprevself(nextedge); -- sym(nextedge, sidecasing); -- bond(nextedge, topcasing); -- bond(rightcand, sidecasing); -- lprevself(rightcand); -- sym(rightcand, outercasing); -- lnextself(nextedge); -- bond(nextedge, outercasing); -- /* Correct the vertices to reflect the edge flip. */ -- setorg(rightcand, NULL); -- setdest(rightcand, lowerright); -- setapex(rightcand, nextapex); -- setorg(nextedge, upperright); -- setdest(nextedge, NULL); -- setapex(nextedge, nextapex); -- /* Consider the newly exposed vertex. */ -- upperright = nextapex; -- /* What vertex would be exposed if another edge were deleted? */ -- otricopy(sidecasing, nextedge); -- apex(nextedge, nextapex); -- if (nextapex != (vertex) NULL) { -- /* Check whether the edge is Delaunay. */ -- badedge = incircle(m, b, lowerleft, lowerright, upperright, -- nextapex) > 0.0; -- } else { -- /* Avoid eating right through the triangulation. */ -- badedge = 0; -- } -- } -- } -- } -- if (leftfinished || (!rightfinished && -- (incircle(m, b, upperleft, lowerleft, lowerright, upperright) > -- 0.0))) { -- /* Knit the triangulations, adding an edge from `lowerleft' */ -- /* to `upperright'. */ -- bond(baseedge, rightcand); -- lprev(rightcand, baseedge); -- setdest(baseedge, lowerleft); -- lowerright = upperright; -- sym(baseedge, rightcand); -- apex(rightcand, upperright); -- } else { -- /* Knit the triangulations, adding an edge from `upperleft' */ -- /* to `lowerright'. */ -- bond(baseedge, leftcand); -- lnext(leftcand, baseedge); -- setorg(baseedge, lowerright); -- lowerleft = upperleft; -- sym(baseedge, leftcand); -- apex(leftcand, upperleft); -- } -- if (b->verbose > 2) { -- printf(" Connecting "); -- printtriangle(m, b, &baseedge); -- } -- } --} -- --/*****************************************************************************/ --/* */ --/* divconqrecurse() Recursively form a Delaunay triangulation by the */ --/* divide-and-conquer method. */ --/* */ --/* Recursively breaks down the problem into smaller pieces, which are */ --/* knitted together by mergehulls(). The base cases (problems of two or */ --/* three vertices) are handled specially here. */ --/* */ --/* On completion, `farleft' and `farright' are bounding triangles such that */ --/* the origin of `farleft' is the leftmost vertex (breaking ties by */ --/* choosing the highest leftmost vertex), and the destination of */ --/* `farright' is the rightmost vertex (breaking ties by choosing the */ --/* lowest rightmost vertex). */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --void divconqrecurse(struct mesh *m, struct behavior *b, vertex *sortarray, -- int vertices, int axis, -- struct otri *farleft, struct otri *farright) --#else /* not ANSI_DECLARATORS */ --void divconqrecurse(m, b, sortarray, vertices, axis, farleft, farright) --struct mesh *m; --struct behavior *b; --vertex *sortarray; --int vertices; --int axis; --struct otri *farleft; --struct otri *farright; --#endif /* not ANSI_DECLARATORS */ -- --{ -- struct otri midtri, tri1, tri2, tri3; -- struct otri innerleft, innerright; -- REAL area; -- int divider; -- -- if (b->verbose > 2) { -- printf(" Triangulating %d vertices.\n", vertices); -- } -- if (vertices == 2) { -- /* The triangulation of two vertices is an edge. An edge is */ -- /* represented by two bounding triangles. */ -- maketriangle(m, b, farleft); -- setorg(*farleft, sortarray[0]); -- setdest(*farleft, sortarray[1]); -- /* The apex is intentionally left NULL. */ -- maketriangle(m, b, farright); -- setorg(*farright, sortarray[1]); -- setdest(*farright, sortarray[0]); -- /* The apex is intentionally left NULL. */ -- bond(*farleft, *farright); -- lprevself(*farleft); -- lnextself(*farright); -- bond(*farleft, *farright); -- lprevself(*farleft); -- lnextself(*farright); -- bond(*farleft, *farright); -- if (b->verbose > 2) { -- printf(" Creating "); -- printtriangle(m, b, farleft); -- printf(" Creating "); -- printtriangle(m, b, farright); -- } -- /* Ensure that the origin of `farleft' is sortarray[0]. */ -- lprev(*farright, *farleft); -- return; -- } else if (vertices == 3) { -- /* The triangulation of three vertices is either a triangle (with */ -- /* three bounding triangles) or two edges (with four bounding */ -- /* triangles). In either case, four triangles are created. */ -- maketriangle(m, b, &midtri); -- maketriangle(m, b, &tri1); -- maketriangle(m, b, &tri2); -- maketriangle(m, b, &tri3); -- area = counterclockwise(m, b, sortarray[0], sortarray[1], sortarray[2]); -- if (area == 0.0) { -- /* Three collinear vertices; the triangulation is two edges. */ -- setorg(midtri, sortarray[0]); -- setdest(midtri, sortarray[1]); -- setorg(tri1, sortarray[1]); -- setdest(tri1, sortarray[0]); -- setorg(tri2, sortarray[2]); -- setdest(tri2, sortarray[1]); -- setorg(tri3, sortarray[1]); -- setdest(tri3, sortarray[2]); -- /* All apices are intentionally left NULL. */ -- bond(midtri, tri1); -- bond(tri2, tri3); -- lnextself(midtri); -- lprevself(tri1); -- lnextself(tri2); -- lprevself(tri3); -- bond(midtri, tri3); -- bond(tri1, tri2); -- lnextself(midtri); -- lprevself(tri1); -- lnextself(tri2); -- lprevself(tri3); -- bond(midtri, tri1); -- bond(tri2, tri3); -- /* Ensure that the origin of `farleft' is sortarray[0]. */ -- otricopy(tri1, *farleft); -- /* Ensure that the destination of `farright' is sortarray[2]. */ -- otricopy(tri2, *farright); -- } else { -- /* The three vertices are not collinear; the triangulation is one */ -- /* triangle, namely `midtri'. */ -- setorg(midtri, sortarray[0]); -- setdest(tri1, sortarray[0]); -- setorg(tri3, sortarray[0]); -- /* Apices of tri1, tri2, and tri3 are left NULL. */ -- if (area > 0.0) { -- /* The vertices are in counterclockwise order. */ -- setdest(midtri, sortarray[1]); -- setorg(tri1, sortarray[1]); -- setdest(tri2, sortarray[1]); -- setapex(midtri, sortarray[2]); -- setorg(tri2, sortarray[2]); -- setdest(tri3, sortarray[2]); -- } else { -- /* The vertices are in clockwise order. */ -- setdest(midtri, sortarray[2]); -- setorg(tri1, sortarray[2]); -- setdest(tri2, sortarray[2]); -- setapex(midtri, sortarray[1]); -- setorg(tri2, sortarray[1]); -- setdest(tri3, sortarray[1]); -- } -- /* The topology does not depend on how the vertices are ordered. */ -- bond(midtri, tri1); -- lnextself(midtri); -- bond(midtri, tri2); -- lnextself(midtri); -- bond(midtri, tri3); -- lprevself(tri1); -- lnextself(tri2); -- bond(tri1, tri2); -- lprevself(tri1); -- lprevself(tri3); -- bond(tri1, tri3); -- lnextself(tri2); -- lprevself(tri3); -- bond(tri2, tri3); -- /* Ensure that the origin of `farleft' is sortarray[0]. */ -- otricopy(tri1, *farleft); -- /* Ensure that the destination of `farright' is sortarray[2]. */ -- if (area > 0.0) { -- otricopy(tri2, *farright); -- } else { -- lnext(*farleft, *farright); -- } -- } -- if (b->verbose > 2) { -- printf(" Creating "); -- printtriangle(m, b, &midtri); -- printf(" Creating "); -- printtriangle(m, b, &tri1); -- printf(" Creating "); -- printtriangle(m, b, &tri2); -- printf(" Creating "); -- printtriangle(m, b, &tri3); -- } -- return; -- } else { -- /* Split the vertices in half. */ -- divider = vertices >> 1; -- /* Recursively triangulate each half. */ -- divconqrecurse(m, b, sortarray, divider, 1 - axis, farleft, &innerleft); -- divconqrecurse(m, b, &sortarray[divider], vertices - divider, 1 - axis, -- &innerright, farright); -- if (b->verbose > 1) { -- printf(" Joining triangulations with %d and %d vertices.\n", divider, -- vertices - divider); -- } -- /* Merge the two triangulations into one. */ -- mergehulls(m, b, farleft, &innerleft, &innerright, farright, axis); -- } --} -- --#ifdef ANSI_DECLARATORS --long removeghosts(struct mesh *m, struct behavior *b, struct otri *startghost) --#else /* not ANSI_DECLARATORS */ --long removeghosts(m, b, startghost) --struct mesh *m; --struct behavior *b; --struct otri *startghost; --#endif /* not ANSI_DECLARATORS */ -- --{ -- struct otri searchedge; -- struct otri dissolveedge; -- struct otri deadtriangle; -- vertex markorg; -- long hullsize; -- triangle ptr; /* Temporary variable used by sym(). */ -- -- if (b->verbose) { -- printf(" Removing ghost triangles.\n"); -- } -- /* Find an edge on the convex hull to start point location from. */ -- lprev(*startghost, searchedge); -- symself(searchedge); -- m->dummytri[0] = encode(searchedge); -- /* Remove the bounding box and count the convex hull edges. */ -- otricopy(*startghost, dissolveedge); -- hullsize = 0; -- do { -- hullsize++; -- lnext(dissolveedge, deadtriangle); -- lprevself(dissolveedge); -- symself(dissolveedge); -- /* If no PSLG is involved, set the boundary markers of all the vertices */ -- /* on the convex hull. If a PSLG is used, this step is done later. */ -- if (!b->poly) { -- /* Watch out for the case where all the input vertices are collinear. */ -- if (dissolveedge.tri != m->dummytri) { -- org(dissolveedge, markorg); -- if (vertexmark(markorg) == 0) { -- setvertexmark(markorg, 1); -- } -- } -- } -- /* Remove a bounding triangle from a convex hull triangle. */ -- dissolve(dissolveedge); -- /* Find the next bounding triangle. */ -- sym(deadtriangle, dissolveedge); -- /* Delete the bounding triangle. */ -- triangledealloc(m, deadtriangle.tri); -- } while (!otriequal(dissolveedge, *startghost)); -- return hullsize; --} -- --/*****************************************************************************/ --/* */ --/* divconqdelaunay() Form a Delaunay triangulation by the divide-and- */ --/* conquer method. */ --/* */ --/* Sorts the vertices, calls a recursive procedure to triangulate them, and */ --/* removes the bounding box, setting boundary markers as appropriate. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --long divconqdelaunay(struct mesh *m, struct behavior *b) --#else /* not ANSI_DECLARATORS */ --long divconqdelaunay(m, b) --struct mesh *m; --struct behavior *b; --#endif /* not ANSI_DECLARATORS */ -- --{ -- vertex *sortarray; -- struct otri hullleft, hullright; -- int divider; -- int i, j; -- -- if (b->verbose) { -- printf(" Sorting vertices.\n"); -- } -- -- /* Allocate an array of pointers to vertices for sorting. */ -- sortarray = (vertex *) trimalloc(m->invertices * (int) sizeof(vertex)); -- traversalinit(&m->vertices); -- for (i = 0; i < m->invertices; i++) { -- sortarray[i] = vertextraverse(m); -- } -- /* Sort the vertices. */ -- vertexsort(sortarray, m->invertices); -- /* Discard duplicate vertices, which can really mess up the algorithm. */ -- i = 0; -- for (j = 1; j < m->invertices; j++) { -- if ((sortarray[i][0] == sortarray[j][0]) -- && (sortarray[i][1] == sortarray[j][1])) { -- if (!b->quiet) { -- printf( --"Warning: A duplicate vertex at (%.12g, %.12g) appeared and was ignored.\n", -- sortarray[j][0], sortarray[j][1]); -- } -- setvertextype(sortarray[j], UNDEADVERTEX); -- m->undeads++; -- } else { -- i++; -- sortarray[i] = sortarray[j]; -- } -- } -- i++; -- if (b->dwyer) { -- /* Re-sort the array of vertices to accommodate alternating cuts. */ -- divider = i >> 1; -- if (i - divider >= 2) { -- if (divider >= 2) { -- alternateaxes(sortarray, divider, 1); -- } -- alternateaxes(&sortarray[divider], i - divider, 1); -- } -- } -- -- if (b->verbose) { -- printf(" Forming triangulation.\n"); -- } -- -- /* Form the Delaunay triangulation. */ -- divconqrecurse(m, b, sortarray, i, 0, &hullleft, &hullright); -- trifree((void *) sortarray); -- -- return removeghosts(m, b, &hullleft); --} -- --/** **/ --/** **/ --/********* Divide-and-conquer Delaunay triangulation ends here *********/ -- --/********* Incremental Delaunay triangulation begins here *********/ --/** **/ --/** **/ -- --/*****************************************************************************/ --/* */ --/* boundingbox() Form an "infinite" bounding triangle to insert vertices */ --/* into. */ --/* */ --/* The vertices at "infinity" are assigned finite coordinates, which are */ --/* used by the point location routines, but (mostly) ignored by the */ --/* Delaunay edge flip routines. */ --/* */ --/*****************************************************************************/ -- --#ifndef REDUCED -- --#ifdef ANSI_DECLARATORS --void boundingbox(struct mesh *m, struct behavior *b) --#else /* not ANSI_DECLARATORS */ --void boundingbox(m, b) --struct mesh *m; --struct behavior *b; --#endif /* not ANSI_DECLARATORS */ -- --{ -- struct otri inftri; /* Handle for the triangular bounding box. */ -- REAL width; -- -- if (b->verbose) { -- printf(" Creating triangular bounding box.\n"); -- } -- /* Find the width (or height, whichever is larger) of the triangulation. */ -- width = m->xmax - m->xmin; -- if (m->ymax - m->ymin > width) { -- width = m->ymax - m->ymin; -- } -- if (width == 0.0) { -- width = 1.0; -- } -- /* Create the vertices of the bounding box. */ -- m->infvertex1 = (vertex) trimalloc(m->vertices.itembytes); -- m->infvertex2 = (vertex) trimalloc(m->vertices.itembytes); -- m->infvertex3 = (vertex) trimalloc(m->vertices.itembytes); -- m->infvertex1[0] = m->xmin - 50.0 * width; -- m->infvertex1[1] = m->ymin - 40.0 * width; -- m->infvertex2[0] = m->xmax + 50.0 * width; -- m->infvertex2[1] = m->ymin - 40.0 * width; -- m->infvertex3[0] = 0.5 * (m->xmin + m->xmax); -- m->infvertex3[1] = m->ymax + 60.0 * width; -- -- /* Create the bounding box. */ -- maketriangle(m, b, &inftri); -- setorg(inftri, m->infvertex1); -- setdest(inftri, m->infvertex2); -- setapex(inftri, m->infvertex3); -- /* Link dummytri to the bounding box so we can always find an */ -- /* edge to begin searching (point location) from. */ -- m->dummytri[0] = (triangle) inftri.tri; -- if (b->verbose > 2) { -- printf(" Creating "); -- printtriangle(m, b, &inftri); -- } --} -- --#endif /* not REDUCED */ -- --/*****************************************************************************/ --/* */ --/* removebox() Remove the "infinite" bounding triangle, setting boundary */ --/* markers as appropriate. */ --/* */ --/* The triangular bounding box has three boundary triangles (one for each */ --/* side of the bounding box), and a bunch of triangles fanning out from */ --/* the three bounding box vertices (one triangle for each edge of the */ --/* convex hull of the inner mesh). This routine removes these triangles. */ --/* */ --/* Returns the number of edges on the convex hull of the triangulation. */ --/* */ --/*****************************************************************************/ -- --#ifndef REDUCED -- --#ifdef ANSI_DECLARATORS --long removebox(struct mesh *m, struct behavior *b) --#else /* not ANSI_DECLARATORS */ --long removebox(m, b) --struct mesh *m; --struct behavior *b; --#endif /* not ANSI_DECLARATORS */ -- --{ -- struct otri deadtriangle; -- struct otri searchedge; -- struct otri checkedge; -- struct otri nextedge, finaledge, dissolveedge; -- vertex markorg; -- long hullsize; -- triangle ptr; /* Temporary variable used by sym(). */ -- -- if (b->verbose) { -- printf(" Removing triangular bounding box.\n"); -- } -- /* Find a boundary triangle. */ -- nextedge.tri = m->dummytri; -- nextedge.orient = 0; -- symself(nextedge); -- /* Mark a place to stop. */ -- lprev(nextedge, finaledge); -- lnextself(nextedge); -- symself(nextedge); -- /* Find a triangle (on the boundary of the vertex set) that isn't */ -- /* a bounding box triangle. */ -- lprev(nextedge, searchedge); -- symself(searchedge); -- /* Check whether nextedge is another boundary triangle */ -- /* adjacent to the first one. */ -- lnext(nextedge, checkedge); -- symself(checkedge); -- if (checkedge.tri == m->dummytri) { -- /* Go on to the next triangle. There are only three boundary */ -- /* triangles, and this next triangle cannot be the third one, */ -- /* so it's safe to stop here. */ -- lprevself(searchedge); -- symself(searchedge); -- } -- /* Find a new boundary edge to search from, as the current search */ -- /* edge lies on a bounding box triangle and will be deleted. */ -- m->dummytri[0] = encode(searchedge); -- hullsize = -2l; -- while (!otriequal(nextedge, finaledge)) { -- hullsize++; -- lprev(nextedge, dissolveedge); -- symself(dissolveedge); -- /* If not using a PSLG, the vertices should be marked now. */ -- /* (If using a PSLG, markhull() will do the job.) */ -- if (!b->poly) { -- /* Be careful! One must check for the case where all the input */ -- /* vertices are collinear, and thus all the triangles are part of */ -- /* the bounding box. Otherwise, the setvertexmark() call below */ -- /* will cause a bad pointer reference. */ -- if (dissolveedge.tri != m->dummytri) { -- org(dissolveedge, markorg); -- if (vertexmark(markorg) == 0) { -- setvertexmark(markorg, 1); -- } -- } -- } -- /* Disconnect the bounding box triangle from the mesh triangle. */ -- dissolve(dissolveedge); -- lnext(nextedge, deadtriangle); -- sym(deadtriangle, nextedge); -- /* Get rid of the bounding box triangle. */ -- triangledealloc(m, deadtriangle.tri); -- /* Do we need to turn the corner? */ -- if (nextedge.tri == m->dummytri) { -- /* Turn the corner. */ -- otricopy(dissolveedge, nextedge); -- } -- } -- triangledealloc(m, finaledge.tri); -- -- trifree((void *) m->infvertex1); /* Deallocate the bounding box vertices. */ -- trifree((void *) m->infvertex2); -- trifree((void *) m->infvertex3); -- -- return hullsize; --} -- --#endif /* not REDUCED */ -- --/*****************************************************************************/ --/* */ --/* incrementaldelaunay() Form a Delaunay triangulation by incrementally */ --/* inserting vertices. */ --/* */ --/* Returns the number of edges on the convex hull of the triangulation. */ --/* */ --/*****************************************************************************/ -- --#ifndef REDUCED -- --#ifdef ANSI_DECLARATORS --long incrementaldelaunay(struct mesh *m, struct behavior *b) --#else /* not ANSI_DECLARATORS */ --long incrementaldelaunay(m, b) --struct mesh *m; --struct behavior *b; --#endif /* not ANSI_DECLARATORS */ -- --{ -- struct otri starttri; -- vertex vertexloop; -- -- /* Create a triangular bounding box. */ -- boundingbox(m, b); -- if (b->verbose) { -- printf(" Incrementally inserting vertices.\n"); -- } -- traversalinit(&m->vertices); -- vertexloop = vertextraverse(m); -- while (vertexloop != (vertex) NULL) { -- starttri.tri = m->dummytri; -- if (insertvertex(m, b, vertexloop, &starttri, (struct osub *) NULL, 0, 0) -- == DUPLICATEVERTEX) { -- if (!b->quiet) { -- printf( --"Warning: A duplicate vertex at (%.12g, %.12g) appeared and was ignored.\n", -- vertexloop[0], vertexloop[1]); -- } -- setvertextype(vertexloop, UNDEADVERTEX); -- m->undeads++; -- } -- vertexloop = vertextraverse(m); -- } -- /* Remove the bounding box. */ -- return removebox(m, b); --} -- --#endif /* not REDUCED */ -- --/** **/ --/** **/ --/********* Incremental Delaunay triangulation ends here *********/ -- --/********* Sweepline Delaunay triangulation begins here *********/ --/** **/ --/** **/ -- --#ifndef REDUCED -- --#ifdef ANSI_DECLARATORS --void eventheapinsert(struct event **heap, int heapsize, struct event *newevent) --#else /* not ANSI_DECLARATORS */ --void eventheapinsert(heap, heapsize, newevent) --struct event **heap; --int heapsize; --struct event *newevent; --#endif /* not ANSI_DECLARATORS */ -- --{ -- REAL eventx, eventy; -- int eventnum; -- int parent; -- int notdone; -- -- eventx = newevent->xkey; -- eventy = newevent->ykey; -- eventnum = heapsize; -- notdone = eventnum > 0; -- while (notdone) { -- parent = (eventnum - 1) >> 1; -- if ((heap[parent]->ykey < eventy) || -- ((heap[parent]->ykey == eventy) -- && (heap[parent]->xkey <= eventx))) { -- notdone = 0; -- } else { -- heap[eventnum] = heap[parent]; -- heap[eventnum]->heapposition = eventnum; -- -- eventnum = parent; -- notdone = eventnum > 0; -- } -- } -- heap[eventnum] = newevent; -- newevent->heapposition = eventnum; --} -- --#endif /* not REDUCED */ -- --#ifndef REDUCED -- --#ifdef ANSI_DECLARATORS --void eventheapify(struct event **heap, int heapsize, int eventnum) --#else /* not ANSI_DECLARATORS */ --void eventheapify(heap, heapsize, eventnum) --struct event **heap; --int heapsize; --int eventnum; --#endif /* not ANSI_DECLARATORS */ -- --{ -- struct event *thisevent; -- REAL eventx, eventy; -- int leftchild, rightchild; -- int smallest; -- int notdone; -- -- thisevent = heap[eventnum]; -- eventx = thisevent->xkey; -- eventy = thisevent->ykey; -- leftchild = 2 * eventnum + 1; -- notdone = leftchild < heapsize; -- while (notdone) { -- if ((heap[leftchild]->ykey < eventy) || -- ((heap[leftchild]->ykey == eventy) -- && (heap[leftchild]->xkey < eventx))) { -- smallest = leftchild; -- } else { -- smallest = eventnum; -- } -- rightchild = leftchild + 1; -- if (rightchild < heapsize) { -- if ((heap[rightchild]->ykey < heap[smallest]->ykey) || -- ((heap[rightchild]->ykey == heap[smallest]->ykey) -- && (heap[rightchild]->xkey < heap[smallest]->xkey))) { -- smallest = rightchild; -- } -- } -- if (smallest == eventnum) { -- notdone = 0; -- } else { -- heap[eventnum] = heap[smallest]; -- heap[eventnum]->heapposition = eventnum; -- heap[smallest] = thisevent; -- thisevent->heapposition = smallest; -- -- eventnum = smallest; -- leftchild = 2 * eventnum + 1; -- notdone = leftchild < heapsize; -- } -- } --} -- --#endif /* not REDUCED */ -- --#ifndef REDUCED -- --#ifdef ANSI_DECLARATORS --void eventheapdelete(struct event **heap, int heapsize, int eventnum) --#else /* not ANSI_DECLARATORS */ --void eventheapdelete(heap, heapsize, eventnum) --struct event **heap; --int heapsize; --int eventnum; --#endif /* not ANSI_DECLARATORS */ -- --{ -- struct event *moveevent; -- REAL eventx, eventy; -- int parent; -- int notdone; -- -- moveevent = heap[heapsize - 1]; -- if (eventnum > 0) { -- eventx = moveevent->xkey; -- eventy = moveevent->ykey; -- do { -- parent = (eventnum - 1) >> 1; -- if ((heap[parent]->ykey < eventy) || -- ((heap[parent]->ykey == eventy) -- && (heap[parent]->xkey <= eventx))) { -- notdone = 0; -- } else { -- heap[eventnum] = heap[parent]; -- heap[eventnum]->heapposition = eventnum; -- -- eventnum = parent; -- notdone = eventnum > 0; -- } -- } while (notdone); -- } -- heap[eventnum] = moveevent; -- moveevent->heapposition = eventnum; -- eventheapify(heap, heapsize - 1, eventnum); --} -- --#endif /* not REDUCED */ -- --#ifndef REDUCED -- --#ifdef ANSI_DECLARATORS --void createeventheap(struct mesh *m, struct event ***eventheap, -- struct event **events, struct event **freeevents) --#else /* not ANSI_DECLARATORS */ --void createeventheap(m, eventheap, events, freeevents) --struct mesh *m; --struct event ***eventheap; --struct event **events; --struct event **freeevents; --#endif /* not ANSI_DECLARATORS */ -- --{ -- vertex thisvertex; -- int maxevents; -- int i; -- -- maxevents = (3 * m->invertices) / 2; -- *eventheap = (struct event **) trimalloc(maxevents * -- (int) sizeof(struct event *)); -- *events = (struct event *) trimalloc(maxevents * (int) sizeof(struct event)); -- traversalinit(&m->vertices); -- for (i = 0; i < m->invertices; i++) { -- thisvertex = vertextraverse(m); -- (*events)[i].eventptr = (void *) thisvertex; -- (*events)[i].xkey = thisvertex[0]; -- (*events)[i].ykey = thisvertex[1]; -- eventheapinsert(*eventheap, i, *events + i); -- } -- *freeevents = (struct event *) NULL; -- for (i = maxevents - 1; i >= m->invertices; i--) { -- (*events)[i].eventptr = (void *) *freeevents; -- *freeevents = *events + i; -- } --} -- --#endif /* not REDUCED */ -- --#ifndef REDUCED -- --#ifdef ANSI_DECLARATORS --int rightofhyperbola(struct mesh *m, struct otri *fronttri, vertex newsite) --#else /* not ANSI_DECLARATORS */ --int rightofhyperbola(m, fronttri, newsite) --struct mesh *m; --struct otri *fronttri; --vertex newsite; --#endif /* not ANSI_DECLARATORS */ -- --{ -- vertex leftvertex, rightvertex; -- REAL dxa, dya, dxb, dyb; -- -- m->hyperbolacount++; -- -- dest(*fronttri, leftvertex); -- apex(*fronttri, rightvertex); -- if ((leftvertex[1] < rightvertex[1]) || -- ((leftvertex[1] == rightvertex[1]) && -- (leftvertex[0] < rightvertex[0]))) { -- if (newsite[0] >= rightvertex[0]) { -- return 1; -- } -- } else { -- if (newsite[0] <= leftvertex[0]) { -- return 0; -- } -- } -- dxa = leftvertex[0] - newsite[0]; -- dya = leftvertex[1] - newsite[1]; -- dxb = rightvertex[0] - newsite[0]; -- dyb = rightvertex[1] - newsite[1]; -- return dya * (dxb * dxb + dyb * dyb) > dyb * (dxa * dxa + dya * dya); --} -- --#endif /* not REDUCED */ -- --#ifndef REDUCED -- --#ifdef ANSI_DECLARATORS --REAL circletop(struct mesh *m, vertex pa, vertex pb, vertex pc, REAL ccwabc) --#else /* not ANSI_DECLARATORS */ --REAL circletop(m, pa, pb, pc, ccwabc) --struct mesh *m; --vertex pa; --vertex pb; --vertex pc; --REAL ccwabc; --#endif /* not ANSI_DECLARATORS */ -- --{ -- REAL xac, yac, xbc, ybc, xab, yab; -- REAL aclen2, bclen2, ablen2; -- -- m->circletopcount++; -- -- xac = pa[0] - pc[0]; -- yac = pa[1] - pc[1]; -- xbc = pb[0] - pc[0]; -- ybc = pb[1] - pc[1]; -- xab = pa[0] - pb[0]; -- yab = pa[1] - pb[1]; -- aclen2 = xac * xac + yac * yac; -- bclen2 = xbc * xbc + ybc * ybc; -- ablen2 = xab * xab + yab * yab; -- return pc[1] + (xac * bclen2 - xbc * aclen2 + sqrt(aclen2 * bclen2 * ablen2)) -- / (2.0 * ccwabc); --} -- --#endif /* not REDUCED */ -- --#ifndef REDUCED -- --#ifdef ANSI_DECLARATORS --void check4deadevent(struct otri *checktri, struct event **freeevents, -- struct event **eventheap, int *heapsize) --#else /* not ANSI_DECLARATORS */ --void check4deadevent(checktri, freeevents, eventheap, heapsize) --struct otri *checktri; --struct event **freeevents; --struct event **eventheap; --int *heapsize; --#endif /* not ANSI_DECLARATORS */ -- --{ -- struct event *deadevent; -- vertex eventvertex; -- int eventnum; -- -- org(*checktri, eventvertex); -- if (eventvertex != (vertex) NULL) { -- deadevent = (struct event *) eventvertex; -- eventnum = deadevent->heapposition; -- deadevent->eventptr = (void *) *freeevents; -- *freeevents = deadevent; -- eventheapdelete(eventheap, *heapsize, eventnum); -- (*heapsize)--; -- setorg(*checktri, NULL); -- } --} -- --#endif /* not REDUCED */ -- --#ifndef REDUCED -- --#ifdef ANSI_DECLARATORS --struct splaynode *splay(struct mesh *m, struct splaynode *splaytree, -- vertex searchpoint, struct otri *searchtri) --#else /* not ANSI_DECLARATORS */ --struct splaynode *splay(m, splaytree, searchpoint, searchtri) --struct mesh *m; --struct splaynode *splaytree; --vertex searchpoint; --struct otri *searchtri; --#endif /* not ANSI_DECLARATORS */ -- --{ -- struct splaynode *child, *grandchild; -- struct splaynode *lefttree, *righttree; -- struct splaynode *leftright; -- vertex checkvertex; -- int rightofroot, rightofchild; -- -- if (splaytree == (struct splaynode *) NULL) { -- return (struct splaynode *) NULL; -- } -- dest(splaytree->keyedge, checkvertex); -- if (checkvertex == splaytree->keydest) { -- rightofroot = rightofhyperbola(m, &splaytree->keyedge, searchpoint); -- if (rightofroot) { -- otricopy(splaytree->keyedge, *searchtri); -- child = splaytree->rchild; -- } else { -- child = splaytree->lchild; -- } -- if (child == (struct splaynode *) NULL) { -- return splaytree; -- } -- dest(child->keyedge, checkvertex); -- if (checkvertex != child->keydest) { -- child = splay(m, child, searchpoint, searchtri); -- if (child == (struct splaynode *) NULL) { -- if (rightofroot) { -- splaytree->rchild = (struct splaynode *) NULL; -- } else { -- splaytree->lchild = (struct splaynode *) NULL; -- } -- return splaytree; -- } -- } -- rightofchild = rightofhyperbola(m, &child->keyedge, searchpoint); -- if (rightofchild) { -- otricopy(child->keyedge, *searchtri); -- grandchild = splay(m, child->rchild, searchpoint, searchtri); -- child->rchild = grandchild; -- } else { -- grandchild = splay(m, child->lchild, searchpoint, searchtri); -- child->lchild = grandchild; -- } -- if (grandchild == (struct splaynode *) NULL) { -- if (rightofroot) { -- splaytree->rchild = child->lchild; -- child->lchild = splaytree; -- } else { -- splaytree->lchild = child->rchild; -- child->rchild = splaytree; -- } -- return child; -- } -- if (rightofchild) { -- if (rightofroot) { -- splaytree->rchild = child->lchild; -- child->lchild = splaytree; -- } else { -- splaytree->lchild = grandchild->rchild; -- grandchild->rchild = splaytree; -- } -- child->rchild = grandchild->lchild; -- grandchild->lchild = child; -- } else { -- if (rightofroot) { -- splaytree->rchild = grandchild->lchild; -- grandchild->lchild = splaytree; -- } else { -- splaytree->lchild = child->rchild; -- child->rchild = splaytree; -- } -- child->lchild = grandchild->rchild; -- grandchild->rchild = child; -- } -- return grandchild; -- } else { -- lefttree = splay(m, splaytree->lchild, searchpoint, searchtri); -- righttree = splay(m, splaytree->rchild, searchpoint, searchtri); -- -- pooldealloc(&m->splaynodes, (void *) splaytree); -- if (lefttree == (struct splaynode *) NULL) { -- return righttree; -- } else if (righttree == (struct splaynode *) NULL) { -- return lefttree; -- } else if (lefttree->rchild == (struct splaynode *) NULL) { -- lefttree->rchild = righttree->lchild; -- righttree->lchild = lefttree; -- return righttree; -- } else if (righttree->lchild == (struct splaynode *) NULL) { -- righttree->lchild = lefttree->rchild; -- lefttree->rchild = righttree; -- return lefttree; -- } else { --/* printf("Holy Toledo!!!\n"); */ -- leftright = lefttree->rchild; -- while (leftright->rchild != (struct splaynode *) NULL) { -- leftright = leftright->rchild; -- } -- leftright->rchild = righttree; -- return lefttree; -- } -- } --} -- --#endif /* not REDUCED */ -- --#ifndef REDUCED -- --#ifdef ANSI_DECLARATORS --struct splaynode *splayinsert(struct mesh *m, struct splaynode *splayroot, -- struct otri *newkey, vertex searchpoint) --#else /* not ANSI_DECLARATORS */ --struct splaynode *splayinsert(m, splayroot, newkey, searchpoint) --struct mesh *m; --struct splaynode *splayroot; --struct otri *newkey; --vertex searchpoint; --#endif /* not ANSI_DECLARATORS */ -- --{ -- struct splaynode *newsplaynode; -- -- newsplaynode = (struct splaynode *) poolalloc(&m->splaynodes); -- otricopy(*newkey, newsplaynode->keyedge); -- dest(*newkey, newsplaynode->keydest); -- if (splayroot == (struct splaynode *) NULL) { -- newsplaynode->lchild = (struct splaynode *) NULL; -- newsplaynode->rchild = (struct splaynode *) NULL; -- } else if (rightofhyperbola(m, &splayroot->keyedge, searchpoint)) { -- newsplaynode->lchild = splayroot; -- newsplaynode->rchild = splayroot->rchild; -- splayroot->rchild = (struct splaynode *) NULL; -- } else { -- newsplaynode->lchild = splayroot->lchild; -- newsplaynode->rchild = splayroot; -- splayroot->lchild = (struct splaynode *) NULL; -- } -- return newsplaynode; --} -- --#endif /* not REDUCED */ -- --#ifndef REDUCED -- --#ifdef ANSI_DECLARATORS --struct splaynode *circletopinsert(struct mesh *m, struct behavior *b, -- struct splaynode *splayroot, -- struct otri *newkey, -- vertex pa, vertex pb, vertex pc, REAL topy) --#else /* not ANSI_DECLARATORS */ --struct splaynode *circletopinsert(m, b, splayroot, newkey, pa, pb, pc, topy) --struct mesh *m; --struct behavior *b; --struct splaynode *splayroot; --struct otri *newkey; --vertex pa; --vertex pb; --vertex pc; --REAL topy; --#endif /* not ANSI_DECLARATORS */ -- --{ -- REAL ccwabc; -- REAL xac, yac, xbc, ybc; -- REAL aclen2, bclen2; -- REAL searchpoint[2]; -- struct otri dummytri; -- -- ccwabc = counterclockwise(m, b, pa, pb, pc); -- xac = pa[0] - pc[0]; -- yac = pa[1] - pc[1]; -- xbc = pb[0] - pc[0]; -- ybc = pb[1] - pc[1]; -- aclen2 = xac * xac + yac * yac; -- bclen2 = xbc * xbc + ybc * ybc; -- searchpoint[0] = pc[0] - (yac * bclen2 - ybc * aclen2) / (2.0 * ccwabc); -- searchpoint[1] = topy; -- return splayinsert(m, splay(m, splayroot, (vertex) searchpoint, &dummytri), -- newkey, (vertex) searchpoint); --} -- --#endif /* not REDUCED */ -- --#ifndef REDUCED -- --#ifdef ANSI_DECLARATORS --struct splaynode *frontlocate(struct mesh *m, struct splaynode *splayroot, -- struct otri *bottommost, vertex searchvertex, -- struct otri *searchtri, int *farright) --#else /* not ANSI_DECLARATORS */ --struct splaynode *frontlocate(m, splayroot, bottommost, searchvertex, -- searchtri, farright) --struct mesh *m; --struct splaynode *splayroot; --struct otri *bottommost; --vertex searchvertex; --struct otri *searchtri; --int *farright; --#endif /* not ANSI_DECLARATORS */ -- --{ -- int farrightflag; -- triangle ptr; /* Temporary variable used by onext(). */ -- -- otricopy(*bottommost, *searchtri); -- splayroot = splay(m, splayroot, searchvertex, searchtri); -- -- farrightflag = 0; -- while (!farrightflag && rightofhyperbola(m, searchtri, searchvertex)) { -- onextself(*searchtri); -- farrightflag = otriequal(*searchtri, *bottommost); -- } -- *farright = farrightflag; -- return splayroot; --} -- --#endif /* not REDUCED */ -- --#ifndef REDUCED -- --#ifdef ANSI_DECLARATORS --long sweeplinedelaunay(struct mesh *m, struct behavior *b) --#else /* not ANSI_DECLARATORS */ --long sweeplinedelaunay(m, b) --struct mesh *m; --struct behavior *b; --#endif /* not ANSI_DECLARATORS */ -- --{ -- struct event **eventheap; -- struct event *events; -- struct event *freeevents; -- struct event *nextevent; -- struct event *newevent; -- struct splaynode *splayroot; -- struct otri bottommost; -- struct otri searchtri; -- struct otri fliptri; -- struct otri lefttri, righttri, farlefttri, farrighttri; -- struct otri inserttri; -- vertex firstvertex, secondvertex; -- vertex nextvertex, lastvertex; -- vertex connectvertex; -- vertex leftvertex, midvertex, rightvertex; -- REAL lefttest, righttest; -- int heapsize; -- int check4events, farrightflag; -- triangle ptr; /* Temporary variable used by sym(), onext(), and oprev(). */ -- -- poolinit(&m->splaynodes, sizeof(struct splaynode), SPLAYNODEPERBLOCK, -- SPLAYNODEPERBLOCK, 0); -- splayroot = (struct splaynode *) NULL; -- -- if (b->verbose) { -- printf(" Placing vertices in event heap.\n"); -- } -- createeventheap(m, &eventheap, &events, &freeevents); -- heapsize = m->invertices; -- -- if (b->verbose) { -- printf(" Forming triangulation.\n"); -- } -- maketriangle(m, b, &lefttri); -- maketriangle(m, b, &righttri); -- bond(lefttri, righttri); -- lnextself(lefttri); -- lprevself(righttri); -- bond(lefttri, righttri); -- lnextself(lefttri); -- lprevself(righttri); -- bond(lefttri, righttri); -- firstvertex = (vertex) eventheap[0]->eventptr; -- eventheap[0]->eventptr = (void *) freeevents; -- freeevents = eventheap[0]; -- eventheapdelete(eventheap, heapsize, 0); -- heapsize--; -- do { -- if (heapsize == 0) { -- printf("Error: Input vertices are all identical.\n"); -- triexit(1); -- } -- secondvertex = (vertex) eventheap[0]->eventptr; -- eventheap[0]->eventptr = (void *) freeevents; -- freeevents = eventheap[0]; -- eventheapdelete(eventheap, heapsize, 0); -- heapsize--; -- if ((firstvertex[0] == secondvertex[0]) && -- (firstvertex[1] == secondvertex[1])) { -- if (!b->quiet) { -- printf( --"Warning: A duplicate vertex at (%.12g, %.12g) appeared and was ignored.\n", -- secondvertex[0], secondvertex[1]); -- } -- setvertextype(secondvertex, UNDEADVERTEX); -- m->undeads++; -- } -- } while ((firstvertex[0] == secondvertex[0]) && -- (firstvertex[1] == secondvertex[1])); -- setorg(lefttri, firstvertex); -- setdest(lefttri, secondvertex); -- setorg(righttri, secondvertex); -- setdest(righttri, firstvertex); -- lprev(lefttri, bottommost); -- lastvertex = secondvertex; -- while (heapsize > 0) { -- nextevent = eventheap[0]; -- eventheapdelete(eventheap, heapsize, 0); -- heapsize--; -- check4events = 1; -- if (nextevent->xkey < m->xmin) { -- decode(nextevent->eventptr, fliptri); -- oprev(fliptri, farlefttri); -- check4deadevent(&farlefttri, &freeevents, eventheap, &heapsize); -- onext(fliptri, farrighttri); -- check4deadevent(&farrighttri, &freeevents, eventheap, &heapsize); -- -- if (otriequal(farlefttri, bottommost)) { -- lprev(fliptri, bottommost); -- } -- flip(m, b, &fliptri); -- setapex(fliptri, NULL); -- lprev(fliptri, lefttri); -- lnext(fliptri, righttri); -- sym(lefttri, farlefttri); -- -- if (randomnation(SAMPLERATE) == 0) { -- symself(fliptri); -- dest(fliptri, leftvertex); -- apex(fliptri, midvertex); -- org(fliptri, rightvertex); -- splayroot = circletopinsert(m, b, splayroot, &lefttri, leftvertex, -- midvertex, rightvertex, nextevent->ykey); -- } -- } else { -- nextvertex = (vertex) nextevent->eventptr; -- if ((nextvertex[0] == lastvertex[0]) && -- (nextvertex[1] == lastvertex[1])) { -- if (!b->quiet) { -- printf( --"Warning: A duplicate vertex at (%.12g, %.12g) appeared and was ignored.\n", -- nextvertex[0], nextvertex[1]); -- } -- setvertextype(nextvertex, UNDEADVERTEX); -- m->undeads++; -- check4events = 0; -- } else { -- lastvertex = nextvertex; -- -- splayroot = frontlocate(m, splayroot, &bottommost, nextvertex, -- &searchtri, &farrightflag); --/* -- otricopy(bottommost, searchtri); -- farrightflag = 0; -- while (!farrightflag && rightofhyperbola(m, &searchtri, nextvertex)) { -- onextself(searchtri); -- farrightflag = otriequal(searchtri, bottommost); -- } --*/ -- -- check4deadevent(&searchtri, &freeevents, eventheap, &heapsize); -- -- otricopy(searchtri, farrighttri); -- sym(searchtri, farlefttri); -- maketriangle(m, b, &lefttri); -- maketriangle(m, b, &righttri); -- dest(farrighttri, connectvertex); -- setorg(lefttri, connectvertex); -- setdest(lefttri, nextvertex); -- setorg(righttri, nextvertex); -- setdest(righttri, connectvertex); -- bond(lefttri, righttri); -- lnextself(lefttri); -- lprevself(righttri); -- bond(lefttri, righttri); -- lnextself(lefttri); -- lprevself(righttri); -- bond(lefttri, farlefttri); -- bond(righttri, farrighttri); -- if (!farrightflag && otriequal(farrighttri, bottommost)) { -- otricopy(lefttri, bottommost); -- } -- -- if (randomnation(SAMPLERATE) == 0) { -- splayroot = splayinsert(m, splayroot, &lefttri, nextvertex); -- } else if (randomnation(SAMPLERATE) == 0) { -- lnext(righttri, inserttri); -- splayroot = splayinsert(m, splayroot, &inserttri, nextvertex); -- } -- } -- } -- nextevent->eventptr = (void *) freeevents; -- freeevents = nextevent; -- -- if (check4events) { -- apex(farlefttri, leftvertex); -- dest(lefttri, midvertex); -- apex(lefttri, rightvertex); -- lefttest = counterclockwise(m, b, leftvertex, midvertex, rightvertex); -- if (lefttest > 0.0) { -- newevent = freeevents; -- freeevents = (struct event *) freeevents->eventptr; -- newevent->xkey = m->xminextreme; -- newevent->ykey = circletop(m, leftvertex, midvertex, rightvertex, -- lefttest); -- newevent->eventptr = (void *) encode(lefttri); -- eventheapinsert(eventheap, heapsize, newevent); -- heapsize++; -- setorg(lefttri, newevent); -- } -- apex(righttri, leftvertex); -- org(righttri, midvertex); -- apex(farrighttri, rightvertex); -- righttest = counterclockwise(m, b, leftvertex, midvertex, rightvertex); -- if (righttest > 0.0) { -- newevent = freeevents; -- freeevents = (struct event *) freeevents->eventptr; -- newevent->xkey = m->xminextreme; -- newevent->ykey = circletop(m, leftvertex, midvertex, rightvertex, -- righttest); -- newevent->eventptr = (void *) encode(farrighttri); -- eventheapinsert(eventheap, heapsize, newevent); -- heapsize++; -- setorg(farrighttri, newevent); -- } -- } -- } -- -- pooldeinit(&m->splaynodes); -- lprevself(bottommost); -- return removeghosts(m, b, &bottommost); --} -- --#endif /* not REDUCED */ -- --/** **/ --/** **/ --/********* Sweepline Delaunay triangulation ends here *********/ -- --/********* General mesh construction routines begin here *********/ --/** **/ --/** **/ -- --/*****************************************************************************/ --/* */ --/* delaunay() Form a Delaunay triangulation. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --long delaunay(struct mesh *m, struct behavior *b) --#else /* not ANSI_DECLARATORS */ --long delaunay(m, b) --struct mesh *m; --struct behavior *b; --#endif /* not ANSI_DECLARATORS */ -- --{ -- long hulledges; -- -- m->eextras = 0; -- initializetrisubpools(m, b); -- --#ifdef REDUCED -- if (!b->quiet) { -- printf( -- "Constructing Delaunay triangulation by divide-and-conquer method.\n"); -- } -- hulledges = divconqdelaunay(m, b); --#else /* not REDUCED */ -- if (!b->quiet) { -- printf("Constructing Delaunay triangulation "); -- if (b->incremental) { -- printf("by incremental method.\n"); -- } else if (b->sweepline) { -- printf("by sweepline method.\n"); -- } else { -- printf("by divide-and-conquer method.\n"); -- } -- } -- if (b->incremental) { -- hulledges = incrementaldelaunay(m, b); -- } else if (b->sweepline) { -- hulledges = sweeplinedelaunay(m, b); -- } else { -- hulledges = divconqdelaunay(m, b); -- } --#endif /* not REDUCED */ -- -- if (m->triangles.items == 0) { -- /* The input vertices were all collinear, so there are no triangles. */ -- return 0l; -- } else { -- return hulledges; -- } --} -- --/*****************************************************************************/ --/* */ --/* reconstruct() Reconstruct a triangulation from its .ele (and possibly */ --/* .poly) file. Used when the -r switch is used. */ --/* */ --/* Reads an .ele file and reconstructs the original mesh. If the -p switch */ --/* is used, this procedure will also read a .poly file and reconstruct the */ --/* subsegments of the original mesh. If the -a switch is used, this */ --/* procedure will also read an .area file and set a maximum area constraint */ --/* on each triangle. */ --/* */ --/* Vertices that are not corners of triangles, such as nodes on edges of */ --/* subparametric elements, are discarded. */ --/* */ --/* This routine finds the adjacencies between triangles (and subsegments) */ --/* by forming one stack of triangles for each vertex. Each triangle is on */ --/* three different stacks simultaneously. Each triangle's subsegment */ --/* pointers are used to link the items in each stack. This memory-saving */ --/* feature makes the code harder to read. The most important thing to keep */ --/* in mind is that each triangle is removed from a stack precisely when */ --/* the corresponding pointer is adjusted to refer to a subsegment rather */ --/* than the next triangle of the stack. */ --/* */ --/*****************************************************************************/ -- --#ifndef CDT_ONLY -- --#ifdef TRILIBRARY -- --#ifdef ANSI_DECLARATORS --int reconstruct(struct mesh *m, struct behavior *b, int *trianglelist, -- REAL *triangleattriblist, REAL *trianglearealist, -- int elements, int corners, int attribs, -- int *segmentlist,int *segmentmarkerlist, int numberofsegments) --#else /* not ANSI_DECLARATORS */ --int reconstruct(m, b, trianglelist, triangleattriblist, trianglearealist, -- elements, corners, attribs, segmentlist, segmentmarkerlist, -- numberofsegments) --struct mesh *m; --struct behavior *b; --int *trianglelist; --REAL *triangleattriblist; --REAL *trianglearealist; --int elements; --int corners; --int attribs; --int *segmentlist; --int *segmentmarkerlist; --int numberofsegments; --#endif /* not ANSI_DECLARATORS */ -- --#else /* not TRILIBRARY */ -- --#ifdef ANSI_DECLARATORS --long reconstruct(struct mesh *m, struct behavior *b, char *elefilename, -- char *areafilename, char *polyfilename, FILE *polyfile) --#else /* not ANSI_DECLARATORS */ --long reconstruct(m, b, elefilename, areafilename, polyfilename, polyfile) --struct mesh *m; --struct behavior *b; --char *elefilename; --char *areafilename; --char *polyfilename; --FILE *polyfile; --#endif /* not ANSI_DECLARATORS */ -- --#endif /* not TRILIBRARY */ -- --{ --#ifdef TRILIBRARY -- int vertexindex; -- int attribindex; --#else /* not TRILIBRARY */ -- FILE *elefile; -- FILE *areafile; -- char inputline[INPUTLINESIZE]; -- char *stringptr; -- int areaelements; --#endif /* not TRILIBRARY */ -- struct otri triangleloop; -- struct otri triangleleft; -- struct otri checktri; -- struct otri checkleft; -- struct otri checkneighbor; -- struct osub subsegloop; -- triangle *vertexarray; -- triangle *prevlink; -- triangle nexttri; -- vertex tdest, tapex; -- vertex checkdest, checkapex; -- vertex shorg; -- vertex killvertex; -- vertex segmentorg, segmentdest; -- REAL area; -- int corner[3]; -- int end[2]; -- int killvertexindex; -- int incorners; -- int segmentmarkers; -- int boundmarker; -- int aroundvertex; -- long hullsize; -- int notfound; -- long elementnumber, segmentnumber; -- int i, j; -- triangle ptr; /* Temporary variable used by sym(). */ -- --#ifdef TRILIBRARY -- m->inelements = elements; -- incorners = corners; -- if (incorners < 3) { -- printf("Error: Triangles must have at least 3 vertices.\n"); -- triexit(1); -- } -- m->eextras = attribs; --#else /* not TRILIBRARY */ -- /* Read the triangles from an .ele file. */ -- if (!b->quiet) { -- printf("Opening %s.\n", elefilename); -- } -- elefile = fopen(elefilename, "r"); -- if (elefile == (FILE *) NULL) { -- printf(" Error: Cannot access file %s.\n", elefilename); -- triexit(1); -- } -- /* Read number of triangles, number of vertices per triangle, and */ -- /* number of triangle attributes from .ele file. */ -- stringptr = readline(inputline, elefile, elefilename); -- m->inelements = (int) strtol(stringptr, &stringptr, 0); -- stringptr = findfield(stringptr); -- if (*stringptr == '\0') { -- incorners = 3; -- } else { -- incorners = (int) strtol(stringptr, &stringptr, 0); -- if (incorners < 3) { -- printf("Error: Triangles in %s must have at least 3 vertices.\n", -- elefilename); -- triexit(1); -- } -- } -- stringptr = findfield(stringptr); -- if (*stringptr == '\0') { -- m->eextras = 0; -- } else { -- m->eextras = (int) strtol(stringptr, &stringptr, 0); -- } --#endif /* not TRILIBRARY */ -- -- initializetrisubpools(m, b); -- -- /* Create the triangles. */ -- for (elementnumber = 1; elementnumber <= m->inelements; elementnumber++) { -- maketriangle(m, b, &triangleloop); -- /* Mark the triangle as living. */ -- triangleloop.tri[3] = (triangle) triangleloop.tri; -- } -- -- segmentmarkers = 0; -- if (b->poly) { --#ifdef TRILIBRARY -- m->insegments = numberofsegments; -- segmentmarkers = segmentmarkerlist != (int *) NULL; --#else /* not TRILIBRARY */ -- /* Read number of segments and number of segment */ -- /* boundary markers from .poly file. */ -- stringptr = readline(inputline, polyfile, b->inpolyfilename); -- m->insegments = (int) strtol(stringptr, &stringptr, 0); -- stringptr = findfield(stringptr); -- if (*stringptr != '\0') { -- segmentmarkers = (int) strtol(stringptr, &stringptr, 0); -- } --#endif /* not TRILIBRARY */ -- -- /* Create the subsegments. */ -- for (segmentnumber = 1; segmentnumber <= m->insegments; segmentnumber++) { -- makesubseg(m, &subsegloop); -- /* Mark the subsegment as living. */ -- subsegloop.ss[2] = (subseg) subsegloop.ss; -- } -- } -- --#ifdef TRILIBRARY -- vertexindex = 0; -- attribindex = 0; --#else /* not TRILIBRARY */ -- if (b->vararea) { -- /* Open an .area file, check for consistency with the .ele file. */ -- if (!b->quiet) { -- printf("Opening %s.\n", areafilename); -- } -- areafile = fopen(areafilename, "r"); -- if (areafile == (FILE *) NULL) { -- printf(" Error: Cannot access file %s.\n", areafilename); -- triexit(1); -- } -- stringptr = readline(inputline, areafile, areafilename); -- areaelements = (int) strtol(stringptr, &stringptr, 0); -- if (areaelements != m->inelements) { -- printf("Error: %s and %s disagree on number of triangles.\n", -- elefilename, areafilename); -- triexit(1); -- } -- } --#endif /* not TRILIBRARY */ -- -- if (!b->quiet) { -- printf("Reconstructing mesh.\n"); -- } -- /* Allocate a temporary array that maps each vertex to some adjacent */ -- /* triangle. I took care to allocate all the permanent memory for */ -- /* triangles and subsegments first. */ -- vertexarray = (triangle *) trimalloc(m->vertices.items * -- (int) sizeof(triangle)); -- /* Each vertex is initially unrepresented. */ -- for (i = 0; i < m->vertices.items; i++) { -- vertexarray[i] = (triangle) m->dummytri; -- } -- -- if (b->verbose) { -- printf(" Assembling triangles.\n"); -- } -- /* Read the triangles from the .ele file, and link */ -- /* together those that share an edge. */ -- traversalinit(&m->triangles); -- triangleloop.tri = triangletraverse(m); -- elementnumber = b->firstnumber; -- while (triangleloop.tri != (triangle *) NULL) { --#ifdef TRILIBRARY -- /* Copy the triangle's three corners. */ -- for (j = 0; j < 3; j++) { -- corner[j] = trianglelist[vertexindex++]; -- if ((corner[j] < b->firstnumber) || -- (corner[j] >= b->firstnumber + m->invertices)) { -- printf("Error: Triangle %ld has an invalid vertex index.\n", -- elementnumber); -- triexit(1); -- } -- } --#else /* not TRILIBRARY */ -- /* Read triangle number and the triangle's three corners. */ -- stringptr = readline(inputline, elefile, elefilename); -- for (j = 0; j < 3; j++) { -- stringptr = findfield(stringptr); -- if (*stringptr == '\0') { -- printf("Error: Triangle %ld is missing vertex %d in %s.\n", -- elementnumber, j + 1, elefilename); -- triexit(1); -- } else { -- corner[j] = (int) strtol(stringptr, &stringptr, 0); -- if ((corner[j] < b->firstnumber) || -- (corner[j] >= b->firstnumber + m->invertices)) { -- printf("Error: Triangle %ld has an invalid vertex index.\n", -- elementnumber); -- triexit(1); -- } -- } -- } --#endif /* not TRILIBRARY */ -- -- /* Find out about (and throw away) extra nodes. */ -- for (j = 3; j < incorners; j++) { --#ifdef TRILIBRARY -- killvertexindex = trianglelist[vertexindex++]; --#else /* not TRILIBRARY */ -- stringptr = findfield(stringptr); -- if (*stringptr != '\0') { -- killvertexindex = (int) strtol(stringptr, &stringptr, 0); --#endif /* not TRILIBRARY */ -- if ((killvertexindex >= b->firstnumber) && -- (killvertexindex < b->firstnumber + m->invertices)) { -- /* Delete the non-corner vertex if it's not already deleted. */ -- killvertex = getvertex(m, b, killvertexindex); -- if (vertextype(killvertex) != DEADVERTEX) { -- vertexdealloc(m, killvertex); -- } -- } --#ifndef TRILIBRARY -- } --#endif /* not TRILIBRARY */ -- } -- -- /* Read the triangle's attributes. */ -- for (j = 0; j < m->eextras; j++) { --#ifdef TRILIBRARY -- setelemattribute(triangleloop, j, triangleattriblist[attribindex++]); --#else /* not TRILIBRARY */ -- stringptr = findfield(stringptr); -- if (*stringptr == '\0') { -- setelemattribute(triangleloop, j, 0); -- } else { -- setelemattribute(triangleloop, j, -- (REAL) strtod(stringptr, &stringptr)); -- } --#endif /* not TRILIBRARY */ -- } -- -- if (b->vararea) { --#ifdef TRILIBRARY -- area = trianglearealist[elementnumber - b->firstnumber]; --#else /* not TRILIBRARY */ -- /* Read an area constraint from the .area file. */ -- stringptr = readline(inputline, areafile, areafilename); -- stringptr = findfield(stringptr); -- if (*stringptr == '\0') { -- area = -1.0; /* No constraint on this triangle. */ -- } else { -- area = (REAL) strtod(stringptr, &stringptr); -- } --#endif /* not TRILIBRARY */ -- setareabound(triangleloop, area); -- } -- -- /* Set the triangle's vertices. */ -- triangleloop.orient = 0; -- setorg(triangleloop, getvertex(m, b, corner[0])); -- setdest(triangleloop, getvertex(m, b, corner[1])); -- setapex(triangleloop, getvertex(m, b, corner[2])); -- /* Try linking the triangle to others that share these vertices. */ -- for (triangleloop.orient = 0; triangleloop.orient < 3; -- triangleloop.orient++) { -- /* Take the number for the origin of triangleloop. */ -- aroundvertex = corner[triangleloop.orient]; -- /* Look for other triangles having this vertex. */ -- nexttri = vertexarray[aroundvertex - b->firstnumber]; -- /* Link the current triangle to the next one in the stack. */ -- triangleloop.tri[6 + triangleloop.orient] = nexttri; -- /* Push the current triangle onto the stack. */ -- vertexarray[aroundvertex - b->firstnumber] = encode(triangleloop); -- decode(nexttri, checktri); -- if (checktri.tri != m->dummytri) { -- dest(triangleloop, tdest); -- apex(triangleloop, tapex); -- /* Look for other triangles that share an edge. */ -- do { -- dest(checktri, checkdest); -- apex(checktri, checkapex); -- if (tapex == checkdest) { -- /* The two triangles share an edge; bond them together. */ -- lprev(triangleloop, triangleleft); -- bond(triangleleft, checktri); -- } -- if (tdest == checkapex) { -- /* The two triangles share an edge; bond them together. */ -- lprev(checktri, checkleft); -- bond(triangleloop, checkleft); -- } -- /* Find the next triangle in the stack. */ -- nexttri = checktri.tri[6 + checktri.orient]; -- decode(nexttri, checktri); -- } while (checktri.tri != m->dummytri); -- } -- } -- triangleloop.tri = triangletraverse(m); -- elementnumber++; -- } -- --#ifdef TRILIBRARY -- vertexindex = 0; --#else /* not TRILIBRARY */ -- fclose(elefile); -- if (b->vararea) { -- fclose(areafile); -- } --#endif /* not TRILIBRARY */ -- -- hullsize = 0; /* Prepare to count the boundary edges. */ -- if (b->poly) { -- if (b->verbose) { -- printf(" Marking segments in triangulation.\n"); -- } -- /* Read the segments from the .poly file, and link them */ -- /* to their neighboring triangles. */ -- boundmarker = 0; -- traversalinit(&m->subsegs); -- subsegloop.ss = subsegtraverse(m); -- segmentnumber = b->firstnumber; -- while (subsegloop.ss != (subseg *) NULL) { --#ifdef TRILIBRARY -- end[0] = segmentlist[vertexindex++]; -- end[1] = segmentlist[vertexindex++]; -- if (segmentmarkers) { -- boundmarker = segmentmarkerlist[segmentnumber - b->firstnumber]; -- } --#else /* not TRILIBRARY */ -- /* Read the endpoints of each segment, and possibly a boundary marker. */ -- stringptr = readline(inputline, polyfile, b->inpolyfilename); -- /* Skip the first (segment number) field. */ -- stringptr = findfield(stringptr); -- if (*stringptr == '\0') { -- printf("Error: Segment %ld has no endpoints in %s.\n", segmentnumber, -- polyfilename); -- triexit(1); -- } else { -- end[0] = (int) strtol(stringptr, &stringptr, 0); -- } -- stringptr = findfield(stringptr); -- if (*stringptr == '\0') { -- printf("Error: Segment %ld is missing its second endpoint in %s.\n", -- segmentnumber, polyfilename); -- triexit(1); -- } else { -- end[1] = (int) strtol(stringptr, &stringptr, 0); -- } -- if (segmentmarkers) { -- stringptr = findfield(stringptr); -- if (*stringptr == '\0') { -- boundmarker = 0; -- } else { -- boundmarker = (int) strtol(stringptr, &stringptr, 0); -- } -- } --#endif /* not TRILIBRARY */ -- for (j = 0; j < 2; j++) { -- if ((end[j] < b->firstnumber) || -- (end[j] >= b->firstnumber + m->invertices)) { -- printf("Error: Segment %ld has an invalid vertex index.\n", -- segmentnumber); -- triexit(1); -- } -- } -- -- /* set the subsegment's vertices. */ -- subsegloop.ssorient = 0; -- segmentorg = getvertex(m, b, end[0]); -- segmentdest = getvertex(m, b, end[1]); -- setsorg(subsegloop, segmentorg); -- setsdest(subsegloop, segmentdest); -- setsegorg(subsegloop, segmentorg); -- setsegdest(subsegloop, segmentdest); -- setmark(subsegloop, boundmarker); -- /* Try linking the subsegment to triangles that share these vertices. */ -- for (subsegloop.ssorient = 0; subsegloop.ssorient < 2; -- subsegloop.ssorient++) { -- /* Take the number for the destination of subsegloop. */ -- aroundvertex = end[1 - subsegloop.ssorient]; -- /* Look for triangles having this vertex. */ -- prevlink = &vertexarray[aroundvertex - b->firstnumber]; -- nexttri = vertexarray[aroundvertex - b->firstnumber]; -- decode(nexttri, checktri); -- sorg(subsegloop, shorg); -- notfound = 1; -- /* Look for triangles having this edge. Note that I'm only */ -- /* comparing each triangle's destination with the subsegment; */ -- /* each triangle's apex is handled through a different vertex. */ -- /* Because each triangle appears on three vertices' lists, each */ -- /* occurrence of a triangle on a list can (and does) represent */ -- /* an edge. In this way, most edges are represented twice, and */ -- /* every triangle-subsegment bond is represented once. */ -- while (notfound && (checktri.tri != m->dummytri)) { -- dest(checktri, checkdest); -- if (shorg == checkdest) { -- /* We have a match. Remove this triangle from the list. */ -- *prevlink = checktri.tri[6 + checktri.orient]; -- /* Bond the subsegment to the triangle. */ -- tsbond(checktri, subsegloop); -- /* Check if this is a boundary edge. */ -- sym(checktri, checkneighbor); -- if (checkneighbor.tri == m->dummytri) { -- /* The next line doesn't insert a subsegment (because there's */ -- /* already one there), but it sets the boundary markers of */ -- /* the existing subsegment and its vertices. */ -- insertsubseg(m, b, &checktri, 1); -- hullsize++; -- } -- notfound = 0; -- } -- /* Find the next triangle in the stack. */ -- prevlink = &checktri.tri[6 + checktri.orient]; -- nexttri = checktri.tri[6 + checktri.orient]; -- decode(nexttri, checktri); -- } -- } -- subsegloop.ss = subsegtraverse(m); -- segmentnumber++; -- } -- } -- -- /* Mark the remaining edges as not being attached to any subsegment. */ -- /* Also, count the (yet uncounted) boundary edges. */ -- for (i = 0; i < m->vertices.items; i++) { -- /* Search the stack of triangles adjacent to a vertex. */ -- nexttri = vertexarray[i]; -- decode(nexttri, checktri); -- while (checktri.tri != m->dummytri) { -- /* Find the next triangle in the stack before this */ -- /* information gets overwritten. */ -- nexttri = checktri.tri[6 + checktri.orient]; -- /* No adjacent subsegment. (This overwrites the stack info.) */ -- tsdissolve(checktri); -- sym(checktri, checkneighbor); -- if (checkneighbor.tri == m->dummytri) { -- insertsubseg(m, b, &checktri, 1); -- hullsize++; -- } -- decode(nexttri, checktri); -- } -- } -- -- trifree((void *) vertexarray); -- return hullsize; --} -- --#endif /* not CDT_ONLY */ -- --/** **/ --/** **/ --/********* General mesh construction routines end here *********/ -- --/********* Segment insertion begins here *********/ --/** **/ --/** **/ -- --/*****************************************************************************/ --/* */ --/* finddirection() Find the first triangle on the path from one point */ --/* to another. */ --/* */ --/* Finds the triangle that intersects a line segment drawn from the */ --/* origin of `searchtri' to the point `searchpoint', and returns the result */ --/* in `searchtri'. The origin of `searchtri' does not change, even though */ --/* the triangle returned may differ from the one passed in. This routine */ --/* is used to find the direction to move in to get from one point to */ --/* another. */ --/* */ --/* The return value notes whether the destination or apex of the found */ --/* triangle is collinear with the two points in question. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --enum finddirectionresult finddirection(struct mesh *m, struct behavior *b, -- struct otri *searchtri, -- vertex searchpoint) --#else /* not ANSI_DECLARATORS */ --enum finddirectionresult finddirection(m, b, searchtri, searchpoint) --struct mesh *m; --struct behavior *b; --struct otri *searchtri; --vertex searchpoint; --#endif /* not ANSI_DECLARATORS */ -- --{ -- struct otri checktri; -- vertex startvertex; -- vertex leftvertex, rightvertex; -- REAL leftccw, rightccw; -- int leftflag, rightflag; -- triangle ptr; /* Temporary variable used by onext() and oprev(). */ -- -- org(*searchtri, startvertex); -- dest(*searchtri, rightvertex); -- apex(*searchtri, leftvertex); -- /* Is `searchpoint' to the left? */ -- leftccw = counterclockwise(m, b, searchpoint, startvertex, leftvertex); -- leftflag = leftccw > 0.0; -- /* Is `searchpoint' to the right? */ -- rightccw = counterclockwise(m, b, startvertex, searchpoint, rightvertex); -- rightflag = rightccw > 0.0; -- if (leftflag && rightflag) { -- /* `searchtri' faces directly away from `searchpoint'. We could go left */ -- /* or right. Ask whether it's a triangle or a boundary on the left. */ -- onext(*searchtri, checktri); -- if (checktri.tri == m->dummytri) { -- leftflag = 0; -- } else { -- rightflag = 0; -- } -- } -- while (leftflag) { -- /* Turn left until satisfied. */ -- onextself(*searchtri); -- if (searchtri->tri == m->dummytri) { -- printf("Internal error in finddirection(): Unable to find a\n"); -- printf(" triangle leading from (%.12g, %.12g) to", startvertex[0], -- startvertex[1]); -- printf(" (%.12g, %.12g).\n", searchpoint[0], searchpoint[1]); -- internalerror(); -- } -- apex(*searchtri, leftvertex); -- rightccw = leftccw; -- leftccw = counterclockwise(m, b, searchpoint, startvertex, leftvertex); -- leftflag = leftccw > 0.0; -- } -- while (rightflag) { -- /* Turn right until satisfied. */ -- oprevself(*searchtri); -- if (searchtri->tri == m->dummytri) { -- printf("Internal error in finddirection(): Unable to find a\n"); -- printf(" triangle leading from (%.12g, %.12g) to", startvertex[0], -- startvertex[1]); -- printf(" (%.12g, %.12g).\n", searchpoint[0], searchpoint[1]); -- internalerror(); -- } -- dest(*searchtri, rightvertex); -- leftccw = rightccw; -- rightccw = counterclockwise(m, b, startvertex, searchpoint, rightvertex); -- rightflag = rightccw > 0.0; -- } -- if (leftccw == 0.0) { -- return LEFTCOLLINEAR; -- } else if (rightccw == 0.0) { -- return RIGHTCOLLINEAR; -- } else { -- return WITHIN; -- } --} -- --/*****************************************************************************/ --/* */ --/* segmentintersection() Find the intersection of an existing segment */ --/* and a segment that is being inserted. Insert */ --/* a vertex at the intersection, splitting an */ --/* existing subsegment. */ --/* */ --/* The segment being inserted connects the apex of splittri to endpoint2. */ --/* splitsubseg is the subsegment being split, and MUST adjoin splittri. */ --/* Hence, endpoints of the subsegment being split are the origin and */ --/* destination of splittri. */ --/* */ --/* On completion, splittri is a handle having the newly inserted */ --/* intersection point as its origin, and endpoint1 as its destination. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --void segmentintersection(struct mesh *m, struct behavior *b, -- struct otri *splittri, struct osub *splitsubseg, -- vertex endpoint2) --#else /* not ANSI_DECLARATORS */ --void segmentintersection(m, b, splittri, splitsubseg, endpoint2) --struct mesh *m; --struct behavior *b; --struct otri *splittri; --struct osub *splitsubseg; --vertex endpoint2; --#endif /* not ANSI_DECLARATORS */ -- --{ -- struct osub opposubseg; -- vertex endpoint1; -- vertex torg, tdest; -- vertex leftvertex, rightvertex; -- vertex newvertex; -- enum insertvertexresult success; -- REAL ex, ey; -- REAL tx, ty; -- REAL etx, ety; -- REAL split, denom; -- int i; -- triangle ptr; /* Temporary variable used by onext(). */ -- subseg sptr; /* Temporary variable used by snext(). */ -- -- /* Find the other three segment endpoints. */ -- apex(*splittri, endpoint1); -- org(*splittri, torg); -- dest(*splittri, tdest); -- /* Segment intersection formulae; see the Antonio reference. */ -- tx = tdest[0] - torg[0]; -- ty = tdest[1] - torg[1]; -- ex = endpoint2[0] - endpoint1[0]; -- ey = endpoint2[1] - endpoint1[1]; -- etx = torg[0] - endpoint2[0]; -- ety = torg[1] - endpoint2[1]; -- denom = ty * ex - tx * ey; -- if (denom == 0.0) { -- printf("Internal error in segmentintersection():"); -- printf(" Attempt to find intersection of parallel segments.\n"); -- internalerror(); -- } -- split = (ey * etx - ex * ety) / denom; -- /* Create the new vertex. */ -- newvertex = (vertex) poolalloc(&m->vertices); -- /* Interpolate its coordinate and attributes. */ -- for (i = 0; i < 2 + m->nextras; i++) { -- newvertex[i] = torg[i] + split * (tdest[i] - torg[i]); -- } -- setvertexmark(newvertex, mark(*splitsubseg)); -- setvertextype(newvertex, INPUTVERTEX); -- if (b->verbose > 1) { -- printf( -- " Splitting subsegment (%.12g, %.12g) (%.12g, %.12g) at (%.12g, %.12g).\n", -- torg[0], torg[1], tdest[0], tdest[1], newvertex[0], newvertex[1]); -- } -- /* Insert the intersection vertex. This should always succeed. */ -- success = insertvertex(m, b, newvertex, splittri, splitsubseg, 0, 0); -- if (success != SUCCESSFULVERTEX) { -- printf("Internal error in segmentintersection():\n"); -- printf(" Failure to split a segment.\n"); -- internalerror(); -- } -- /* Record a triangle whose origin is the new vertex. */ -- setvertex2tri(newvertex, encode(*splittri)); -- if (m->steinerleft > 0) { -- m->steinerleft--; -- } -- -- /* Divide the segment into two, and correct the segment endpoints. */ -- ssymself(*splitsubseg); -- spivot(*splitsubseg, opposubseg); -- sdissolve(*splitsubseg); -- sdissolve(opposubseg); -- do { -- setsegorg(*splitsubseg, newvertex); -- snextself(*splitsubseg); -- } while (splitsubseg->ss != m->dummysub); -- do { -- setsegorg(opposubseg, newvertex); -- snextself(opposubseg); -- } while (opposubseg.ss != m->dummysub); -- -- /* Inserting the vertex may have caused edge flips. We wish to rediscover */ -- /* the edge connecting endpoint1 to the new intersection vertex. */ -- finddirection(m, b, splittri, endpoint1); -- dest(*splittri, rightvertex); -- apex(*splittri, leftvertex); -- if ((leftvertex[0] == endpoint1[0]) && (leftvertex[1] == endpoint1[1])) { -- onextself(*splittri); -- } else if ((rightvertex[0] != endpoint1[0]) || -- (rightvertex[1] != endpoint1[1])) { -- printf("Internal error in segmentintersection():\n"); -- printf(" Topological inconsistency after splitting a segment.\n"); -- internalerror(); -- } -- /* `splittri' should have destination endpoint1. */ --} -- --/*****************************************************************************/ --/* */ --/* scoutsegment() Scout the first triangle on the path from one endpoint */ --/* to another, and check for completion (reaching the */ --/* second endpoint), a collinear vertex, or the */ --/* intersection of two segments. */ --/* */ --/* Returns one if the entire segment is successfully inserted, and zero if */ --/* the job must be finished by conformingedge() or constrainededge(). */ --/* */ --/* If the first triangle on the path has the second endpoint as its */ --/* destination or apex, a subsegment is inserted and the job is done. */ --/* */ --/* If the first triangle on the path has a destination or apex that lies on */ --/* the segment, a subsegment is inserted connecting the first endpoint to */ --/* the collinear vertex, and the search is continued from the collinear */ --/* vertex. */ --/* */ --/* If the first triangle on the path has a subsegment opposite its origin, */ --/* then there is a segment that intersects the segment being inserted. */ --/* Their intersection vertex is inserted, splitting the subsegment. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --int scoutsegment(struct mesh *m, struct behavior *b, struct otri *searchtri, -- vertex endpoint2, int newmark) --#else /* not ANSI_DECLARATORS */ --int scoutsegment(m, b, searchtri, endpoint2, newmark) --struct mesh *m; --struct behavior *b; --struct otri *searchtri; --vertex endpoint2; --int newmark; --#endif /* not ANSI_DECLARATORS */ -- --{ -- struct otri crosstri; -- struct osub crosssubseg; -- vertex leftvertex, rightvertex; -- enum finddirectionresult collinear; -- subseg sptr; /* Temporary variable used by tspivot(). */ -- -- collinear = finddirection(m, b, searchtri, endpoint2); -- dest(*searchtri, rightvertex); -- apex(*searchtri, leftvertex); -- if (((leftvertex[0] == endpoint2[0]) && (leftvertex[1] == endpoint2[1])) || -- ((rightvertex[0] == endpoint2[0]) && (rightvertex[1] == endpoint2[1]))) { -- /* The segment is already an edge in the mesh. */ -- if ((leftvertex[0] == endpoint2[0]) && (leftvertex[1] == endpoint2[1])) { -- lprevself(*searchtri); -- } -- /* Insert a subsegment, if there isn't already one there. */ -- insertsubseg(m, b, searchtri, newmark); -- return 1; -- } else if (collinear == LEFTCOLLINEAR) { -- /* We've collided with a vertex between the segment's endpoints. */ -- /* Make the collinear vertex be the triangle's origin. */ -- lprevself(*searchtri); -- insertsubseg(m, b, searchtri, newmark); -- /* Insert the remainder of the segment. */ -- return scoutsegment(m, b, searchtri, endpoint2, newmark); -- } else if (collinear == RIGHTCOLLINEAR) { -- /* We've collided with a vertex between the segment's endpoints. */ -- insertsubseg(m, b, searchtri, newmark); -- /* Make the collinear vertex be the triangle's origin. */ -- lnextself(*searchtri); -- /* Insert the remainder of the segment. */ -- return scoutsegment(m, b, searchtri, endpoint2, newmark); -- } else { -- lnext(*searchtri, crosstri); -- tspivot(crosstri, crosssubseg); -- /* Check for a crossing segment. */ -- if (crosssubseg.ss == m->dummysub) { -- return 0; -- } else { -- /* Insert a vertex at the intersection. */ -- segmentintersection(m, b, &crosstri, &crosssubseg, endpoint2); -- otricopy(crosstri, *searchtri); -- insertsubseg(m, b, searchtri, newmark); -- /* Insert the remainder of the segment. */ -- return scoutsegment(m, b, searchtri, endpoint2, newmark); -- } -- } --} -- --/*****************************************************************************/ --/* */ --/* conformingedge() Force a segment into a conforming Delaunay */ --/* triangulation by inserting a vertex at its midpoint, */ --/* and recursively forcing in the two half-segments if */ --/* necessary. */ --/* */ --/* Generates a sequence of subsegments connecting `endpoint1' to */ --/* `endpoint2'. `newmark' is the boundary marker of the segment, assigned */ --/* to each new splitting vertex and subsegment. */ --/* */ --/* Note that conformingedge() does not always maintain the conforming */ --/* Delaunay property. Once inserted, segments are locked into place; */ --/* vertices inserted later (to force other segments in) may render these */ --/* fixed segments non-Delaunay. The conforming Delaunay property will be */ --/* restored by enforcequality() by splitting encroached subsegments. */ --/* */ --/*****************************************************************************/ -- --#ifndef REDUCED --#ifndef CDT_ONLY -- --#ifdef ANSI_DECLARATORS --void conformingedge(struct mesh *m, struct behavior *b, -- vertex endpoint1, vertex endpoint2, int newmark) --#else /* not ANSI_DECLARATORS */ --void conformingedge(m, b, endpoint1, endpoint2, newmark) --struct mesh *m; --struct behavior *b; --vertex endpoint1; --vertex endpoint2; --int newmark; --#endif /* not ANSI_DECLARATORS */ -- --{ -- struct otri searchtri1, searchtri2; -- struct osub brokensubseg; -- vertex newvertex; -- vertex midvertex1, midvertex2; -- enum insertvertexresult success; -- int i; -- subseg sptr; /* Temporary variable used by tspivot(). */ -- -- if (b->verbose > 2) { -- printf("Forcing segment into triangulation by recursive splitting:\n"); -- printf(" (%.12g, %.12g) (%.12g, %.12g)\n", endpoint1[0], endpoint1[1], -- endpoint2[0], endpoint2[1]); -- } -- /* Create a new vertex to insert in the middle of the segment. */ -- newvertex = (vertex) poolalloc(&m->vertices); -- /* Interpolate coordinates and attributes. */ -- for (i = 0; i < 2 + m->nextras; i++) { -- newvertex[i] = 0.5 * (endpoint1[i] + endpoint2[i]); -- } -- setvertexmark(newvertex, newmark); -- setvertextype(newvertex, SEGMENTVERTEX); -- /* No known triangle to search from. */ -- searchtri1.tri = m->dummytri; -- /* Attempt to insert the new vertex. */ -- success = insertvertex(m, b, newvertex, &searchtri1, (struct osub *) NULL, -- 0, 0); -- if (success == DUPLICATEVERTEX) { -- if (b->verbose > 2) { -- printf(" Segment intersects existing vertex (%.12g, %.12g).\n", -- newvertex[0], newvertex[1]); -- } -- /* Use the vertex that's already there. */ -- vertexdealloc(m, newvertex); -- org(searchtri1, newvertex); -- } else { -- if (success == VIOLATINGVERTEX) { -- if (b->verbose > 2) { -- printf(" Two segments intersect at (%.12g, %.12g).\n", -- newvertex[0], newvertex[1]); -- } -- /* By fluke, we've landed right on another segment. Split it. */ -- tspivot(searchtri1, brokensubseg); -- success = insertvertex(m, b, newvertex, &searchtri1, &brokensubseg, -- 0, 0); -- if (success != SUCCESSFULVERTEX) { -- printf("Internal error in conformingedge():\n"); -- printf(" Failure to split a segment.\n"); -- internalerror(); -- } -- } -- /* The vertex has been inserted successfully. */ -- if (m->steinerleft > 0) { -- m->steinerleft--; -- } -- } -- otricopy(searchtri1, searchtri2); -- /* `searchtri1' and `searchtri2' are fastened at their origins to */ -- /* `newvertex', and will be directed toward `endpoint1' and `endpoint2' */ -- /* respectively. First, we must get `searchtri2' out of the way so it */ -- /* won't be invalidated during the insertion of the first half of the */ -- /* segment. */ -- finddirection(m, b, &searchtri2, endpoint2); -- if (!scoutsegment(m, b, &searchtri1, endpoint1, newmark)) { -- /* The origin of searchtri1 may have changed if a collision with an */ -- /* intervening vertex on the segment occurred. */ -- org(searchtri1, midvertex1); -- conformingedge(m, b, midvertex1, endpoint1, newmark); -- } -- if (!scoutsegment(m, b, &searchtri2, endpoint2, newmark)) { -- /* The origin of searchtri2 may have changed if a collision with an */ -- /* intervening vertex on the segment occurred. */ -- org(searchtri2, midvertex2); -- conformingedge(m, b, midvertex2, endpoint2, newmark); -- } --} -- --#endif /* not CDT_ONLY */ --#endif /* not REDUCED */ -- --/*****************************************************************************/ --/* */ --/* delaunayfixup() Enforce the Delaunay condition at an edge, fanning out */ --/* recursively from an existing vertex. Pay special */ --/* attention to stacking inverted triangles. */ --/* */ --/* This is a support routine for inserting segments into a constrained */ --/* Delaunay triangulation. */ --/* */ --/* The origin of fixuptri is treated as if it has just been inserted, and */ --/* the local Delaunay condition needs to be enforced. It is only enforced */ --/* in one sector, however, that being the angular range defined by */ --/* fixuptri. */ --/* */ --/* This routine also needs to make decisions regarding the "stacking" of */ --/* triangles. (Read the description of constrainededge() below before */ --/* reading on here, so you understand the algorithm.) If the position of */ --/* the new vertex (the origin of fixuptri) indicates that the vertex before */ --/* it on the polygon is a reflex vertex, then "stack" the triangle by */ --/* doing nothing. (fixuptri is an inverted triangle, which is how stacked */ --/* triangles are identified.) */ --/* */ --/* Otherwise, check whether the vertex before that was a reflex vertex. */ --/* If so, perform an edge flip, thereby eliminating an inverted triangle */ --/* (popping it off the stack). The edge flip may result in the creation */ --/* of a new inverted triangle, depending on whether or not the new vertex */ --/* is visible to the vertex three edges behind on the polygon. */ --/* */ --/* If neither of the two vertices behind the new vertex are reflex */ --/* vertices, fixuptri and fartri, the triangle opposite it, are not */ --/* inverted; hence, ensure that the edge between them is locally Delaunay. */ --/* */ --/* `leftside' indicates whether or not fixuptri is to the left of the */ --/* segment being inserted. (Imagine that the segment is pointing up from */ --/* endpoint1 to endpoint2.) */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --void delaunayfixup(struct mesh *m, struct behavior *b, -- struct otri *fixuptri, int leftside) --#else /* not ANSI_DECLARATORS */ --void delaunayfixup(m, b, fixuptri, leftside) --struct mesh *m; --struct behavior *b; --struct otri *fixuptri; --int leftside; --#endif /* not ANSI_DECLARATORS */ -- --{ -- struct otri neartri; -- struct otri fartri; -- struct osub faredge; -- vertex nearvertex, leftvertex, rightvertex, farvertex; -- triangle ptr; /* Temporary variable used by sym(). */ -- subseg sptr; /* Temporary variable used by tspivot(). */ -- -- lnext(*fixuptri, neartri); -- sym(neartri, fartri); -- /* Check if the edge opposite the origin of fixuptri can be flipped. */ -- if (fartri.tri == m->dummytri) { -- return; -- } -- tspivot(neartri, faredge); -- if (faredge.ss != m->dummysub) { -- return; -- } -- /* Find all the relevant vertices. */ -- apex(neartri, nearvertex); -- org(neartri, leftvertex); -- dest(neartri, rightvertex); -- apex(fartri, farvertex); -- /* Check whether the previous polygon vertex is a reflex vertex. */ -- if (leftside) { -- if (counterclockwise(m, b, nearvertex, leftvertex, farvertex) <= 0.0) { -- /* leftvertex is a reflex vertex too. Nothing can */ -- /* be done until a convex section is found. */ -- return; -- } -- } else { -- if (counterclockwise(m, b, farvertex, rightvertex, nearvertex) <= 0.0) { -- /* rightvertex is a reflex vertex too. Nothing can */ -- /* be done until a convex section is found. */ -- return; -- } -- } -- if (counterclockwise(m, b, rightvertex, leftvertex, farvertex) > 0.0) { -- /* fartri is not an inverted triangle, and farvertex is not a reflex */ -- /* vertex. As there are no reflex vertices, fixuptri isn't an */ -- /* inverted triangle, either. Hence, test the edge between the */ -- /* triangles to ensure it is locally Delaunay. */ -- if (incircle(m, b, leftvertex, farvertex, rightvertex, nearvertex) <= -- 0.0) { -- return; -- } -- /* Not locally Delaunay; go on to an edge flip. */ -- } /* else fartri is inverted; remove it from the stack by flipping. */ -- flip(m, b, &neartri); -- lprevself(*fixuptri); /* Restore the origin of fixuptri after the flip. */ -- /* Recursively process the two triangles that result from the flip. */ -- delaunayfixup(m, b, fixuptri, leftside); -- delaunayfixup(m, b, &fartri, leftside); --} -- --/*****************************************************************************/ --/* */ --/* constrainededge() Force a segment into a constrained Delaunay */ --/* triangulation by deleting the triangles it */ --/* intersects, and triangulating the polygons that */ --/* form on each side of it. */ --/* */ --/* Generates a single subsegment connecting `endpoint1' to `endpoint2'. */ --/* The triangle `starttri' has `endpoint1' as its origin. `newmark' is the */ --/* boundary marker of the segment. */ --/* */ --/* To insert a segment, every triangle whose interior intersects the */ --/* segment is deleted. The union of these deleted triangles is a polygon */ --/* (which is not necessarily monotone, but is close enough), which is */ --/* divided into two polygons by the new segment. This routine's task is */ --/* to generate the Delaunay triangulation of these two polygons. */ --/* */ --/* You might think of this routine's behavior as a two-step process. The */ --/* first step is to walk from endpoint1 to endpoint2, flipping each edge */ --/* encountered. This step creates a fan of edges connected to endpoint1, */ --/* including the desired edge to endpoint2. The second step enforces the */ --/* Delaunay condition on each side of the segment in an incremental manner: */ --/* proceeding along the polygon from endpoint1 to endpoint2 (this is done */ --/* independently on each side of the segment), each vertex is "enforced" */ --/* as if it had just been inserted, but affecting only the previous */ --/* vertices. The result is the same as if the vertices had been inserted */ --/* in the order they appear on the polygon, so the result is Delaunay. */ --/* */ --/* In truth, constrainededge() interleaves these two steps. The procedure */ --/* walks from endpoint1 to endpoint2, and each time an edge is encountered */ --/* and flipped, the newly exposed vertex (at the far end of the flipped */ --/* edge) is "enforced" upon the previously flipped edges, usually affecting */ --/* only one side of the polygon (depending upon which side of the segment */ --/* the vertex falls on). */ --/* */ --/* The algorithm is complicated by the need to handle polygons that are not */ --/* convex. Although the polygon is not necessarily monotone, it can be */ --/* triangulated in a manner similar to the stack-based algorithms for */ --/* monotone polygons. For each reflex vertex (local concavity) of the */ --/* polygon, there will be an inverted triangle formed by one of the edge */ --/* flips. (An inverted triangle is one with negative area - that is, its */ --/* vertices are arranged in clockwise order - and is best thought of as a */ --/* wrinkle in the fabric of the mesh.) Each inverted triangle can be */ --/* thought of as a reflex vertex pushed on the stack, waiting to be fixed */ --/* later. */ --/* */ --/* A reflex vertex is popped from the stack when a vertex is inserted that */ --/* is visible to the reflex vertex. (However, if the vertex behind the */ --/* reflex vertex is not visible to the reflex vertex, a new inverted */ --/* triangle will take its place on the stack.) These details are handled */ --/* by the delaunayfixup() routine above. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --void constrainededge(struct mesh *m, struct behavior *b, -- struct otri *starttri, vertex endpoint2, int newmark) --#else /* not ANSI_DECLARATORS */ --void constrainededge(m, b, starttri, endpoint2, newmark) --struct mesh *m; --struct behavior *b; --struct otri *starttri; --vertex endpoint2; --int newmark; --#endif /* not ANSI_DECLARATORS */ -- --{ -- struct otri fixuptri, fixuptri2; -- struct osub crosssubseg; -- vertex endpoint1; -- vertex farvertex; -- REAL area; -- int collision; -- int done; -- triangle ptr; /* Temporary variable used by sym() and oprev(). */ -- subseg sptr; /* Temporary variable used by tspivot(). */ -- -- org(*starttri, endpoint1); -- lnext(*starttri, fixuptri); -- flip(m, b, &fixuptri); -- /* `collision' indicates whether we have found a vertex directly */ -- /* between endpoint1 and endpoint2. */ -- collision = 0; -- done = 0; -- do { -- org(fixuptri, farvertex); -- /* `farvertex' is the extreme point of the polygon we are "digging" */ -- /* to get from endpoint1 to endpoint2. */ -- if ((farvertex[0] == endpoint2[0]) && (farvertex[1] == endpoint2[1])) { -- oprev(fixuptri, fixuptri2); -- /* Enforce the Delaunay condition around endpoint2. */ -- delaunayfixup(m, b, &fixuptri, 0); -- delaunayfixup(m, b, &fixuptri2, 1); -- done = 1; -- } else { -- /* Check whether farvertex is to the left or right of the segment */ -- /* being inserted, to decide which edge of fixuptri to dig */ -- /* through next. */ -- area = counterclockwise(m, b, endpoint1, endpoint2, farvertex); -- if (area == 0.0) { -- /* We've collided with a vertex between endpoint1 and endpoint2. */ -- collision = 1; -- oprev(fixuptri, fixuptri2); -- /* Enforce the Delaunay condition around farvertex. */ -- delaunayfixup(m, b, &fixuptri, 0); -- delaunayfixup(m, b, &fixuptri2, 1); -- done = 1; -- } else { -- if (area > 0.0) { /* farvertex is to the left of the segment. */ -- oprev(fixuptri, fixuptri2); -- /* Enforce the Delaunay condition around farvertex, on the */ -- /* left side of the segment only. */ -- delaunayfixup(m, b, &fixuptri2, 1); -- /* Flip the edge that crosses the segment. After the edge is */ -- /* flipped, one of its endpoints is the fan vertex, and the */ -- /* destination of fixuptri is the fan vertex. */ -- lprevself(fixuptri); -- } else { /* farvertex is to the right of the segment. */ -- delaunayfixup(m, b, &fixuptri, 0); -- /* Flip the edge that crosses the segment. After the edge is */ -- /* flipped, one of its endpoints is the fan vertex, and the */ -- /* destination of fixuptri is the fan vertex. */ -- oprevself(fixuptri); -- } -- /* Check for two intersecting segments. */ -- tspivot(fixuptri, crosssubseg); -- if (crosssubseg.ss == m->dummysub) { -- flip(m, b, &fixuptri); /* May create inverted triangle at left. */ -- } else { -- /* We've collided with a segment between endpoint1 and endpoint2. */ -- collision = 1; -- /* Insert a vertex at the intersection. */ -- segmentintersection(m, b, &fixuptri, &crosssubseg, endpoint2); -- done = 1; -- } -- } -- } -- } while (!done); -- /* Insert a subsegment to make the segment permanent. */ -- insertsubseg(m, b, &fixuptri, newmark); -- /* If there was a collision with an interceding vertex, install another */ -- /* segment connecting that vertex with endpoint2. */ -- if (collision) { -- /* Insert the remainder of the segment. */ -- if (!scoutsegment(m, b, &fixuptri, endpoint2, newmark)) { -- constrainededge(m, b, &fixuptri, endpoint2, newmark); -- } -- } --} -- --/*****************************************************************************/ --/* */ --/* insertsegment() Insert a PSLG segment into a triangulation. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --void insertsegment(struct mesh *m, struct behavior *b, -- vertex endpoint1, vertex endpoint2, int newmark) --#else /* not ANSI_DECLARATORS */ --void insertsegment(m, b, endpoint1, endpoint2, newmark) --struct mesh *m; --struct behavior *b; --vertex endpoint1; --vertex endpoint2; --int newmark; --#endif /* not ANSI_DECLARATORS */ -- --{ -- struct otri searchtri1, searchtri2; -- triangle encodedtri; -- vertex checkvertex; -- triangle ptr; /* Temporary variable used by sym(). */ -- -- if (b->verbose > 1) { -- printf(" Connecting (%.12g, %.12g) to (%.12g, %.12g).\n", -- endpoint1[0], endpoint1[1], endpoint2[0], endpoint2[1]); -- } -- -- /* Find a triangle whose origin is the segment's first endpoint. */ -- checkvertex = (vertex) NULL; -- encodedtri = vertex2tri(endpoint1); -- if (encodedtri != (triangle) NULL) { -- decode(encodedtri, searchtri1); -- org(searchtri1, checkvertex); -- } -- if (checkvertex != endpoint1) { -- /* Find a boundary triangle to search from. */ -- searchtri1.tri = m->dummytri; -- searchtri1.orient = 0; -- symself(searchtri1); -- /* Search for the segment's first endpoint by point location. */ -- if (locate(m, b, endpoint1, &searchtri1) != ONVERTEX) { -- printf( -- "Internal error in insertsegment(): Unable to locate PSLG vertex\n"); -- printf(" (%.12g, %.12g) in triangulation.\n", -- endpoint1[0], endpoint1[1]); -- internalerror(); -- } -- } -- /* Remember this triangle to improve subsequent point location. */ -- otricopy(searchtri1, m->recenttri); -- /* Scout the beginnings of a path from the first endpoint */ -- /* toward the second. */ -- if (scoutsegment(m, b, &searchtri1, endpoint2, newmark)) { -- /* The segment was easily inserted. */ -- return; -- } -- /* The first endpoint may have changed if a collision with an intervening */ -- /* vertex on the segment occurred. */ -- org(searchtri1, endpoint1); -- -- /* Find a triangle whose origin is the segment's second endpoint. */ -- checkvertex = (vertex) NULL; -- encodedtri = vertex2tri(endpoint2); -- if (encodedtri != (triangle) NULL) { -- decode(encodedtri, searchtri2); -- org(searchtri2, checkvertex); -- } -- if (checkvertex != endpoint2) { -- /* Find a boundary triangle to search from. */ -- searchtri2.tri = m->dummytri; -- searchtri2.orient = 0; -- symself(searchtri2); -- /* Search for the segment's second endpoint by point location. */ -- if (locate(m, b, endpoint2, &searchtri2) != ONVERTEX) { -- printf( -- "Internal error in insertsegment(): Unable to locate PSLG vertex\n"); -- printf(" (%.12g, %.12g) in triangulation.\n", -- endpoint2[0], endpoint2[1]); -- internalerror(); -- } -- } -- /* Remember this triangle to improve subsequent point location. */ -- otricopy(searchtri2, m->recenttri); -- /* Scout the beginnings of a path from the second endpoint */ -- /* toward the first. */ -- if (scoutsegment(m, b, &searchtri2, endpoint1, newmark)) { -- /* The segment was easily inserted. */ -- return; -- } -- /* The second endpoint may have changed if a collision with an intervening */ -- /* vertex on the segment occurred. */ -- org(searchtri2, endpoint2); -- --#ifndef REDUCED --#ifndef CDT_ONLY -- if (b->splitseg) { -- /* Insert vertices to force the segment into the triangulation. */ -- conformingedge(m, b, endpoint1, endpoint2, newmark); -- } else { --#endif /* not CDT_ONLY */ --#endif /* not REDUCED */ -- /* Insert the segment directly into the triangulation. */ -- constrainededge(m, b, &searchtri1, endpoint2, newmark); --#ifndef REDUCED --#ifndef CDT_ONLY -- } --#endif /* not CDT_ONLY */ --#endif /* not REDUCED */ --} -- --/*****************************************************************************/ --/* */ --/* markhull() Cover the convex hull of a triangulation with subsegments. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --void markhull(struct mesh *m, struct behavior *b) --#else /* not ANSI_DECLARATORS */ --void markhull(m, b) --struct mesh *m; --struct behavior *b; --#endif /* not ANSI_DECLARATORS */ -- --{ -- struct otri hulltri; -- struct otri nexttri; -- struct otri starttri; -- triangle ptr; /* Temporary variable used by sym() and oprev(). */ -- -- /* Find a triangle handle on the hull. */ -- hulltri.tri = m->dummytri; -- hulltri.orient = 0; -- symself(hulltri); -- /* Remember where we started so we know when to stop. */ -- otricopy(hulltri, starttri); -- /* Go once counterclockwise around the convex hull. */ -- do { -- /* Create a subsegment if there isn't already one here. */ -- insertsubseg(m, b, &hulltri, 1); -- /* To find the next hull edge, go clockwise around the next vertex. */ -- lnextself(hulltri); -- oprev(hulltri, nexttri); -- while (nexttri.tri != m->dummytri) { -- otricopy(nexttri, hulltri); -- oprev(hulltri, nexttri); -- } -- } while (!otriequal(hulltri, starttri)); --} -- --/*****************************************************************************/ --/* */ --/* formskeleton() Create the segments of a triangulation, including PSLG */ --/* segments and edges on the convex hull. */ --/* */ --/* The PSLG segments are read from a .poly file. The return value is the */ --/* number of segments in the file. */ --/* */ --/*****************************************************************************/ -- --#ifdef TRILIBRARY -- --#ifdef ANSI_DECLARATORS --void formskeleton(struct mesh *m, struct behavior *b, int *segmentlist, -- int *segmentmarkerlist, int numberofsegments) --#else /* not ANSI_DECLARATORS */ --void formskeleton(m, b, segmentlist, segmentmarkerlist, numberofsegments) --struct mesh *m; --struct behavior *b; --int *segmentlist; --int *segmentmarkerlist; --int numberofsegments; --#endif /* not ANSI_DECLARATORS */ -- --#else /* not TRILIBRARY */ -- --#ifdef ANSI_DECLARATORS --void formskeleton(struct mesh *m, struct behavior *b, -- FILE *polyfile, char *polyfilename) --#else /* not ANSI_DECLARATORS */ --void formskeleton(m, b, polyfile, polyfilename) --struct mesh *m; --struct behavior *b; --FILE *polyfile; --char *polyfilename; --#endif /* not ANSI_DECLARATORS */ -- --#endif /* not TRILIBRARY */ -- --{ --#ifdef TRILIBRARY -- char polyfilename[6]; -- int index; --#else /* not TRILIBRARY */ -- char inputline[INPUTLINESIZE]; -- char *stringptr; --#endif /* not TRILIBRARY */ -- vertex endpoint1, endpoint2; -- int segmentmarkers; -- int end1, end2; -- int boundmarker; -- int i; -- -- if (b->poly) { -- if (!b->quiet) { -- printf("Recovering segments in Delaunay triangulation.\n"); -- } --#ifdef TRILIBRARY -- strcpy(polyfilename, "input"); -- m->insegments = numberofsegments; -- segmentmarkers = segmentmarkerlist != (int *) NULL; -- index = 0; --#else /* not TRILIBRARY */ -- /* Read the segments from a .poly file. */ -- /* Read number of segments and number of boundary markers. */ -- stringptr = readline(inputline, polyfile, polyfilename); -- m->insegments = (int) strtol(stringptr, &stringptr, 0); -- stringptr = findfield(stringptr); -- if (*stringptr == '\0') { -- segmentmarkers = 0; -- } else { -- segmentmarkers = (int) strtol(stringptr, &stringptr, 0); -- } --#endif /* not TRILIBRARY */ -- /* If the input vertices are collinear, there is no triangulation, */ -- /* so don't try to insert segments. */ -- if (m->triangles.items == 0) { -- return; -- } -- -- /* If segments are to be inserted, compute a mapping */ -- /* from vertices to triangles. */ -- if (m->insegments > 0) { -- makevertexmap(m, b); -- if (b->verbose) { -- printf(" Recovering PSLG segments.\n"); -- } -- } -- -- boundmarker = 0; -- /* Read and insert the segments. */ -- for (i = 0; i < m->insegments; i++) { --#ifdef TRILIBRARY -- end1 = segmentlist[index++]; -- end2 = segmentlist[index++]; -- if (segmentmarkers) { -- boundmarker = segmentmarkerlist[i]; -- } --#else /* not TRILIBRARY */ -- stringptr = readline(inputline, polyfile, b->inpolyfilename); -- stringptr = findfield(stringptr); -- if (*stringptr == '\0') { -- printf("Error: Segment %d has no endpoints in %s.\n", -- b->firstnumber + i, polyfilename); -- triexit(1); -- } else { -- end1 = (int) strtol(stringptr, &stringptr, 0); -- } -- stringptr = findfield(stringptr); -- if (*stringptr == '\0') { -- printf("Error: Segment %d is missing its second endpoint in %s.\n", -- b->firstnumber + i, polyfilename); -- triexit(1); -- } else { -- end2 = (int) strtol(stringptr, &stringptr, 0); -- } -- if (segmentmarkers) { -- stringptr = findfield(stringptr); -- if (*stringptr == '\0') { -- boundmarker = 0; -- } else { -- boundmarker = (int) strtol(stringptr, &stringptr, 0); -- } -- } --#endif /* not TRILIBRARY */ -- if ((end1 < b->firstnumber) || -- (end1 >= b->firstnumber + m->invertices)) { -- if (!b->quiet) { -- printf("Warning: Invalid first endpoint of segment %d in %s.\n", -- b->firstnumber + i, polyfilename); -- } -- } else if ((end2 < b->firstnumber) || -- (end2 >= b->firstnumber + m->invertices)) { -- if (!b->quiet) { -- printf("Warning: Invalid second endpoint of segment %d in %s.\n", -- b->firstnumber + i, polyfilename); -- } -- } else { -- /* Find the vertices numbered `end1' and `end2'. */ -- endpoint1 = getvertex(m, b, end1); -- endpoint2 = getvertex(m, b, end2); -- if ((endpoint1[0] == endpoint2[0]) && (endpoint1[1] == endpoint2[1])) { -- if (!b->quiet) { -- printf("Warning: Endpoints of segment %d are coincident in %s.\n", -- b->firstnumber + i, polyfilename); -- } -- } else { -- insertsegment(m, b, endpoint1, endpoint2, boundmarker); -- } -- } -- } -- } else { -- m->insegments = 0; -- } -- if (b->convex || !b->poly) { -- /* Enclose the convex hull with subsegments. */ -- if (b->verbose) { -- printf(" Enclosing convex hull with segments.\n"); -- } -- markhull(m, b); -- } --} -- --/** **/ --/** **/ --/********* Segment insertion ends here *********/ -- --/********* Carving out holes and concavities begins here *********/ --/** **/ --/** **/ -- --/*****************************************************************************/ --/* */ --/* infecthull() Virally infect all of the triangles of the convex hull */ --/* that are not protected by subsegments. Where there are */ --/* subsegments, set boundary markers as appropriate. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --void infecthull(struct mesh *m, struct behavior *b) --#else /* not ANSI_DECLARATORS */ --void infecthull(m, b) --struct mesh *m; --struct behavior *b; --#endif /* not ANSI_DECLARATORS */ -- --{ -- struct otri hulltri; -- struct otri nexttri; -- struct otri starttri; -- struct osub hullsubseg; -- triangle **deadtriangle; -- vertex horg, hdest; -- triangle ptr; /* Temporary variable used by sym(). */ -- subseg sptr; /* Temporary variable used by tspivot(). */ -- -- if (b->verbose) { -- printf(" Marking concavities (external triangles) for elimination.\n"); -- } -- /* Find a triangle handle on the hull. */ -- hulltri.tri = m->dummytri; -- hulltri.orient = 0; -- symself(hulltri); -- /* Remember where we started so we know when to stop. */ -- otricopy(hulltri, starttri); -- /* Go once counterclockwise around the convex hull. */ -- do { -- /* Ignore triangles that are already infected. */ -- if (!infected(hulltri)) { -- /* Is the triangle protected by a subsegment? */ -- tspivot(hulltri, hullsubseg); -- if (hullsubseg.ss == m->dummysub) { -- /* The triangle is not protected; infect it. */ -- if (!infected(hulltri)) { -- infect(hulltri); -- deadtriangle = (triangle **) poolalloc(&m->viri); -- *deadtriangle = hulltri.tri; -- } -- } else { -- /* The triangle is protected; set boundary markers if appropriate. */ -- if (mark(hullsubseg) == 0) { -- setmark(hullsubseg, 1); -- org(hulltri, horg); -- dest(hulltri, hdest); -- if (vertexmark(horg) == 0) { -- setvertexmark(horg, 1); -- } -- if (vertexmark(hdest) == 0) { -- setvertexmark(hdest, 1); -- } -- } -- } -- } -- /* To find the next hull edge, go clockwise around the next vertex. */ -- lnextself(hulltri); -- oprev(hulltri, nexttri); -- while (nexttri.tri != m->dummytri) { -- otricopy(nexttri, hulltri); -- oprev(hulltri, nexttri); -- } -- } while (!otriequal(hulltri, starttri)); --} -- --/*****************************************************************************/ --/* */ --/* plague() Spread the virus from all infected triangles to any neighbors */ --/* not protected by subsegments. Delete all infected triangles. */ --/* */ --/* This is the procedure that actually creates holes and concavities. */ --/* */ --/* This procedure operates in two phases. The first phase identifies all */ --/* the triangles that will die, and marks them as infected. They are */ --/* marked to ensure that each triangle is added to the virus pool only */ --/* once, so the procedure will terminate. */ --/* */ --/* The second phase actually eliminates the infected triangles. It also */ --/* eliminates orphaned vertices. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --void plague(struct mesh *m, struct behavior *b) --#else /* not ANSI_DECLARATORS */ --void plague(m, b) --struct mesh *m; --struct behavior *b; --#endif /* not ANSI_DECLARATORS */ -- --{ -- struct otri testtri; -- struct otri neighbor; -- triangle **virusloop; -- triangle **deadtriangle; -- struct osub neighborsubseg; -- vertex testvertex; -- vertex norg, ndest; -- vertex deadorg, deaddest, deadapex; -- int killorg; -- triangle ptr; /* Temporary variable used by sym() and onext(). */ -- subseg sptr; /* Temporary variable used by tspivot(). */ -- -- if (b->verbose) { -- printf(" Marking neighbors of marked triangles.\n"); -- } -- /* Loop through all the infected triangles, spreading the virus to */ -- /* their neighbors, then to their neighbors' neighbors. */ -- traversalinit(&m->viri); -- virusloop = (triangle **) traverse(&m->viri); -- while (virusloop != (triangle **) NULL) { -- testtri.tri = *virusloop; -- /* A triangle is marked as infected by messing with one of its pointers */ -- /* to subsegments, setting it to an illegal value. Hence, we have to */ -- /* temporarily uninfect this triangle so that we can examine its */ -- /* adjacent subsegments. */ -- uninfect(testtri); -- if (b->verbose > 2) { -- /* Assign the triangle an orientation for convenience in */ -- /* checking its vertices. */ -- testtri.orient = 0; -- org(testtri, deadorg); -- dest(testtri, deaddest); -- apex(testtri, deadapex); -- printf(" Checking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n", -- deadorg[0], deadorg[1], deaddest[0], deaddest[1], -- deadapex[0], deadapex[1]); -- } -- /* Check each of the triangle's three neighbors. */ -- for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) { -- /* Find the neighbor. */ -- sym(testtri, neighbor); -- /* Check for a subsegment between the triangle and its neighbor. */ -- tspivot(testtri, neighborsubseg); -- /* Check if the neighbor is nonexistent or already infected. */ -- if ((neighbor.tri == m->dummytri) || infected(neighbor)) { -- if (neighborsubseg.ss != m->dummysub) { -- /* There is a subsegment separating the triangle from its */ -- /* neighbor, but both triangles are dying, so the subsegment */ -- /* dies too. */ -- subsegdealloc(m, neighborsubseg.ss); -- if (neighbor.tri != m->dummytri) { -- /* Make sure the subsegment doesn't get deallocated again */ -- /* later when the infected neighbor is visited. */ -- uninfect(neighbor); -- tsdissolve(neighbor); -- infect(neighbor); -- } -- } -- } else { /* The neighbor exists and is not infected. */ -- if (neighborsubseg.ss == m->dummysub) { -- /* There is no subsegment protecting the neighbor, so */ -- /* the neighbor becomes infected. */ -- if (b->verbose > 2) { -- org(neighbor, deadorg); -- dest(neighbor, deaddest); -- apex(neighbor, deadapex); -- printf( -- " Marking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n", -- deadorg[0], deadorg[1], deaddest[0], deaddest[1], -- deadapex[0], deadapex[1]); -- } -- infect(neighbor); -- /* Ensure that the neighbor's neighbors will be infected. */ -- deadtriangle = (triangle **) poolalloc(&m->viri); -- *deadtriangle = neighbor.tri; -- } else { /* The neighbor is protected by a subsegment. */ -- /* Remove this triangle from the subsegment. */ -- stdissolve(neighborsubseg); -- /* The subsegment becomes a boundary. Set markers accordingly. */ -- if (mark(neighborsubseg) == 0) { -- setmark(neighborsubseg, 1); -- } -- org(neighbor, norg); -- dest(neighbor, ndest); -- if (vertexmark(norg) == 0) { -- setvertexmark(norg, 1); -- } -- if (vertexmark(ndest) == 0) { -- setvertexmark(ndest, 1); -- } -- } -- } -- } -- /* Remark the triangle as infected, so it doesn't get added to the */ -- /* virus pool again. */ -- infect(testtri); -- virusloop = (triangle **) traverse(&m->viri); -- } -- -- if (b->verbose) { -- printf(" Deleting marked triangles.\n"); -- } -- -- traversalinit(&m->viri); -- virusloop = (triangle **) traverse(&m->viri); -- while (virusloop != (triangle **) NULL) { -- testtri.tri = *virusloop; -- -- /* Check each of the three corners of the triangle for elimination. */ -- /* This is done by walking around each vertex, checking if it is */ -- /* still connected to at least one live triangle. */ -- for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) { -- org(testtri, testvertex); -- /* Check if the vertex has already been tested. */ -- if (testvertex != (vertex) NULL) { -- killorg = 1; -- /* Mark the corner of the triangle as having been tested. */ -- setorg(testtri, NULL); -- /* Walk counterclockwise about the vertex. */ -- onext(testtri, neighbor); -- /* Stop upon reaching a boundary or the starting triangle. */ -- while ((neighbor.tri != m->dummytri) && -- (!otriequal(neighbor, testtri))) { -- if (infected(neighbor)) { -- /* Mark the corner of this triangle as having been tested. */ -- setorg(neighbor, NULL); -- } else { -- /* A live triangle. The vertex survives. */ -- killorg = 0; -- } -- /* Walk counterclockwise about the vertex. */ -- onextself(neighbor); -- } -- /* If we reached a boundary, we must walk clockwise as well. */ -- if (neighbor.tri == m->dummytri) { -- /* Walk clockwise about the vertex. */ -- oprev(testtri, neighbor); -- /* Stop upon reaching a boundary. */ -- while (neighbor.tri != m->dummytri) { -- if (infected(neighbor)) { -- /* Mark the corner of this triangle as having been tested. */ -- setorg(neighbor, NULL); -- } else { -- /* A live triangle. The vertex survives. */ -- killorg = 0; -- } -- /* Walk clockwise about the vertex. */ -- oprevself(neighbor); -- } -- } -- if (killorg) { -- if (b->verbose > 1) { -- printf(" Deleting vertex (%.12g, %.12g)\n", -- testvertex[0], testvertex[1]); -- } -- setvertextype(testvertex, UNDEADVERTEX); -- m->undeads++; -- } -- } -- } -- -- /* Record changes in the number of boundary edges, and disconnect */ -- /* dead triangles from their neighbors. */ -- for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) { -- sym(testtri, neighbor); -- if (neighbor.tri == m->dummytri) { -- /* There is no neighboring triangle on this edge, so this edge */ -- /* is a boundary edge. This triangle is being deleted, so this */ -- /* boundary edge is deleted. */ -- m->hullsize--; -- } else { -- /* Disconnect the triangle from its neighbor. */ -- dissolve(neighbor); -- /* There is a neighboring triangle on this edge, so this edge */ -- /* becomes a boundary edge when this triangle is deleted. */ -- m->hullsize++; -- } -- } -- /* Return the dead triangle to the pool of triangles. */ -- triangledealloc(m, testtri.tri); -- virusloop = (triangle **) traverse(&m->viri); -- } -- /* Empty the virus pool. */ -- poolrestart(&m->viri); --} -- --/*****************************************************************************/ --/* */ --/* regionplague() Spread regional attributes and/or area constraints */ --/* (from a .poly file) throughout the mesh. */ --/* */ --/* This procedure operates in two phases. The first phase spreads an */ --/* attribute and/or an area constraint through a (segment-bounded) region. */ --/* The triangles are marked to ensure that each triangle is added to the */ --/* virus pool only once, so the procedure will terminate. */ --/* */ --/* The second phase uninfects all infected triangles, returning them to */ --/* normal. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --void regionplague(struct mesh *m, struct behavior *b, -- REAL attribute, REAL area) --#else /* not ANSI_DECLARATORS */ --void regionplague(m, b, attribute, area) --struct mesh *m; --struct behavior *b; --REAL attribute; --REAL area; --#endif /* not ANSI_DECLARATORS */ -- --{ -- struct otri testtri; -- struct otri neighbor; -- triangle **virusloop; -- triangle **regiontri; -- struct osub neighborsubseg; -- vertex regionorg, regiondest, regionapex; -- triangle ptr; /* Temporary variable used by sym() and onext(). */ -- subseg sptr; /* Temporary variable used by tspivot(). */ -- -- if (b->verbose > 1) { -- printf(" Marking neighbors of marked triangles.\n"); -- } -- /* Loop through all the infected triangles, spreading the attribute */ -- /* and/or area constraint to their neighbors, then to their neighbors' */ -- /* neighbors. */ -- traversalinit(&m->viri); -- virusloop = (triangle **) traverse(&m->viri); -- while (virusloop != (triangle **) NULL) { -- testtri.tri = *virusloop; -- /* A triangle is marked as infected by messing with one of its pointers */ -- /* to subsegments, setting it to an illegal value. Hence, we have to */ -- /* temporarily uninfect this triangle so that we can examine its */ -- /* adjacent subsegments. */ -- uninfect(testtri); -- if (b->regionattrib) { -- /* Set an attribute. */ -- setelemattribute(testtri, m->eextras, attribute); -- } -- if (b->vararea) { -- /* Set an area constraint. */ -- setareabound(testtri, area); -- } -- if (b->verbose > 2) { -- /* Assign the triangle an orientation for convenience in */ -- /* checking its vertices. */ -- testtri.orient = 0; -- org(testtri, regionorg); -- dest(testtri, regiondest); -- apex(testtri, regionapex); -- printf(" Checking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n", -- regionorg[0], regionorg[1], regiondest[0], regiondest[1], -- regionapex[0], regionapex[1]); -- } -- /* Check each of the triangle's three neighbors. */ -- for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) { -- /* Find the neighbor. */ -- sym(testtri, neighbor); -- /* Check for a subsegment between the triangle and its neighbor. */ -- tspivot(testtri, neighborsubseg); -- /* Make sure the neighbor exists, is not already infected, and */ -- /* isn't protected by a subsegment. */ -- if ((neighbor.tri != m->dummytri) && !infected(neighbor) -- && (neighborsubseg.ss == m->dummysub)) { -- if (b->verbose > 2) { -- org(neighbor, regionorg); -- dest(neighbor, regiondest); -- apex(neighbor, regionapex); -- printf(" Marking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n", -- regionorg[0], regionorg[1], regiondest[0], regiondest[1], -- regionapex[0], regionapex[1]); -- } -- /* Infect the neighbor. */ -- infect(neighbor); -- /* Ensure that the neighbor's neighbors will be infected. */ -- regiontri = (triangle **) poolalloc(&m->viri); -- *regiontri = neighbor.tri; -- } -- } -- /* Remark the triangle as infected, so it doesn't get added to the */ -- /* virus pool again. */ -- infect(testtri); -- virusloop = (triangle **) traverse(&m->viri); -- } -- -- /* Uninfect all triangles. */ -- if (b->verbose > 1) { -- printf(" Unmarking marked triangles.\n"); -- } -- traversalinit(&m->viri); -- virusloop = (triangle **) traverse(&m->viri); -- while (virusloop != (triangle **) NULL) { -- testtri.tri = *virusloop; -- uninfect(testtri); -- virusloop = (triangle **) traverse(&m->viri); -- } -- /* Empty the virus pool. */ -- poolrestart(&m->viri); --} -- --/*****************************************************************************/ --/* */ --/* carveholes() Find the holes and infect them. Find the area */ --/* constraints and infect them. Infect the convex hull. */ --/* Spread the infection and kill triangles. Spread the */ --/* area constraints. */ --/* */ --/* This routine mainly calls other routines to carry out all these */ --/* functions. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --void carveholes(struct mesh *m, struct behavior *b, REAL *holelist, int holes, -- REAL *regionlist, int regions) --#else /* not ANSI_DECLARATORS */ --void carveholes(m, b, holelist, holes, regionlist, regions) --struct mesh *m; --struct behavior *b; --REAL *holelist; --int holes; --REAL *regionlist; --int regions; --#endif /* not ANSI_DECLARATORS */ -- --{ -- struct otri searchtri; -- struct otri triangleloop; -- struct otri *regiontris; -- triangle **holetri; -- triangle **regiontri; -- vertex searchorg, searchdest; -- enum locateresult intersect; -- int i; -- triangle ptr; /* Temporary variable used by sym(). */ -- -- if (!(b->quiet || (b->noholes && b->convex))) { -- printf("Removing unwanted triangles.\n"); -- if (b->verbose && (holes > 0)) { -- printf(" Marking holes for elimination.\n"); -- } -- } -- -- if (regions > 0) { -- /* Allocate storage for the triangles in which region points fall. */ -- regiontris = (struct otri *) trimalloc(regions * -- (int) sizeof(struct otri)); -- } else { -- regiontris = (struct otri *) NULL; -- } -- -- if (((holes > 0) && !b->noholes) || !b->convex || (regions > 0)) { -- /* Initialize a pool of viri to be used for holes, concavities, */ -- /* regional attributes, and/or regional area constraints. */ -- poolinit(&m->viri, sizeof(triangle *), VIRUSPERBLOCK, VIRUSPERBLOCK, 0); -- } -- -- if (!b->convex) { -- /* Mark as infected any unprotected triangles on the boundary. */ -- /* This is one way by which concavities are created. */ -- infecthull(m, b); -- } -- -- if ((holes > 0) && !b->noholes) { -- /* Infect each triangle in which a hole lies. */ -- for (i = 0; i < 2 * holes; i += 2) { -- /* Ignore holes that aren't within the bounds of the mesh. */ -- if ((holelist[i] >= m->xmin) && (holelist[i] <= m->xmax) -- && (holelist[i + 1] >= m->ymin) && (holelist[i + 1] <= m->ymax)) { -- /* Start searching from some triangle on the outer boundary. */ -- searchtri.tri = m->dummytri; -- searchtri.orient = 0; -- symself(searchtri); -- /* Ensure that the hole is to the left of this boundary edge; */ -- /* otherwise, locate() will falsely report that the hole */ -- /* falls within the starting triangle. */ -- org(searchtri, searchorg); -- dest(searchtri, searchdest); -- if (counterclockwise(m, b, searchorg, searchdest, &holelist[i]) > -- 0.0) { -- /* Find a triangle that contains the hole. */ -- intersect = locate(m, b, &holelist[i], &searchtri); -- if ((intersect != OUTSIDE) && (!infected(searchtri))) { -- /* Infect the triangle. This is done by marking the triangle */ -- /* as infected and including the triangle in the virus pool. */ -- infect(searchtri); -- holetri = (triangle **) poolalloc(&m->viri); -- *holetri = searchtri.tri; -- } -- } -- } -- } -- } -- -- /* Now, we have to find all the regions BEFORE we carve the holes, because */ -- /* locate() won't work when the triangulation is no longer convex. */ -- /* (Incidentally, this is the reason why regional attributes and area */ -- /* constraints can't be used when refining a preexisting mesh, which */ -- /* might not be convex; they can only be used with a freshly */ -- /* triangulated PSLG.) */ -- if (regions > 0) { -- /* Find the starting triangle for each region. */ -- for (i = 0; i < regions; i++) { -- regiontris[i].tri = m->dummytri; -- /* Ignore region points that aren't within the bounds of the mesh. */ -- if ((regionlist[4 * i] >= m->xmin) && (regionlist[4 * i] <= m->xmax) && -- (regionlist[4 * i + 1] >= m->ymin) && -- (regionlist[4 * i + 1] <= m->ymax)) { -- /* Start searching from some triangle on the outer boundary. */ -- searchtri.tri = m->dummytri; -- searchtri.orient = 0; -- symself(searchtri); -- /* Ensure that the region point is to the left of this boundary */ -- /* edge; otherwise, locate() will falsely report that the */ -- /* region point falls within the starting triangle. */ -- org(searchtri, searchorg); -- dest(searchtri, searchdest); -- if (counterclockwise(m, b, searchorg, searchdest, ®ionlist[4 * i]) > -- 0.0) { -- /* Find a triangle that contains the region point. */ -- intersect = locate(m, b, ®ionlist[4 * i], &searchtri); -- if ((intersect != OUTSIDE) && (!infected(searchtri))) { -- /* Record the triangle for processing after the */ -- /* holes have been carved. */ -- otricopy(searchtri, regiontris[i]); -- } -- } -- } -- } -- } -- -- if (m->viri.items > 0) { -- /* Carve the holes and concavities. */ -- plague(m, b); -- } -- /* The virus pool should be empty now. */ -- -- if (regions > 0) { -- if (!b->quiet) { -- if (b->regionattrib) { -- if (b->vararea) { -- printf("Spreading regional attributes and area constraints.\n"); -- } else { -- printf("Spreading regional attributes.\n"); -- } -- } else { -- printf("Spreading regional area constraints.\n"); -- } -- } -- if (b->regionattrib && !b->refine) { -- /* Assign every triangle a regional attribute of zero. */ -- traversalinit(&m->triangles); -- triangleloop.orient = 0; -- triangleloop.tri = triangletraverse(m); -- while (triangleloop.tri != (triangle *) NULL) { -- setelemattribute(triangleloop, m->eextras, 0.0); -- triangleloop.tri = triangletraverse(m); -- } -- } -- for (i = 0; i < regions; i++) { -- if (regiontris[i].tri != m->dummytri) { -- /* Make sure the triangle under consideration still exists. */ -- /* It may have been eaten by the virus. */ -- if (!deadtri(regiontris[i].tri)) { -- /* Put one triangle in the virus pool. */ -- infect(regiontris[i]); -- regiontri = (triangle **) poolalloc(&m->viri); -- *regiontri = regiontris[i].tri; -- /* Apply one region's attribute and/or area constraint. */ -- regionplague(m, b, regionlist[4 * i + 2], regionlist[4 * i + 3]); -- /* The virus pool should be empty now. */ -- } -- } -- } -- if (b->regionattrib && !b->refine) { -- /* Note the fact that each triangle has an additional attribute. */ -- m->eextras++; -- } -- } -- -- /* Free up memory. */ -- if (((holes > 0) && !b->noholes) || !b->convex || (regions > 0)) { -- pooldeinit(&m->viri); -- } -- if (regions > 0) { -- trifree((void *) regiontris); -- } --} -- --/** **/ --/** **/ --/********* Carving out holes and concavities ends here *********/ -- --/********* Mesh quality maintenance begins here *********/ --/** **/ --/** **/ -- --/*****************************************************************************/ --/* */ --/* tallyencs() Traverse the entire list of subsegments, and check each */ --/* to see if it is encroached. If so, add it to the list. */ --/* */ --/*****************************************************************************/ -- --#ifndef CDT_ONLY -- --#ifdef ANSI_DECLARATORS --void tallyencs(struct mesh *m, struct behavior *b) --#else /* not ANSI_DECLARATORS */ --void tallyencs(m, b) --struct mesh *m; --struct behavior *b; --#endif /* not ANSI_DECLARATORS */ -- --{ -- struct osub subsegloop; -- -- traversalinit(&m->subsegs); -- subsegloop.ssorient = 0; -- subsegloop.ss = subsegtraverse(m); -- while (subsegloop.ss != (subseg *) NULL) { -- /* If the segment is encroached, add it to the list. */ -- checkseg4encroach(m, b, &subsegloop); -- subsegloop.ss = subsegtraverse(m); -- } --} -- --#endif /* not CDT_ONLY */ -- --/*****************************************************************************/ --/* */ --/* precisionerror() Print an error message for precision problems. */ --/* */ --/*****************************************************************************/ -- --#ifndef CDT_ONLY -- --void precisionerror() --{ -- printf("Try increasing the area criterion and/or reducing the minimum\n"); -- printf(" allowable angle so that tiny triangles are not created.\n"); --#ifdef SINGLE -- printf("Alternatively, try recompiling me with double precision\n"); -- printf(" arithmetic (by removing \"#define SINGLE\" from the\n"); -- printf(" source file or \"-DSINGLE\" from the makefile).\n"); --#endif /* SINGLE */ --} -- --#endif /* not CDT_ONLY */ -- --/*****************************************************************************/ --/* */ --/* splitencsegs() Split all the encroached subsegments. */ --/* */ --/* Each encroached subsegment is repaired by splitting it - inserting a */ --/* vertex at or near its midpoint. Newly inserted vertices may encroach */ --/* upon other subsegments; these are also repaired. */ --/* */ --/* `triflaws' is a flag that specifies whether one should take note of new */ --/* bad triangles that result from inserting vertices to repair encroached */ --/* subsegments. */ --/* */ --/*****************************************************************************/ -- --#ifndef CDT_ONLY -- --#ifdef ANSI_DECLARATORS --void splitencsegs(struct mesh *m, struct behavior *b, int triflaws) --#else /* not ANSI_DECLARATORS */ --void splitencsegs(m, b, triflaws) --struct mesh *m; --struct behavior *b; --int triflaws; --#endif /* not ANSI_DECLARATORS */ -- --{ -- struct otri enctri; -- struct otri testtri; -- struct osub testsh; -- struct osub currentenc; -- struct badsubseg *encloop; -- vertex eorg, edest, eapex; -- vertex newvertex; -- enum insertvertexresult success; -- REAL segmentlength, nearestpoweroftwo; -- REAL split; -- REAL multiplier, divisor; -- int acuteorg, acuteorg2, acutedest, acutedest2; -- int i; -- triangle ptr; /* Temporary variable used by stpivot(). */ -- subseg sptr; /* Temporary variable used by snext(). */ -- -- /* Note that steinerleft == -1 if an unlimited number */ -- /* of Steiner points is allowed. */ -- while ((m->badsubsegs.items > 0) && (m->steinerleft != 0)) { -- traversalinit(&m->badsubsegs); -- encloop = badsubsegtraverse(m); -- while ((encloop != (struct badsubseg *) NULL) && (m->steinerleft != 0)) { -- sdecode(encloop->encsubseg, currentenc); -- sorg(currentenc, eorg); -- sdest(currentenc, edest); -- /* Make sure that this segment is still the same segment it was */ -- /* when it was determined to be encroached. If the segment was */ -- /* enqueued multiple times (because several newly inserted */ -- /* vertices encroached it), it may have already been split. */ -- if (!deadsubseg(currentenc.ss) && -- (eorg == encloop->subsegorg) && (edest == encloop->subsegdest)) { -- /* To decide where to split a segment, we need to know if the */ -- /* segment shares an endpoint with an adjacent segment. */ -- /* The concern is that, if we simply split every encroached */ -- /* segment in its center, two adjacent segments with a small */ -- /* angle between them might lead to an infinite loop; each */ -- /* vertex added to split one segment will encroach upon the */ -- /* other segment, which must then be split with a vertex that */ -- /* will encroach upon the first segment, and so on forever. */ -- /* To avoid this, imagine a set of concentric circles, whose */ -- /* radii are powers of two, about each segment endpoint. */ -- /* These concentric circles determine where the segment is */ -- /* split. (If both endpoints are shared with adjacent */ -- /* segments, split the segment in the middle, and apply the */ -- /* concentric circles for later splittings.) */ -- -- /* Is the origin shared with another segment? */ -- stpivot(currentenc, enctri); -- lnext(enctri, testtri); -- tspivot(testtri, testsh); -- acuteorg = testsh.ss != m->dummysub; -- /* Is the destination shared with another segment? */ -- lnextself(testtri); -- tspivot(testtri, testsh); -- acutedest = testsh.ss != m->dummysub; -- -- /* If we're using Chew's algorithm (rather than Ruppert's) */ -- /* to define encroachment, delete free vertices from the */ -- /* subsegment's diametral circle. */ -- if (!b->conformdel && !acuteorg && !acutedest) { -- apex(enctri, eapex); -- while ((vertextype(eapex) == FREEVERTEX) && -- ((eorg[0] - eapex[0]) * (edest[0] - eapex[0]) + -- (eorg[1] - eapex[1]) * (edest[1] - eapex[1]) < 0.0)) { -- deletevertex(m, b, &testtri); -- stpivot(currentenc, enctri); -- apex(enctri, eapex); -- lprev(enctri, testtri); -- } -- } -- -- /* Now, check the other side of the segment, if there's a triangle */ -- /* there. */ -- sym(enctri, testtri); -- if (testtri.tri != m->dummytri) { -- /* Is the destination shared with another segment? */ -- lnextself(testtri); -- tspivot(testtri, testsh); -- acutedest2 = testsh.ss != m->dummysub; -- acutedest = acutedest || acutedest2; -- /* Is the origin shared with another segment? */ -- lnextself(testtri); -- tspivot(testtri, testsh); -- acuteorg2 = testsh.ss != m->dummysub; -- acuteorg = acuteorg || acuteorg2; -- -- /* Delete free vertices from the subsegment's diametral circle. */ -- if (!b->conformdel && !acuteorg2 && !acutedest2) { -- org(testtri, eapex); -- while ((vertextype(eapex) == FREEVERTEX) && -- ((eorg[0] - eapex[0]) * (edest[0] - eapex[0]) + -- (eorg[1] - eapex[1]) * (edest[1] - eapex[1]) < 0.0)) { -- deletevertex(m, b, &testtri); -- sym(enctri, testtri); -- apex(testtri, eapex); -- lprevself(testtri); -- } -- } -- } -- -- /* Use the concentric circles if exactly one endpoint is shared */ -- /* with another adjacent segment. */ -- if (acuteorg || acutedest) { -- segmentlength = sqrt((edest[0] - eorg[0]) * (edest[0] - eorg[0]) + -- (edest[1] - eorg[1]) * (edest[1] - eorg[1])); -- /* Find the power of two that most evenly splits the segment. */ -- /* The worst case is a 2:1 ratio between subsegment lengths. */ -- nearestpoweroftwo = 1.0; -- while (segmentlength > 3.0 * nearestpoweroftwo) { -- nearestpoweroftwo *= 2.0; -- } -- while (segmentlength < 1.5 * nearestpoweroftwo) { -- nearestpoweroftwo *= 0.5; -- } -- /* Where do we split the segment? */ -- split = nearestpoweroftwo / segmentlength; -- if (acutedest) { -- split = 1.0 - split; -- } -- } else { -- /* If we're not worried about adjacent segments, split */ -- /* this segment in the middle. */ -- split = 0.5; -- } -- -- /* Create the new vertex. */ -- newvertex = (vertex) poolalloc(&m->vertices); -- /* Interpolate its coordinate and attributes. */ -- for (i = 0; i < 2 + m->nextras; i++) { -- newvertex[i] = eorg[i] + split * (edest[i] - eorg[i]); -- } -- -- if (!b->noexact) { -- /* Roundoff in the above calculation may yield a `newvertex' */ -- /* that is not precisely collinear with `eorg' and `edest'. */ -- /* Improve collinearity by one step of iterative refinement. */ -- multiplier = counterclockwise(m, b, eorg, edest, newvertex); -- divisor = ((eorg[0] - edest[0]) * (eorg[0] - edest[0]) + -- (eorg[1] - edest[1]) * (eorg[1] - edest[1])); -- if ((multiplier != 0.0) && (divisor != 0.0)) { -- multiplier = multiplier / divisor; -- /* Watch out for NANs. */ -- if (multiplier == multiplier) { -- newvertex[0] += multiplier * (edest[1] - eorg[1]); -- newvertex[1] += multiplier * (eorg[0] - edest[0]); -- } -- } -- } -- -- setvertexmark(newvertex, mark(currentenc)); -- setvertextype(newvertex, SEGMENTVERTEX); -- if (b->verbose > 1) { -- printf( -- " Splitting subsegment (%.12g, %.12g) (%.12g, %.12g) at (%.12g, %.12g).\n", -- eorg[0], eorg[1], edest[0], edest[1], -- newvertex[0], newvertex[1]); -- } -- /* Check whether the new vertex lies on an endpoint. */ -- if (((newvertex[0] == eorg[0]) && (newvertex[1] == eorg[1])) || -- ((newvertex[0] == edest[0]) && (newvertex[1] == edest[1]))) { -- printf("Error: Ran out of precision at (%.12g, %.12g).\n", -- newvertex[0], newvertex[1]); -- printf("I attempted to split a segment to a smaller size than\n"); -- printf(" can be accommodated by the finite precision of\n"); -- printf(" floating point arithmetic.\n"); -- precisionerror(); -- triexit(1); -- } -- /* Insert the splitting vertex. This should always succeed. */ -- success = insertvertex(m, b, newvertex, &enctri, ¤tenc, -- 1, triflaws); -- if ((success != SUCCESSFULVERTEX) && (success != ENCROACHINGVERTEX)) { -- printf("Internal error in splitencsegs():\n"); -- printf(" Failure to split a segment.\n"); -- internalerror(); -- } -- if (m->steinerleft > 0) { -- m->steinerleft--; -- } -- /* Check the two new subsegments to see if they're encroached. */ -- checkseg4encroach(m, b, ¤tenc); -- snextself(currentenc); -- checkseg4encroach(m, b, ¤tenc); -- } -- -- badsubsegdealloc(m, encloop); -- encloop = badsubsegtraverse(m); -- } -- } --} -- --#endif /* not CDT_ONLY */ -- --/*****************************************************************************/ --/* */ --/* tallyfaces() Test every triangle in the mesh for quality measures. */ --/* */ --/*****************************************************************************/ -- --#ifndef CDT_ONLY -- --#ifdef ANSI_DECLARATORS --void tallyfaces(struct mesh *m, struct behavior *b) --#else /* not ANSI_DECLARATORS */ --void tallyfaces(m, b) --struct mesh *m; --struct behavior *b; --#endif /* not ANSI_DECLARATORS */ -- --{ -- struct otri triangleloop; -- -- if (b->verbose) { -- printf(" Making a list of bad triangles.\n"); -- } -- traversalinit(&m->triangles); -- triangleloop.orient = 0; -- triangleloop.tri = triangletraverse(m); -- while (triangleloop.tri != (triangle *) NULL) { -- /* If the triangle is bad, enqueue it. */ -- testtriangle(m, b, &triangleloop); -- triangleloop.tri = triangletraverse(m); -- } --} -- --#endif /* not CDT_ONLY */ -- --/*****************************************************************************/ --/* */ --/* splittriangle() Inserts a vertex at the circumcenter of a triangle. */ --/* Deletes the newly inserted vertex if it encroaches */ --/* upon a segment. */ --/* */ --/*****************************************************************************/ -- --#ifndef CDT_ONLY -- --#ifdef ANSI_DECLARATORS --void splittriangle(struct mesh *m, struct behavior *b, -- struct badtriang *badtri) --#else /* not ANSI_DECLARATORS */ --void splittriangle(m, b, badtri) --struct mesh *m; --struct behavior *b; --struct badtriang *badtri; --#endif /* not ANSI_DECLARATORS */ -- --{ -- struct otri badotri; -- vertex borg, bdest, bapex; -- vertex newvertex; -- REAL xi, eta; -- enum insertvertexresult success; -- int errorflag; -- int i; -- -- decode(badtri->poortri, badotri); -- org(badotri, borg); -- dest(badotri, bdest); -- apex(badotri, bapex); -- /* Make sure that this triangle is still the same triangle it was */ -- /* when it was tested and determined to be of bad quality. */ -- /* Subsequent transformations may have made it a different triangle. */ -- if (!deadtri(badotri.tri) && (borg == badtri->triangorg) && -- (bdest == badtri->triangdest) && (bapex == badtri->triangapex)) { -- if (b->verbose > 1) { -- printf(" Splitting this triangle at its circumcenter:\n"); -- printf(" (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n", borg[0], -- borg[1], bdest[0], bdest[1], bapex[0], bapex[1]); -- } -- -- errorflag = 0; -- /* Create a new vertex at the triangle's circumcenter. */ -- newvertex = (vertex) poolalloc(&m->vertices); -- findcircumcenter(m, b, borg, bdest, bapex, newvertex, &xi, &eta, 1); -- -- /* Check whether the new vertex lies on a triangle vertex. */ -- if (((newvertex[0] == borg[0]) && (newvertex[1] == borg[1])) || -- ((newvertex[0] == bdest[0]) && (newvertex[1] == bdest[1])) || -- ((newvertex[0] == bapex[0]) && (newvertex[1] == bapex[1]))) { -- if (!b->quiet) { -- printf( -- "Warning: New vertex (%.12g, %.12g) falls on existing vertex.\n", -- newvertex[0], newvertex[1]); -- errorflag = 1; -- } -- vertexdealloc(m, newvertex); -- } else { -- for (i = 2; i < 2 + m->nextras; i++) { -- /* Interpolate the vertex attributes at the circumcenter. */ -- newvertex[i] = borg[i] + xi * (bdest[i] - borg[i]) -- + eta * (bapex[i] - borg[i]); -- } -- /* The new vertex must be in the interior, and therefore is a */ -- /* free vertex with a marker of zero. */ -- setvertexmark(newvertex, 0); -- setvertextype(newvertex, FREEVERTEX); -- -- /* Ensure that the handle `badotri' does not represent the longest */ -- /* edge of the triangle. This ensures that the circumcenter must */ -- /* fall to the left of this edge, so point location will work. */ -- /* (If the angle org-apex-dest exceeds 90 degrees, then the */ -- /* circumcenter lies outside the org-dest edge, and eta is */ -- /* negative. Roundoff error might prevent eta from being */ -- /* negative when it should be, so I test eta against xi.) */ -- if (eta < xi) { -- lprevself(badotri); -- } -- -- /* Insert the circumcenter, searching from the edge of the triangle, */ -- /* and maintain the Delaunay property of the triangulation. */ -- success = insertvertex(m, b, newvertex, &badotri, (struct osub *) NULL, -- 1, 1); -- if (success == SUCCESSFULVERTEX) { -- if (m->steinerleft > 0) { -- m->steinerleft--; -- } -- } else if (success == ENCROACHINGVERTEX) { -- /* If the newly inserted vertex encroaches upon a subsegment, */ -- /* delete the new vertex. */ -- undovertex(m, b); -- if (b->verbose > 1) { -- printf(" Rejecting (%.12g, %.12g).\n", newvertex[0], newvertex[1]); -- } -- vertexdealloc(m, newvertex); -- } else if (success == VIOLATINGVERTEX) { -- /* Failed to insert the new vertex, but some subsegment was */ -- /* marked as being encroached. */ -- vertexdealloc(m, newvertex); -- } else { /* success == DUPLICATEVERTEX */ -- /* Couldn't insert the new vertex because a vertex is already there. */ -- if (!b->quiet) { -- printf( -- "Warning: New vertex (%.12g, %.12g) falls on existing vertex.\n", -- newvertex[0], newvertex[1]); -- errorflag = 1; -- } -- vertexdealloc(m, newvertex); -- } -- } -- if (errorflag) { -- if (b->verbose) { -- printf(" The new vertex is at the circumcenter of triangle\n"); -- printf(" (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n", -- borg[0], borg[1], bdest[0], bdest[1], bapex[0], bapex[1]); -- } -- printf("This probably means that I am trying to refine triangles\n"); -- printf(" to a smaller size than can be accommodated by the finite\n"); -- printf(" precision of floating point arithmetic. (You can be\n"); -- printf(" sure of this if I fail to terminate.)\n"); -- precisionerror(); -- } -- } --} -- --#endif /* not CDT_ONLY */ -- --/*****************************************************************************/ --/* */ --/* enforcequality() Remove all the encroached subsegments and bad */ --/* triangles from the triangulation. */ --/* */ --/*****************************************************************************/ -- --#ifndef CDT_ONLY -- --#ifdef ANSI_DECLARATORS --void enforcequality(struct mesh *m, struct behavior *b) --#else /* not ANSI_DECLARATORS */ --void enforcequality(m, b) --struct mesh *m; --struct behavior *b; --#endif /* not ANSI_DECLARATORS */ -- --{ -- struct badtriang *badtri; -- int i; -- -- if (!b->quiet) { -- printf("Adding Steiner points to enforce quality.\n"); -- } -- /* Initialize the pool of encroached subsegments. */ -- poolinit(&m->badsubsegs, sizeof(struct badsubseg), BADSUBSEGPERBLOCK, -- BADSUBSEGPERBLOCK, 0); -- if (b->verbose) { -- printf(" Looking for encroached subsegments.\n"); -- } -- /* Test all segments to see if they're encroached. */ -- tallyencs(m, b); -- if (b->verbose && (m->badsubsegs.items > 0)) { -- printf(" Splitting encroached subsegments.\n"); -- } -- /* Fix encroached subsegments without noting bad triangles. */ -- splitencsegs(m, b, 0); -- /* At this point, if we haven't run out of Steiner points, the */ -- /* triangulation should be (conforming) Delaunay. */ -- -- /* Next, we worry about enforcing triangle quality. */ -- if ((b->minangle > 0.0) || b->vararea || b->fixedarea || b->usertest) { -- /* Initialize the pool of bad triangles. */ -- poolinit(&m->badtriangles, sizeof(struct badtriang), BADTRIPERBLOCK, -- BADTRIPERBLOCK, 0); -- /* Initialize the queues of bad triangles. */ -- for (i = 0; i < 4096; i++) { -- m->queuefront[i] = (struct badtriang *) NULL; -- } -- m->firstnonemptyq = -1; -- /* Test all triangles to see if they're bad. */ -- tallyfaces(m, b); -- /* Initialize the pool of recently flipped triangles. */ -- poolinit(&m->flipstackers, sizeof(struct flipstacker), FLIPSTACKERPERBLOCK, -- FLIPSTACKERPERBLOCK, 0); -- m->checkquality = 1; -- if (b->verbose) { -- printf(" Splitting bad triangles.\n"); -- } -- while ((m->badtriangles.items > 0) && (m->steinerleft != 0)) { -- /* Fix one bad triangle by inserting a vertex at its circumcenter. */ -- badtri = dequeuebadtriang(m); -- splittriangle(m, b, badtri); -- if (m->badsubsegs.items > 0) { -- /* Put bad triangle back in queue for another try later. */ -- enqueuebadtriang(m, b, badtri); -- /* Fix any encroached subsegments that resulted. */ -- /* Record any new bad triangles that result. */ -- splitencsegs(m, b, 1); -- } else { -- /* Return the bad triangle to the pool. */ -- pooldealloc(&m->badtriangles, (void *) badtri); -- } -- } -- } -- /* At this point, if the "-D" switch was selected and we haven't run out */ -- /* of Steiner points, the triangulation should be (conforming) Delaunay */ -- /* and have no low-quality triangles. */ -- -- /* Might we have run out of Steiner points too soon? */ -- if (!b->quiet && b->conformdel && (m->badsubsegs.items > 0) && -- (m->steinerleft == 0)) { -- printf("\nWarning: I ran out of Steiner points, but the mesh has\n"); -- if (m->badsubsegs.items == 1) { -- printf(" one encroached subsegment, and therefore might not be truly\n" -- ); -- } else { -- printf(" %ld encroached subsegments, and therefore might not be truly\n" -- , m->badsubsegs.items); -- } -- printf(" Delaunay. If the Delaunay property is important to you,\n"); -- printf(" try increasing the number of Steiner points (controlled by\n"); -- printf(" the -S switch) slightly and try again.\n\n"); -- } --} -- --#endif /* not CDT_ONLY */ -- --/** **/ --/** **/ --/********* Mesh quality maintenance ends here *********/ -- --/*****************************************************************************/ --/* */ --/* highorder() Create extra nodes for quadratic subparametric elements. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --void highorder(struct mesh *m, struct behavior *b) --#else /* not ANSI_DECLARATORS */ --void highorder(m, b) --struct mesh *m; --struct behavior *b; --#endif /* not ANSI_DECLARATORS */ -- --{ -- struct otri triangleloop, trisym; -- struct osub checkmark; -- vertex newvertex; -- vertex torg, tdest; -- int i; -- triangle ptr; /* Temporary variable used by sym(). */ -- subseg sptr; /* Temporary variable used by tspivot(). */ -- -- if (!b->quiet) { -- printf("Adding vertices for second-order triangles.\n"); -- } -- /* The following line ensures that dead items in the pool of nodes */ -- /* cannot be allocated for the extra nodes associated with high */ -- /* order elements. This ensures that the primary nodes (at the */ -- /* corners of elements) will occur earlier in the output files, and */ -- /* have lower indices, than the extra nodes. */ -- m->vertices.deaditemstack = (void *) NULL; -- -- traversalinit(&m->triangles); -- triangleloop.tri = triangletraverse(m); -- /* To loop over the set of edges, loop over all triangles, and look at */ -- /* the three edges of each triangle. If there isn't another triangle */ -- /* adjacent to the edge, operate on the edge. If there is another */ -- /* adjacent triangle, operate on the edge only if the current triangle */ -- /* has a smaller pointer than its neighbor. This way, each edge is */ -- /* considered only once. */ -- while (triangleloop.tri != (triangle *) NULL) { -- for (triangleloop.orient = 0; triangleloop.orient < 3; -- triangleloop.orient++) { -- sym(triangleloop, trisym); -- if ((triangleloop.tri < trisym.tri) || (trisym.tri == m->dummytri)) { -- org(triangleloop, torg); -- dest(triangleloop, tdest); -- /* Create a new node in the middle of the edge. Interpolate */ -- /* its attributes. */ -- newvertex = (vertex) poolalloc(&m->vertices); -- for (i = 0; i < 2 + m->nextras; i++) { -- newvertex[i] = 0.5 * (torg[i] + tdest[i]); -- } -- /* Set the new node's marker to zero or one, depending on */ -- /* whether it lies on a boundary. */ -- setvertexmark(newvertex, trisym.tri == m->dummytri); -- setvertextype(newvertex, -- trisym.tri == m->dummytri ? FREEVERTEX : SEGMENTVERTEX); -- if (b->usesegments) { -- tspivot(triangleloop, checkmark); -- /* If this edge is a segment, transfer the marker to the new node. */ -- if (checkmark.ss != m->dummysub) { -- setvertexmark(newvertex, mark(checkmark)); -- setvertextype(newvertex, SEGMENTVERTEX); -- } -- } -- if (b->verbose > 1) { -- printf(" Creating (%.12g, %.12g).\n", newvertex[0], newvertex[1]); -- } -- /* Record the new node in the (one or two) adjacent elements. */ -- triangleloop.tri[m->highorderindex + triangleloop.orient] = -- (triangle) newvertex; -- if (trisym.tri != m->dummytri) { -- trisym.tri[m->highorderindex + trisym.orient] = (triangle) newvertex; -- } -- } -- } -- triangleloop.tri = triangletraverse(m); -- } --} -- --/********* File I/O routines begin here *********/ --/** **/ --/** **/ -- --/*****************************************************************************/ --/* */ --/* readline() Read a nonempty line from a file. */ --/* */ --/* A line is considered "nonempty" if it contains something that looks like */ --/* a number. Comments (prefaced by `#') are ignored. */ --/* */ --/*****************************************************************************/ -- --#ifndef TRILIBRARY -- --#ifdef ANSI_DECLARATORS --char *readline(char *string, FILE *infile, char *infilename) --#else /* not ANSI_DECLARATORS */ --char *readline(string, infile, infilename) --char *string; --FILE *infile; --char *infilename; --#endif /* not ANSI_DECLARATORS */ -- --{ -- char *result; -- -- /* Search for something that looks like a number. */ -- do { -- result = fgets(string, INPUTLINESIZE, infile); -- if (result == (char *) NULL) { -- printf(" Error: Unexpected end of file in %s.\n", infilename); -- triexit(1); -- } -- /* Skip anything that doesn't look like a number, a comment, */ -- /* or the end of a line. */ -- while ((*result != '\0') && (*result != '#') -- && (*result != '.') && (*result != '+') && (*result != '-') -- && ((*result < '0') || (*result > '9'))) { -- result++; -- } -- /* If it's a comment or end of line, read another line and try again. */ -- } while ((*result == '#') || (*result == '\0')); -- return result; --} -- --#endif /* not TRILIBRARY */ -- --/*****************************************************************************/ --/* */ --/* findfield() Find the next field of a string. */ --/* */ --/* Jumps past the current field by searching for whitespace, then jumps */ --/* past the whitespace to find the next field. */ --/* */ --/*****************************************************************************/ -- --#ifndef TRILIBRARY -- --#ifdef ANSI_DECLARATORS --char *findfield(char *string) --#else /* not ANSI_DECLARATORS */ --char *findfield(string) --char *string; --#endif /* not ANSI_DECLARATORS */ -- --{ -- char *result; -- -- result = string; -- /* Skip the current field. Stop upon reaching whitespace. */ -- while ((*result != '\0') && (*result != '#') -- && (*result != ' ') && (*result != '\t')) { -- result++; -- } -- /* Now skip the whitespace and anything else that doesn't look like a */ -- /* number, a comment, or the end of a line. */ -- while ((*result != '\0') && (*result != '#') -- && (*result != '.') && (*result != '+') && (*result != '-') -- && ((*result < '0') || (*result > '9'))) { -- result++; -- } -- /* Check for a comment (prefixed with `#'). */ -- if (*result == '#') { -- *result = '\0'; -- } -- return result; --} -- --#endif /* not TRILIBRARY */ -- --/*****************************************************************************/ --/* */ --/* readnodes() Read the vertices from a file, which may be a .node or */ --/* .poly file. */ --/* */ --/*****************************************************************************/ -- --#ifndef TRILIBRARY -- --#ifdef ANSI_DECLARATORS --void readnodes(struct mesh *m, struct behavior *b, char *nodefilename, -- char *polyfilename, FILE **polyfile) --#else /* not ANSI_DECLARATORS */ --void readnodes(m, b, nodefilename, polyfilename, polyfile) --struct mesh *m; --struct behavior *b; --char *nodefilename; --char *polyfilename; --FILE **polyfile; --#endif /* not ANSI_DECLARATORS */ -- --{ -- FILE *infile; -- vertex vertexloop; -- char inputline[INPUTLINESIZE]; -- char *stringptr; -- char *infilename; -- REAL x, y; -- int firstnode; -- int nodemarkers; -- int currentmarker; -- int i, j; -- -- if (b->poly) { -- /* Read the vertices from a .poly file. */ -- if (!b->quiet) { -- printf("Opening %s.\n", polyfilename); -- } -- *polyfile = fopen(polyfilename, "r"); -- if (*polyfile == (FILE *) NULL) { -- printf(" Error: Cannot access file %s.\n", polyfilename); -- triexit(1); -- } -- /* Read number of vertices, number of dimensions, number of vertex */ -- /* attributes, and number of boundary markers. */ -- stringptr = readline(inputline, *polyfile, polyfilename); -- m->invertices = (int) strtol(stringptr, &stringptr, 0); -- stringptr = findfield(stringptr); -- if (*stringptr == '\0') { -- m->mesh_dim = 2; -- } else { -- m->mesh_dim = (int) strtol(stringptr, &stringptr, 0); -- } -- stringptr = findfield(stringptr); -- if (*stringptr == '\0') { -- m->nextras = 0; -- } else { -- m->nextras = (int) strtol(stringptr, &stringptr, 0); -- } -- stringptr = findfield(stringptr); -- if (*stringptr == '\0') { -- nodemarkers = 0; -- } else { -- nodemarkers = (int) strtol(stringptr, &stringptr, 0); -- } -- if (m->invertices > 0) { -- infile = *polyfile; -- infilename = polyfilename; -- m->readnodefile = 0; -- } else { -- /* If the .poly file claims there are zero vertices, that means that */ -- /* the vertices should be read from a separate .node file. */ -- m->readnodefile = 1; -- infilename = nodefilename; -- } -- } else { -- m->readnodefile = 1; -- infilename = nodefilename; -- *polyfile = (FILE *) NULL; -- } -- -- if (m->readnodefile) { -- /* Read the vertices from a .node file. */ -- if (!b->quiet) { -- printf("Opening %s.\n", nodefilename); -- } -- infile = fopen(nodefilename, "r"); -- if (infile == (FILE *) NULL) { -- printf(" Error: Cannot access file %s.\n", nodefilename); -- triexit(1); -- } -- /* Read number of vertices, number of dimensions, number of vertex */ -- /* attributes, and number of boundary markers. */ -- stringptr = readline(inputline, infile, nodefilename); -- m->invertices = (int) strtol(stringptr, &stringptr, 0); -- stringptr = findfield(stringptr); -- if (*stringptr == '\0') { -- m->mesh_dim = 2; -- } else { -- m->mesh_dim = (int) strtol(stringptr, &stringptr, 0); -- } -- stringptr = findfield(stringptr); -- if (*stringptr == '\0') { -- m->nextras = 0; -- } else { -- m->nextras = (int) strtol(stringptr, &stringptr, 0); -- } -- stringptr = findfield(stringptr); -- if (*stringptr == '\0') { -- nodemarkers = 0; -- } else { -- nodemarkers = (int) strtol(stringptr, &stringptr, 0); -- } -- } -- -- if (m->invertices < 3) { -- printf("Error: Input must have at least three input vertices.\n"); -- triexit(1); -- } -- if (m->mesh_dim != 2) { -- printf("Error: Triangle only works with two-dimensional meshes.\n"); -- triexit(1); -- } -- if (m->nextras == 0) { -- b->weighted = 0; -- } -- -- initializevertexpool(m, b); -- -- /* Read the vertices. */ -- for (i = 0; i < m->invertices; i++) { -- vertexloop = (vertex) poolalloc(&m->vertices); -- stringptr = readline(inputline, infile, infilename); -- if (i == 0) { -- firstnode = (int) strtol(stringptr, &stringptr, 0); -- if ((firstnode == 0) || (firstnode == 1)) { -- b->firstnumber = firstnode; -- } -- } -- stringptr = findfield(stringptr); -- if (*stringptr == '\0') { -- printf("Error: Vertex %d has no x coordinate.\n", b->firstnumber + i); -- triexit(1); -- } -- x = (REAL) strtod(stringptr, &stringptr); -- stringptr = findfield(stringptr); -- if (*stringptr == '\0') { -- printf("Error: Vertex %d has no y coordinate.\n", b->firstnumber + i); -- triexit(1); -- } -- y = (REAL) strtod(stringptr, &stringptr); -- vertexloop[0] = x; -- vertexloop[1] = y; -- /* Read the vertex attributes. */ -- for (j = 2; j < 2 + m->nextras; j++) { -- stringptr = findfield(stringptr); -- if (*stringptr == '\0') { -- vertexloop[j] = 0.0; -- } else { -- vertexloop[j] = (REAL) strtod(stringptr, &stringptr); -- } -- } -- if (nodemarkers) { -- /* Read a vertex marker. */ -- stringptr = findfield(stringptr); -- if (*stringptr == '\0') { -- setvertexmark(vertexloop, 0); -- } else { -- currentmarker = (int) strtol(stringptr, &stringptr, 0); -- setvertexmark(vertexloop, currentmarker); -- } -- } else { -- /* If no markers are specified in the file, they default to zero. */ -- setvertexmark(vertexloop, 0); -- } -- setvertextype(vertexloop, INPUTVERTEX); -- /* Determine the smallest and largest x and y coordinates. */ -- if (i == 0) { -- m->xmin = m->xmax = x; -- m->ymin = m->ymax = y; -- } else { -- m->xmin = (x < m->xmin) ? x : m->xmin; -- m->xmax = (x > m->xmax) ? x : m->xmax; -- m->ymin = (y < m->ymin) ? y : m->ymin; -- m->ymax = (y > m->ymax) ? y : m->ymax; -- } -- } -- if (m->readnodefile) { -- fclose(infile); -- } -- -- /* Nonexistent x value used as a flag to mark circle events in sweepline */ -- /* Delaunay algorithm. */ -- m->xminextreme = 10 * m->xmin - 9 * m->xmax; --} -- --#endif /* not TRILIBRARY */ -- --/*****************************************************************************/ --/* */ --/* transfernodes() Read the vertices from memory. */ --/* */ --/*****************************************************************************/ -- --#ifdef TRILIBRARY -- --#ifdef ANSI_DECLARATORS --void transfernodes(struct mesh *m, struct behavior *b, REAL *pointlist, -- REAL *pointattriblist, int *pointmarkerlist, -- int numberofpoints, int numberofpointattribs) --#else /* not ANSI_DECLARATORS */ --void transfernodes(m, b, pointlist, pointattriblist, pointmarkerlist, -- numberofpoints, numberofpointattribs) --struct mesh *m; --struct behavior *b; --REAL *pointlist; --REAL *pointattriblist; --int *pointmarkerlist; --int numberofpoints; --int numberofpointattribs; --#endif /* not ANSI_DECLARATORS */ -- --{ -- vertex vertexloop; -- REAL x, y; -- int i, j; -- int coordindex; -- int attribindex; -- -- m->invertices = numberofpoints; -- m->mesh_dim = 2; -- m->nextras = numberofpointattribs; -- m->readnodefile = 0; -- if (m->invertices < 3) { -- printf("Error: Input must have at least three input vertices.\n"); -- triexit(1); -- } -- if (m->nextras == 0) { -- b->weighted = 0; -- } -- -- initializevertexpool(m, b); -- -- /* Read the vertices. */ -- coordindex = 0; -- attribindex = 0; -- for (i = 0; i < m->invertices; i++) { -- vertexloop = (vertex) poolalloc(&m->vertices); -- /* Read the vertex coordinates. */ -- x = vertexloop[0] = pointlist[coordindex++]; -- y = vertexloop[1] = pointlist[coordindex++]; -- /* Read the vertex attributes. */ -- for (j = 0; j < numberofpointattribs; j++) { -- vertexloop[2 + j] = pointattriblist[attribindex++]; -- } -- if (pointmarkerlist != (int *) NULL) { -- /* Read a vertex marker. */ -- setvertexmark(vertexloop, pointmarkerlist[i]); -- } else { -- /* If no markers are specified, they default to zero. */ -- setvertexmark(vertexloop, 0); -- } -- setvertextype(vertexloop, INPUTVERTEX); -- /* Determine the smallest and largest x and y coordinates. */ -- if (i == 0) { -- m->xmin = m->xmax = x; -- m->ymin = m->ymax = y; -- } else { -- m->xmin = (x < m->xmin) ? x : m->xmin; -- m->xmax = (x > m->xmax) ? x : m->xmax; -- m->ymin = (y < m->ymin) ? y : m->ymin; -- m->ymax = (y > m->ymax) ? y : m->ymax; -- } -- } -- -- /* Nonexistent x value used as a flag to mark circle events in sweepline */ -- /* Delaunay algorithm. */ -- m->xminextreme = 10 * m->xmin - 9 * m->xmax; --} -- --#endif /* TRILIBRARY */ -- --/*****************************************************************************/ --/* */ --/* readholes() Read the holes, and possibly regional attributes and area */ --/* constraints, from a .poly file. */ --/* */ --/*****************************************************************************/ -- --#ifndef TRILIBRARY -- --#ifdef ANSI_DECLARATORS --void readholes(struct mesh *m, struct behavior *b, -- FILE *polyfile, char *polyfilename, REAL **hlist, int *holes, -- REAL **rlist, int *regions) --#else /* not ANSI_DECLARATORS */ --void readholes(m, b, polyfile, polyfilename, hlist, holes, rlist, regions) --struct mesh *m; --struct behavior *b; --FILE *polyfile; --char *polyfilename; --REAL **hlist; --int *holes; --REAL **rlist; --int *regions; --#endif /* not ANSI_DECLARATORS */ -- --{ -- REAL *holelist; -- REAL *regionlist; -- char inputline[INPUTLINESIZE]; -- char *stringptr; -- int index; -- int i; -- -- /* Read the holes. */ -- stringptr = readline(inputline, polyfile, polyfilename); -- *holes = (int) strtol(stringptr, &stringptr, 0); -- if (*holes > 0) { -- holelist = (REAL *) trimalloc(2 * *holes * (int) sizeof(REAL)); -- *hlist = holelist; -- for (i = 0; i < 2 * *holes; i += 2) { -- stringptr = readline(inputline, polyfile, polyfilename); -- stringptr = findfield(stringptr); -- if (*stringptr == '\0') { -- printf("Error: Hole %d has no x coordinate.\n", -- b->firstnumber + (i >> 1)); -- triexit(1); -- } else { -- holelist[i] = (REAL) strtod(stringptr, &stringptr); -- } -- stringptr = findfield(stringptr); -- if (*stringptr == '\0') { -- printf("Error: Hole %d has no y coordinate.\n", -- b->firstnumber + (i >> 1)); -- triexit(1); -- } else { -- holelist[i + 1] = (REAL) strtod(stringptr, &stringptr); -- } -- } -- } else { -- *hlist = (REAL *) NULL; -- } -- --#ifndef CDT_ONLY -- if ((b->regionattrib || b->vararea) && !b->refine) { -- /* Read the area constraints. */ -- stringptr = readline(inputline, polyfile, polyfilename); -- *regions = (int) strtol(stringptr, &stringptr, 0); -- if (*regions > 0) { -- regionlist = (REAL *) trimalloc(4 * *regions * (int) sizeof(REAL)); -- *rlist = regionlist; -- index = 0; -- for (i = 0; i < *regions; i++) { -- stringptr = readline(inputline, polyfile, polyfilename); -- stringptr = findfield(stringptr); -- if (*stringptr == '\0') { -- printf("Error: Region %d has no x coordinate.\n", -- b->firstnumber + i); -- triexit(1); -- } else { -- regionlist[index++] = (REAL) strtod(stringptr, &stringptr); -- } -- stringptr = findfield(stringptr); -- if (*stringptr == '\0') { -- printf("Error: Region %d has no y coordinate.\n", -- b->firstnumber + i); -- triexit(1); -- } else { -- regionlist[index++] = (REAL) strtod(stringptr, &stringptr); -- } -- stringptr = findfield(stringptr); -- if (*stringptr == '\0') { -- printf( -- "Error: Region %d has no region attribute or area constraint.\n", -- b->firstnumber + i); -- triexit(1); -- } else { -- regionlist[index++] = (REAL) strtod(stringptr, &stringptr); -- } -- stringptr = findfield(stringptr); -- if (*stringptr == '\0') { -- regionlist[index] = regionlist[index - 1]; -- } else { -- regionlist[index] = (REAL) strtod(stringptr, &stringptr); -- } -- index++; -- } -- } -- } else { -- /* Set `*regions' to zero to avoid an accidental free() later. */ -- *regions = 0; -- *rlist = (REAL *) NULL; -- } --#endif /* not CDT_ONLY */ -- -- fclose(polyfile); --} -- --#endif /* not TRILIBRARY */ -- --/*****************************************************************************/ --/* */ --/* finishfile() Write the command line to the output file so the user */ --/* can remember how the file was generated. Close the file. */ --/* */ --/*****************************************************************************/ -- --#ifndef TRILIBRARY -- --#ifdef ANSI_DECLARATORS --void finishfile(FILE *outfile, int argc, char **argv) --#else /* not ANSI_DECLARATORS */ --void finishfile(outfile, argc, argv) --FILE *outfile; --int argc; --char **argv; --#endif /* not ANSI_DECLARATORS */ -- --{ -- int i; -- -- fprintf(outfile, "# Generated by"); -- for (i = 0; i < argc; i++) { -- fprintf(outfile, " "); -- fputs(argv[i], outfile); -- } -- fprintf(outfile, "\n"); -- fclose(outfile); --} -- --#endif /* not TRILIBRARY */ -- --/*****************************************************************************/ --/* */ --/* writenodes() Number the vertices and write them to a .node file. */ --/* */ --/* To save memory, the vertex numbers are written over the boundary markers */ --/* after the vertices are written to a file. */ --/* */ --/*****************************************************************************/ -- --#ifdef TRILIBRARY -- --#ifdef ANSI_DECLARATORS --void writenodes(struct mesh *m, struct behavior *b, REAL **pointlist, -- REAL **pointattriblist, int **pointmarkerlist) --#else /* not ANSI_DECLARATORS */ --void writenodes(m, b, pointlist, pointattriblist, pointmarkerlist) --struct mesh *m; --struct behavior *b; --REAL **pointlist; --REAL **pointattriblist; --int **pointmarkerlist; --#endif /* not ANSI_DECLARATORS */ -- --#else /* not TRILIBRARY */ -- --#ifdef ANSI_DECLARATORS --void writenodes(struct mesh *m, struct behavior *b, char *nodefilename, -- int argc, char **argv) --#else /* not ANSI_DECLARATORS */ --void writenodes(m, b, nodefilename, argc, argv) --struct mesh *m; --struct behavior *b; --char *nodefilename; --int argc; --char **argv; --#endif /* not ANSI_DECLARATORS */ -- --#endif /* not TRILIBRARY */ -- --{ --#ifdef TRILIBRARY -- REAL *plist; -- REAL *palist; -- int *pmlist; -- int coordindex; -- int attribindex; --#else /* not TRILIBRARY */ -- FILE *outfile; --#endif /* not TRILIBRARY */ -- vertex vertexloop; -- long outvertices; -- int vertexnumber; -- int i; -- -- if (b->jettison) { -- outvertices = m->vertices.items - m->undeads; -- } else { -- outvertices = m->vertices.items; -- } -- --#ifdef TRILIBRARY -- if (!b->quiet) { -- printf("Writing vertices.\n"); -- } -- /* Allocate memory for output vertices if necessary. */ -- if (*pointlist == (REAL *) NULL) { -- *pointlist = (REAL *) trimalloc((int) (outvertices * 2 * sizeof(REAL))); -- } -- /* Allocate memory for output vertex attributes if necessary. */ -- if ((m->nextras > 0) && (*pointattriblist == (REAL *) NULL)) { -- *pointattriblist = (REAL *) trimalloc((int) (outvertices * m->nextras * -- sizeof(REAL))); -- } -- /* Allocate memory for output vertex markers if necessary. */ -- if (!b->nobound && (*pointmarkerlist == (int *) NULL)) { -- *pointmarkerlist = (int *) trimalloc((int) (outvertices * sizeof(int))); -- } -- plist = *pointlist; -- palist = *pointattriblist; -- pmlist = *pointmarkerlist; -- coordindex = 0; -- attribindex = 0; --#else /* not TRILIBRARY */ -- if (!b->quiet) { -- printf("Writing %s.\n", nodefilename); -- } -- outfile = fopen(nodefilename, "w"); -- if (outfile == (FILE *) NULL) { -- printf(" Error: Cannot create file %s.\n", nodefilename); -- triexit(1); -- } -- /* Number of vertices, number of dimensions, number of vertex attributes, */ -- /* and number of boundary markers (zero or one). */ -- fprintf(outfile, "%ld %d %d %d\n", outvertices, m->mesh_dim, -- m->nextras, 1 - b->nobound); --#endif /* not TRILIBRARY */ -- -- traversalinit(&m->vertices); -- vertexnumber = b->firstnumber; -- vertexloop = vertextraverse(m); -- while (vertexloop != (vertex) NULL) { -- if (!b->jettison || (vertextype(vertexloop) != UNDEADVERTEX)) { --#ifdef TRILIBRARY -- /* X and y coordinates. */ -- plist[coordindex++] = vertexloop[0]; -- plist[coordindex++] = vertexloop[1]; -- /* Vertex attributes. */ -- for (i = 0; i < m->nextras; i++) { -- palist[attribindex++] = vertexloop[2 + i]; -- } -- if (!b->nobound) { -- /* Copy the boundary marker. */ -- pmlist[vertexnumber - b->firstnumber] = vertexmark(vertexloop); -- } --#else /* not TRILIBRARY */ -- /* Vertex number, x and y coordinates. */ -- fprintf(outfile, "%4d %.17g %.17g", vertexnumber, vertexloop[0], -- vertexloop[1]); -- for (i = 0; i < m->nextras; i++) { -- /* Write an attribute. */ -- fprintf(outfile, " %.17g", vertexloop[i + 2]); -- } -- if (b->nobound) { -- fprintf(outfile, "\n"); -- } else { -- /* Write the boundary marker. */ -- fprintf(outfile, " %d\n", vertexmark(vertexloop)); -- } --#endif /* not TRILIBRARY */ -- -- setvertexmark(vertexloop, vertexnumber); -- vertexnumber++; -- } -- vertexloop = vertextraverse(m); -- } -- --#ifndef TRILIBRARY -- finishfile(outfile, argc, argv); --#endif /* not TRILIBRARY */ --} -- --/*****************************************************************************/ --/* */ --/* numbernodes() Number the vertices. */ --/* */ --/* Each vertex is assigned a marker equal to its number. */ --/* */ --/* Used when writenodes() is not called because no .node file is written. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --void numbernodes(struct mesh *m, struct behavior *b) --#else /* not ANSI_DECLARATORS */ --void numbernodes(m, b) --struct mesh *m; --struct behavior *b; --#endif /* not ANSI_DECLARATORS */ -- --{ -- vertex vertexloop; -- int vertexnumber; -- -- traversalinit(&m->vertices); -- vertexnumber = b->firstnumber; -- vertexloop = vertextraverse(m); -- while (vertexloop != (vertex) NULL) { -- setvertexmark(vertexloop, vertexnumber); -- if (!b->jettison || (vertextype(vertexloop) != UNDEADVERTEX)) { -- vertexnumber++; -- } -- vertexloop = vertextraverse(m); -- } --} -- --/*****************************************************************************/ --/* */ --/* writeelements() Write the triangles to an .ele file. */ --/* */ --/*****************************************************************************/ -- --#ifdef TRILIBRARY -- --#ifdef ANSI_DECLARATORS --void writeelements(struct mesh *m, struct behavior *b, -- int **trianglelist, REAL **triangleattriblist) --#else /* not ANSI_DECLARATORS */ --void writeelements(m, b, trianglelist, triangleattriblist) --struct mesh *m; --struct behavior *b; --int **trianglelist; --REAL **triangleattriblist; --#endif /* not ANSI_DECLARATORS */ -- --#else /* not TRILIBRARY */ -- --#ifdef ANSI_DECLARATORS --void writeelements(struct mesh *m, struct behavior *b, char *elefilename, -- int argc, char **argv) --#else /* not ANSI_DECLARATORS */ --void writeelements(m, b, elefilename, argc, argv) --struct mesh *m; --struct behavior *b; --char *elefilename; --int argc; --char **argv; --#endif /* not ANSI_DECLARATORS */ -- --#endif /* not TRILIBRARY */ -- --{ --#ifdef TRILIBRARY -- int *tlist; -- REAL *talist; -- int vertexindex; -- int attribindex; --#else /* not TRILIBRARY */ -- FILE *outfile; --#endif /* not TRILIBRARY */ -- struct otri triangleloop; -- vertex p1, p2, p3; -- vertex mid1, mid2, mid3; -- long elementnumber; -- int i; -- --#ifdef TRILIBRARY -- if (!b->quiet) { -- printf("Writing triangles.\n"); -- } -- /* Allocate memory for output triangles if necessary. */ -- if (*trianglelist == (int *) NULL) { -- *trianglelist = (int *) trimalloc((int) (m->triangles.items * -- ((b->order + 1) * (b->order + 2) / -- 2) * sizeof(int))); -- } -- /* Allocate memory for output triangle attributes if necessary. */ -- if ((m->eextras > 0) && (*triangleattriblist == (REAL *) NULL)) { -- *triangleattriblist = (REAL *) trimalloc((int) (m->triangles.items * -- m->eextras * -- sizeof(REAL))); -- } -- tlist = *trianglelist; -- talist = *triangleattriblist; -- vertexindex = 0; -- attribindex = 0; --#else /* not TRILIBRARY */ -- if (!b->quiet) { -- printf("Writing %s.\n", elefilename); -- } -- outfile = fopen(elefilename, "w"); -- if (outfile == (FILE *) NULL) { -- printf(" Error: Cannot create file %s.\n", elefilename); -- triexit(1); -- } -- /* Number of triangles, vertices per triangle, attributes per triangle. */ -- fprintf(outfile, "%ld %d %d\n", m->triangles.items, -- (b->order + 1) * (b->order + 2) / 2, m->eextras); --#endif /* not TRILIBRARY */ -- -- traversalinit(&m->triangles); -- triangleloop.tri = triangletraverse(m); -- triangleloop.orient = 0; -- elementnumber = b->firstnumber; -- while (triangleloop.tri != (triangle *) NULL) { -- org(triangleloop, p1); -- dest(triangleloop, p2); -- apex(triangleloop, p3); -- if (b->order == 1) { --#ifdef TRILIBRARY -- tlist[vertexindex++] = vertexmark(p1); -- tlist[vertexindex++] = vertexmark(p2); -- tlist[vertexindex++] = vertexmark(p3); --#else /* not TRILIBRARY */ -- /* Triangle number, indices for three vertices. */ -- fprintf(outfile, "%4ld %4d %4d %4d", elementnumber, -- vertexmark(p1), vertexmark(p2), vertexmark(p3)); --#endif /* not TRILIBRARY */ -- } else { -- mid1 = (vertex) triangleloop.tri[m->highorderindex + 1]; -- mid2 = (vertex) triangleloop.tri[m->highorderindex + 2]; -- mid3 = (vertex) triangleloop.tri[m->highorderindex]; --#ifdef TRILIBRARY -- tlist[vertexindex++] = vertexmark(p1); -- tlist[vertexindex++] = vertexmark(p2); -- tlist[vertexindex++] = vertexmark(p3); -- tlist[vertexindex++] = vertexmark(mid1); -- tlist[vertexindex++] = vertexmark(mid2); -- tlist[vertexindex++] = vertexmark(mid3); --#else /* not TRILIBRARY */ -- /* Triangle number, indices for six vertices. */ -- fprintf(outfile, "%4ld %4d %4d %4d %4d %4d %4d", elementnumber, -- vertexmark(p1), vertexmark(p2), vertexmark(p3), vertexmark(mid1), -- vertexmark(mid2), vertexmark(mid3)); --#endif /* not TRILIBRARY */ -- } -- --#ifdef TRILIBRARY -- for (i = 0; i < m->eextras; i++) { -- talist[attribindex++] = elemattribute(triangleloop, i); -- } --#else /* not TRILIBRARY */ -- for (i = 0; i < m->eextras; i++) { -- fprintf(outfile, " %.17g", elemattribute(triangleloop, i)); -- } -- fprintf(outfile, "\n"); --#endif /* not TRILIBRARY */ -- -- triangleloop.tri = triangletraverse(m); -- elementnumber++; -- } -- --#ifndef TRILIBRARY -- finishfile(outfile, argc, argv); --#endif /* not TRILIBRARY */ --} -- --/*****************************************************************************/ --/* */ --/* writepoly() Write the segments and holes to a .poly file. */ --/* */ --/*****************************************************************************/ -- --#ifdef TRILIBRARY -- --#ifdef ANSI_DECLARATORS --void writepoly(struct mesh *m, struct behavior *b, -- int **segmentlist, int **segmentmarkerlist) --#else /* not ANSI_DECLARATORS */ --void writepoly(m, b, segmentlist, segmentmarkerlist) --struct mesh *m; --struct behavior *b; --int **segmentlist; --int **segmentmarkerlist; --#endif /* not ANSI_DECLARATORS */ -- --#else /* not TRILIBRARY */ -- --#ifdef ANSI_DECLARATORS --void writepoly(struct mesh *m, struct behavior *b, char *polyfilename, -- REAL *holelist, int holes, REAL *regionlist, int regions, -- int argc, char **argv) --#else /* not ANSI_DECLARATORS */ --void writepoly(m, b, polyfilename, holelist, holes, regionlist, regions, -- argc, argv) --struct mesh *m; --struct behavior *b; --char *polyfilename; --REAL *holelist; --int holes; --REAL *regionlist; --int regions; --int argc; --char **argv; --#endif /* not ANSI_DECLARATORS */ -- --#endif /* not TRILIBRARY */ -- --{ --#ifdef TRILIBRARY -- int *slist; -- int *smlist; -- int index; --#else /* not TRILIBRARY */ -- FILE *outfile; -- long holenumber, regionnumber; --#endif /* not TRILIBRARY */ -- struct osub subsegloop; -- vertex endpoint1, endpoint2; -- long subsegnumber; -- --#ifdef TRILIBRARY -- if (!b->quiet) { -- printf("Writing segments.\n"); -- } -- /* Allocate memory for output segments if necessary. */ -- if (*segmentlist == (int *) NULL) { -- *segmentlist = (int *) trimalloc((int) (m->subsegs.items * 2 * -- sizeof(int))); -- } -- /* Allocate memory for output segment markers if necessary. */ -- if (!b->nobound && (*segmentmarkerlist == (int *) NULL)) { -- *segmentmarkerlist = (int *) trimalloc((int) (m->subsegs.items * -- sizeof(int))); -- } -- slist = *segmentlist; -- smlist = *segmentmarkerlist; -- index = 0; --#else /* not TRILIBRARY */ -- if (!b->quiet) { -- printf("Writing %s.\n", polyfilename); -- } -- outfile = fopen(polyfilename, "w"); -- if (outfile == (FILE *) NULL) { -- printf(" Error: Cannot create file %s.\n", polyfilename); -- triexit(1); -- } -- /* The zero indicates that the vertices are in a separate .node file. */ -- /* Followed by number of dimensions, number of vertex attributes, */ -- /* and number of boundary markers (zero or one). */ -- fprintf(outfile, "%d %d %d %d\n", 0, m->mesh_dim, m->nextras, -- 1 - b->nobound); -- /* Number of segments, number of boundary markers (zero or one). */ -- fprintf(outfile, "%ld %d\n", m->subsegs.items, 1 - b->nobound); --#endif /* not TRILIBRARY */ -- -- traversalinit(&m->subsegs); -- subsegloop.ss = subsegtraverse(m); -- subsegloop.ssorient = 0; -- subsegnumber = b->firstnumber; -- while (subsegloop.ss != (subseg *) NULL) { -- sorg(subsegloop, endpoint1); -- sdest(subsegloop, endpoint2); --#ifdef TRILIBRARY -- /* Copy indices of the segment's two endpoints. */ -- slist[index++] = vertexmark(endpoint1); -- slist[index++] = vertexmark(endpoint2); -- if (!b->nobound) { -- /* Copy the boundary marker. */ -- smlist[subsegnumber - b->firstnumber] = mark(subsegloop); -- } --#else /* not TRILIBRARY */ -- /* Segment number, indices of its two endpoints, and possibly a marker. */ -- if (b->nobound) { -- fprintf(outfile, "%4ld %4d %4d\n", subsegnumber, -- vertexmark(endpoint1), vertexmark(endpoint2)); -- } else { -- fprintf(outfile, "%4ld %4d %4d %4d\n", subsegnumber, -- vertexmark(endpoint1), vertexmark(endpoint2), mark(subsegloop)); -- } --#endif /* not TRILIBRARY */ -- -- subsegloop.ss = subsegtraverse(m); -- subsegnumber++; -- } -- --#ifndef TRILIBRARY --#ifndef CDT_ONLY -- fprintf(outfile, "%d\n", holes); -- if (holes > 0) { -- for (holenumber = 0; holenumber < holes; holenumber++) { -- /* Hole number, x and y coordinates. */ -- fprintf(outfile, "%4ld %.17g %.17g\n", b->firstnumber + holenumber, -- holelist[2 * holenumber], holelist[2 * holenumber + 1]); -- } -- } -- if (regions > 0) { -- fprintf(outfile, "%d\n", regions); -- for (regionnumber = 0; regionnumber < regions; regionnumber++) { -- /* Region number, x and y coordinates, attribute, maximum area. */ -- fprintf(outfile, "%4ld %.17g %.17g %.17g %.17g\n", -- b->firstnumber + regionnumber, -- regionlist[4 * regionnumber], regionlist[4 * regionnumber + 1], -- regionlist[4 * regionnumber + 2], -- regionlist[4 * regionnumber + 3]); -- } -- } --#endif /* not CDT_ONLY */ -- -- finishfile(outfile, argc, argv); --#endif /* not TRILIBRARY */ --} -- --/*****************************************************************************/ --/* */ --/* writeedges() Write the edges to an .edge file. */ --/* */ --/*****************************************************************************/ -- --#ifdef TRILIBRARY -- --#ifdef ANSI_DECLARATORS --void writeedges(struct mesh *m, struct behavior *b, -- int **edgelist, int **edgemarkerlist) --#else /* not ANSI_DECLARATORS */ --void writeedges(m, b, edgelist, edgemarkerlist) --struct mesh *m; --struct behavior *b; --int **edgelist; --int **edgemarkerlist; --#endif /* not ANSI_DECLARATORS */ -- --#else /* not TRILIBRARY */ -- --#ifdef ANSI_DECLARATORS --void writeedges(struct mesh *m, struct behavior *b, char *edgefilename, -- int argc, char **argv) --#else /* not ANSI_DECLARATORS */ --void writeedges(m, b, edgefilename, argc, argv) --struct mesh *m; --struct behavior *b; --char *edgefilename; --int argc; --char **argv; --#endif /* not ANSI_DECLARATORS */ -- --#endif /* not TRILIBRARY */ -- --{ --#ifdef TRILIBRARY -- int *elist; -- int *emlist; -- int index; --#else /* not TRILIBRARY */ -- FILE *outfile; --#endif /* not TRILIBRARY */ -- struct otri triangleloop, trisym; -- struct osub checkmark; -- vertex p1, p2; -- long edgenumber; -- triangle ptr; /* Temporary variable used by sym(). */ -- subseg sptr; /* Temporary variable used by tspivot(). */ -- --#ifdef TRILIBRARY -- if (!b->quiet) { -- printf("Writing edges.\n"); -- } -- /* Allocate memory for edges if necessary. */ -- if (*edgelist == (int *) NULL) { -- *edgelist = (int *) trimalloc((int) (m->edges * 2 * sizeof(int))); -- } -- /* Allocate memory for edge markers if necessary. */ -- if (!b->nobound && (*edgemarkerlist == (int *) NULL)) { -- *edgemarkerlist = (int *) trimalloc((int) (m->edges * sizeof(int))); -- } -- elist = *edgelist; -- emlist = *edgemarkerlist; -- index = 0; --#else /* not TRILIBRARY */ -- if (!b->quiet) { -- printf("Writing %s.\n", edgefilename); -- } -- outfile = fopen(edgefilename, "w"); -- if (outfile == (FILE *) NULL) { -- printf(" Error: Cannot create file %s.\n", edgefilename); -- triexit(1); -- } -- /* Number of edges, number of boundary markers (zero or one). */ -- fprintf(outfile, "%ld %d\n", m->edges, 1 - b->nobound); --#endif /* not TRILIBRARY */ -- -- traversalinit(&m->triangles); -- triangleloop.tri = triangletraverse(m); -- edgenumber = b->firstnumber; -- /* To loop over the set of edges, loop over all triangles, and look at */ -- /* the three edges of each triangle. If there isn't another triangle */ -- /* adjacent to the edge, operate on the edge. If there is another */ -- /* adjacent triangle, operate on the edge only if the current triangle */ -- /* has a smaller pointer than its neighbor. This way, each edge is */ -- /* considered only once. */ -- while (triangleloop.tri != (triangle *) NULL) { -- for (triangleloop.orient = 0; triangleloop.orient < 3; -- triangleloop.orient++) { -- sym(triangleloop, trisym); -- if ((triangleloop.tri < trisym.tri) || (trisym.tri == m->dummytri)) { -- org(triangleloop, p1); -- dest(triangleloop, p2); --#ifdef TRILIBRARY -- elist[index++] = vertexmark(p1); -- elist[index++] = vertexmark(p2); --#endif /* TRILIBRARY */ -- if (b->nobound) { --#ifndef TRILIBRARY -- /* Edge number, indices of two endpoints. */ -- fprintf(outfile, "%4ld %d %d\n", edgenumber, -- vertexmark(p1), vertexmark(p2)); --#endif /* not TRILIBRARY */ -- } else { -- /* Edge number, indices of two endpoints, and a boundary marker. */ -- /* If there's no subsegment, the boundary marker is zero. */ -- if (b->usesegments) { -- tspivot(triangleloop, checkmark); -- if (checkmark.ss == m->dummysub) { --#ifdef TRILIBRARY -- emlist[edgenumber - b->firstnumber] = 0; --#else /* not TRILIBRARY */ -- fprintf(outfile, "%4ld %d %d %d\n", edgenumber, -- vertexmark(p1), vertexmark(p2), 0); --#endif /* not TRILIBRARY */ -- } else { --#ifdef TRILIBRARY -- emlist[edgenumber - b->firstnumber] = mark(checkmark); --#else /* not TRILIBRARY */ -- fprintf(outfile, "%4ld %d %d %d\n", edgenumber, -- vertexmark(p1), vertexmark(p2), mark(checkmark)); --#endif /* not TRILIBRARY */ -- } -- } else { --#ifdef TRILIBRARY -- emlist[edgenumber - b->firstnumber] = trisym.tri == m->dummytri; --#else /* not TRILIBRARY */ -- fprintf(outfile, "%4ld %d %d %d\n", edgenumber, -- vertexmark(p1), vertexmark(p2), trisym.tri == m->dummytri); --#endif /* not TRILIBRARY */ -- } -- } -- edgenumber++; -- } -- } -- triangleloop.tri = triangletraverse(m); -- } -- --#ifndef TRILIBRARY -- finishfile(outfile, argc, argv); --#endif /* not TRILIBRARY */ --} -- --/*****************************************************************************/ --/* */ --/* writevoronoi() Write the Voronoi diagram to a .v.node and .v.edge */ --/* file. */ --/* */ --/* The Voronoi diagram is the geometric dual of the Delaunay triangulation. */ --/* Hence, the Voronoi vertices are listed by traversing the Delaunay */ --/* triangles, and the Voronoi edges are listed by traversing the Delaunay */ --/* edges. */ --/* */ --/* WARNING: In order to assign numbers to the Voronoi vertices, this */ --/* procedure messes up the subsegments or the extra nodes of every */ --/* element. Hence, you should call this procedure last. */ --/* */ --/*****************************************************************************/ -- --#ifdef TRILIBRARY -- --#ifdef ANSI_DECLARATORS --void writevoronoi(struct mesh *m, struct behavior *b, REAL **vpointlist, -- REAL **vpointattriblist, int **vpointmarkerlist, -- int **vedgelist, int **vedgemarkerlist, REAL **vnormlist) --#else /* not ANSI_DECLARATORS */ --void writevoronoi(m, b, vpointlist, vpointattriblist, vpointmarkerlist, -- vedgelist, vedgemarkerlist, vnormlist) --struct mesh *m; --struct behavior *b; --REAL **vpointlist; --REAL **vpointattriblist; --int **vpointmarkerlist; --int **vedgelist; --int **vedgemarkerlist; --REAL **vnormlist; --#endif /* not ANSI_DECLARATORS */ -- --#else /* not TRILIBRARY */ -- --#ifdef ANSI_DECLARATORS --void writevoronoi(struct mesh *m, struct behavior *b, char *vnodefilename, -- char *vedgefilename, int argc, char **argv) --#else /* not ANSI_DECLARATORS */ --void writevoronoi(m, b, vnodefilename, vedgefilename, argc, argv) --struct mesh *m; --struct behavior *b; --char *vnodefilename; --char *vedgefilename; --int argc; --char **argv; --#endif /* not ANSI_DECLARATORS */ -- --#endif /* not TRILIBRARY */ -- --{ --#ifdef TRILIBRARY -- REAL *plist; -- REAL *palist; -- int *elist; -- REAL *normlist; -- int coordindex; -- int attribindex; --#else /* not TRILIBRARY */ -- FILE *outfile; --#endif /* not TRILIBRARY */ -- struct otri triangleloop, trisym; -- vertex torg, tdest, tapex; -- REAL circumcenter[2]; -- REAL xi, eta; -- long vnodenumber, vedgenumber; -- int p1, p2; -- int i; -- triangle ptr; /* Temporary variable used by sym(). */ -- --#ifdef TRILIBRARY -- if (!b->quiet) { -- printf("Writing Voronoi vertices.\n"); -- } -- /* Allocate memory for Voronoi vertices if necessary. */ -- if (*vpointlist == (REAL *) NULL) { -- *vpointlist = (REAL *) trimalloc((int) (m->triangles.items * 2 * -- sizeof(REAL))); -- } -- /* Allocate memory for Voronoi vertex attributes if necessary. */ -- if (*vpointattriblist == (REAL *) NULL) { -- *vpointattriblist = (REAL *) trimalloc((int) (m->triangles.items * -- m->nextras * sizeof(REAL))); -- } -- *vpointmarkerlist = (int *) NULL; -- plist = *vpointlist; -- palist = *vpointattriblist; -- coordindex = 0; -- attribindex = 0; --#else /* not TRILIBRARY */ -- if (!b->quiet) { -- printf("Writing %s.\n", vnodefilename); -- } -- outfile = fopen(vnodefilename, "w"); -- if (outfile == (FILE *) NULL) { -- printf(" Error: Cannot create file %s.\n", vnodefilename); -- triexit(1); -- } -- /* Number of triangles, two dimensions, number of vertex attributes, */ -- /* no markers. */ -- fprintf(outfile, "%ld %d %d %d\n", m->triangles.items, 2, m->nextras, 0); --#endif /* not TRILIBRARY */ -- -- traversalinit(&m->triangles); -- triangleloop.tri = triangletraverse(m); -- triangleloop.orient = 0; -- vnodenumber = b->firstnumber; -- while (triangleloop.tri != (triangle *) NULL) { -- org(triangleloop, torg); -- dest(triangleloop, tdest); -- apex(triangleloop, tapex); -- findcircumcenter(m, b, torg, tdest, tapex, circumcenter, &xi, &eta, 0); --#ifdef TRILIBRARY -- /* X and y coordinates. */ -- plist[coordindex++] = circumcenter[0]; -- plist[coordindex++] = circumcenter[1]; -- for (i = 2; i < 2 + m->nextras; i++) { -- /* Interpolate the vertex attributes at the circumcenter. */ -- palist[attribindex++] = torg[i] + xi * (tdest[i] - torg[i]) -- + eta * (tapex[i] - torg[i]); -- } --#else /* not TRILIBRARY */ -- /* Voronoi vertex number, x and y coordinates. */ -- fprintf(outfile, "%4ld %.17g %.17g", vnodenumber, circumcenter[0], -- circumcenter[1]); -- for (i = 2; i < 2 + m->nextras; i++) { -- /* Interpolate the vertex attributes at the circumcenter. */ -- fprintf(outfile, " %.17g", torg[i] + xi * (tdest[i] - torg[i]) -- + eta * (tapex[i] - torg[i])); -- } -- fprintf(outfile, "\n"); --#endif /* not TRILIBRARY */ -- -- * (int *) (triangleloop.tri + 6) = (int) vnodenumber; -- triangleloop.tri = triangletraverse(m); -- vnodenumber++; -- } -- --#ifndef TRILIBRARY -- finishfile(outfile, argc, argv); --#endif /* not TRILIBRARY */ -- --#ifdef TRILIBRARY -- if (!b->quiet) { -- printf("Writing Voronoi edges.\n"); -- } -- /* Allocate memory for output Voronoi edges if necessary. */ -- if (*vedgelist == (int *) NULL) { -- *vedgelist = (int *) trimalloc((int) (m->edges * 2 * sizeof(int))); -- } -- *vedgemarkerlist = (int *) NULL; -- /* Allocate memory for output Voronoi norms if necessary. */ -- if (*vnormlist == (REAL *) NULL) { -- *vnormlist = (REAL *) trimalloc((int) (m->edges * 2 * sizeof(REAL))); -- } -- elist = *vedgelist; -- normlist = *vnormlist; -- coordindex = 0; --#else /* not TRILIBRARY */ -- if (!b->quiet) { -- printf("Writing %s.\n", vedgefilename); -- } -- outfile = fopen(vedgefilename, "w"); -- if (outfile == (FILE *) NULL) { -- printf(" Error: Cannot create file %s.\n", vedgefilename); -- triexit(1); -- } -- /* Number of edges, zero boundary markers. */ -- fprintf(outfile, "%ld %d\n", m->edges, 0); --#endif /* not TRILIBRARY */ -- -- traversalinit(&m->triangles); -- triangleloop.tri = triangletraverse(m); -- vedgenumber = b->firstnumber; -- /* To loop over the set of edges, loop over all triangles, and look at */ -- /* the three edges of each triangle. If there isn't another triangle */ -- /* adjacent to the edge, operate on the edge. If there is another */ -- /* adjacent triangle, operate on the edge only if the current triangle */ -- /* has a smaller pointer than its neighbor. This way, each edge is */ -- /* considered only once. */ -- while (triangleloop.tri != (triangle *) NULL) { -- for (triangleloop.orient = 0; triangleloop.orient < 3; -- triangleloop.orient++) { -- sym(triangleloop, trisym); -- if ((triangleloop.tri < trisym.tri) || (trisym.tri == m->dummytri)) { -- /* Find the number of this triangle (and Voronoi vertex). */ -- p1 = * (int *) (triangleloop.tri + 6); -- if (trisym.tri == m->dummytri) { -- org(triangleloop, torg); -- dest(triangleloop, tdest); --#ifdef TRILIBRARY -- /* Copy an infinite ray. Index of one endpoint, and -1. */ -- elist[coordindex] = p1; -- normlist[coordindex++] = tdest[1] - torg[1]; -- elist[coordindex] = -1; -- normlist[coordindex++] = torg[0] - tdest[0]; --#else /* not TRILIBRARY */ -- /* Write an infinite ray. Edge number, index of one endpoint, -1, */ -- /* and x and y coordinates of a vector representing the */ -- /* direction of the ray. */ -- fprintf(outfile, "%4ld %d %d %.17g %.17g\n", vedgenumber, -- p1, -1, tdest[1] - torg[1], torg[0] - tdest[0]); --#endif /* not TRILIBRARY */ -- } else { -- /* Find the number of the adjacent triangle (and Voronoi vertex). */ -- p2 = * (int *) (trisym.tri + 6); -- /* Finite edge. Write indices of two endpoints. */ --#ifdef TRILIBRARY -- elist[coordindex] = p1; -- normlist[coordindex++] = 0.0; -- elist[coordindex] = p2; -- normlist[coordindex++] = 0.0; --#else /* not TRILIBRARY */ -- fprintf(outfile, "%4ld %d %d\n", vedgenumber, p1, p2); --#endif /* not TRILIBRARY */ -- } -- vedgenumber++; -- } -- } -- triangleloop.tri = triangletraverse(m); -- } -- --#ifndef TRILIBRARY -- finishfile(outfile, argc, argv); --#endif /* not TRILIBRARY */ --} -- --#ifdef TRILIBRARY -- --#ifdef ANSI_DECLARATORS --void writeneighbors(struct mesh *m, struct behavior *b, int **neighborlist) --#else /* not ANSI_DECLARATORS */ --void writeneighbors(m, b, neighborlist) --struct mesh *m; --struct behavior *b; --int **neighborlist; --#endif /* not ANSI_DECLARATORS */ -- --#else /* not TRILIBRARY */ -- --#ifdef ANSI_DECLARATORS --void writeneighbors(struct mesh *m, struct behavior *b, char *neighborfilename, -- int argc, char **argv) --#else /* not ANSI_DECLARATORS */ --void writeneighbors(m, b, neighborfilename, argc, argv) --struct mesh *m; --struct behavior *b; --char *neighborfilename; --int argc; --char **argv; --#endif /* not ANSI_DECLARATORS */ -- --#endif /* not TRILIBRARY */ -- --{ --#ifdef TRILIBRARY -- int *nlist; -- int index; --#else /* not TRILIBRARY */ -- FILE *outfile; --#endif /* not TRILIBRARY */ -- struct otri triangleloop, trisym; -- long elementnumber; -- int neighbor1, neighbor2, neighbor3; -- triangle ptr; /* Temporary variable used by sym(). */ -- --#ifdef TRILIBRARY -- if (!b->quiet) { -- printf("Writing neighbors.\n"); -- } -- /* Allocate memory for neighbors if necessary. */ -- if (*neighborlist == (int *) NULL) { -- *neighborlist = (int *) trimalloc((int) (m->triangles.items * 3 * -- sizeof(int))); -- } -- nlist = *neighborlist; -- index = 0; --#else /* not TRILIBRARY */ -- if (!b->quiet) { -- printf("Writing %s.\n", neighborfilename); -- } -- outfile = fopen(neighborfilename, "w"); -- if (outfile == (FILE *) NULL) { -- printf(" Error: Cannot create file %s.\n", neighborfilename); -- triexit(1); -- } -- /* Number of triangles, three neighbors per triangle. */ -- fprintf(outfile, "%ld %d\n", m->triangles.items, 3); --#endif /* not TRILIBRARY */ -- -- traversalinit(&m->triangles); -- triangleloop.tri = triangletraverse(m); -- triangleloop.orient = 0; -- elementnumber = b->firstnumber; -- while (triangleloop.tri != (triangle *) NULL) { -- * (int *) (triangleloop.tri + 6) = (int) elementnumber; -- triangleloop.tri = triangletraverse(m); -- elementnumber++; -- } -- * (int *) (m->dummytri + 6) = -1; -- -- traversalinit(&m->triangles); -- triangleloop.tri = triangletraverse(m); -- elementnumber = b->firstnumber; -- while (triangleloop.tri != (triangle *) NULL) { -- triangleloop.orient = 1; -- sym(triangleloop, trisym); -- neighbor1 = * (int *) (trisym.tri + 6); -- triangleloop.orient = 2; -- sym(triangleloop, trisym); -- neighbor2 = * (int *) (trisym.tri + 6); -- triangleloop.orient = 0; -- sym(triangleloop, trisym); -- neighbor3 = * (int *) (trisym.tri + 6); --#ifdef TRILIBRARY -- nlist[index++] = neighbor1; -- nlist[index++] = neighbor2; -- nlist[index++] = neighbor3; --#else /* not TRILIBRARY */ -- /* Triangle number, neighboring triangle numbers. */ -- fprintf(outfile, "%4ld %d %d %d\n", elementnumber, -- neighbor1, neighbor2, neighbor3); --#endif /* not TRILIBRARY */ -- -- triangleloop.tri = triangletraverse(m); -- elementnumber++; -- } -- --#ifndef TRILIBRARY -- finishfile(outfile, argc, argv); --#endif /* not TRILIBRARY */ --} -- --/*****************************************************************************/ --/* */ --/* writeoff() Write the triangulation to an .off file. */ --/* */ --/* OFF stands for the Object File Format, a format used by the Geometry */ --/* Center's Geomview package. */ --/* */ --/*****************************************************************************/ -- --#ifndef TRILIBRARY -- --#ifdef ANSI_DECLARATORS --void writeoff(struct mesh *m, struct behavior *b, char *offfilename, -- int argc, char **argv) --#else /* not ANSI_DECLARATORS */ --void writeoff(m, b, offfilename, argc, argv) --struct mesh *m; --struct behavior *b; --char *offfilename; --int argc; --char **argv; --#endif /* not ANSI_DECLARATORS */ -- --{ -- FILE *outfile; -- struct otri triangleloop; -- vertex vertexloop; -- vertex p1, p2, p3; -- long outvertices; -- -- if (!b->quiet) { -- printf("Writing %s.\n", offfilename); -- } -- -- if (b->jettison) { -- outvertices = m->vertices.items - m->undeads; -- } else { -- outvertices = m->vertices.items; -- } -- -- outfile = fopen(offfilename, "w"); -- if (outfile == (FILE *) NULL) { -- printf(" Error: Cannot create file %s.\n", offfilename); -- triexit(1); -- } -- /* Number of vertices, triangles, and edges. */ -- fprintf(outfile, "OFF\n%ld %ld %ld\n", outvertices, m->triangles.items, -- m->edges); -- -- /* Write the vertices. */ -- traversalinit(&m->vertices); -- vertexloop = vertextraverse(m); -- while (vertexloop != (vertex) NULL) { -- if (!b->jettison || (vertextype(vertexloop) != UNDEADVERTEX)) { -- /* The "0.0" is here because the OFF format uses 3D coordinates. */ -- fprintf(outfile, " %.17g %.17g %.17g\n", vertexloop[0], vertexloop[1], -- 0.0); -- } -- vertexloop = vertextraverse(m); -- } -- -- /* Write the triangles. */ -- traversalinit(&m->triangles); -- triangleloop.tri = triangletraverse(m); -- triangleloop.orient = 0; -- while (triangleloop.tri != (triangle *) NULL) { -- org(triangleloop, p1); -- dest(triangleloop, p2); -- apex(triangleloop, p3); -- /* The "3" means a three-vertex polygon. */ -- fprintf(outfile, " 3 %4d %4d %4d\n", vertexmark(p1) - b->firstnumber, -- vertexmark(p2) - b->firstnumber, vertexmark(p3) - b->firstnumber); -- triangleloop.tri = triangletraverse(m); -- } -- finishfile(outfile, argc, argv); --} -- --#endif /* not TRILIBRARY */ -- --/** **/ --/** **/ --/********* File I/O routines end here *********/ -- --/*****************************************************************************/ --/* */ --/* quality_statistics() Print statistics about the quality of the mesh. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --void quality_statistics(struct mesh *m, struct behavior *b) --#else /* not ANSI_DECLARATORS */ --void quality_statistics(m, b) --struct mesh *m; --struct behavior *b; --#endif /* not ANSI_DECLARATORS */ -- --{ -- struct otri triangleloop; -- vertex p[3]; -- REAL cossquaretable[8]; -- REAL ratiotable[16]; -- REAL dx[3], dy[3]; -- REAL edgelength[3]; -- REAL dotproduct; -- REAL cossquare; -- REAL triarea; -- REAL shortest, longest; -- REAL trilongest2; -- REAL smallestarea, biggestarea; -- REAL triminaltitude2; -- REAL minaltitude; -- REAL triaspect2; -- REAL worstaspect; -- REAL smallestangle, biggestangle; -- REAL radconst, degconst; -- int angletable[18]; -- int aspecttable[16]; -- int aspectindex; -- int tendegree; -- int acutebiggest; -- int i, ii, j, k; -- -- printf("Mesh quality statistics:\n\n"); -- radconst = PI / 18.0; -- degconst = 180.0 / PI; -- for (i = 0; i < 8; i++) { -- cossquaretable[i] = cos(radconst * (REAL) (i + 1)); -- cossquaretable[i] = cossquaretable[i] * cossquaretable[i]; -- } -- for (i = 0; i < 18; i++) { -- angletable[i] = 0; -- } -- -- ratiotable[0] = 1.5; ratiotable[1] = 2.0; -- ratiotable[2] = 2.5; ratiotable[3] = 3.0; -- ratiotable[4] = 4.0; ratiotable[5] = 6.0; -- ratiotable[6] = 10.0; ratiotable[7] = 15.0; -- ratiotable[8] = 25.0; ratiotable[9] = 50.0; -- ratiotable[10] = 100.0; ratiotable[11] = 300.0; -- ratiotable[12] = 1000.0; ratiotable[13] = 10000.0; -- ratiotable[14] = 100000.0; ratiotable[15] = 0.0; -- for (i = 0; i < 16; i++) { -- aspecttable[i] = 0; -- } -- -- minaltitude = m->xmax - m->xmin + m->ymax - m->ymin; -- minaltitude = minaltitude * minaltitude; -- shortest = minaltitude; -- longest = 0.0; -- smallestarea = minaltitude; -- biggestarea = 0.0; -- worstaspect = 0.0; -- smallestangle = 0.0; -- biggestangle = 2.0; -- acutebiggest = 1; -- -- traversalinit(&m->triangles); -- triangleloop.tri = triangletraverse(m); -- triangleloop.orient = 0; -- while (triangleloop.tri != (triangle *) NULL) { -- org(triangleloop, p[0]); -- dest(triangleloop, p[1]); -- apex(triangleloop, p[2]); -- trilongest2 = 0.0; -- -- for (i = 0; i < 3; i++) { -- j = plus1mod3[i]; -- k = minus1mod3[i]; -- dx[i] = p[j][0] - p[k][0]; -- dy[i] = p[j][1] - p[k][1]; -- edgelength[i] = dx[i] * dx[i] + dy[i] * dy[i]; -- if (edgelength[i] > trilongest2) { -- trilongest2 = edgelength[i]; -- } -- if (edgelength[i] > longest) { -- longest = edgelength[i]; -- } -- if (edgelength[i] < shortest) { -- shortest = edgelength[i]; -- } -- } -- -- triarea = counterclockwise(m, b, p[0], p[1], p[2]); -- if (triarea < smallestarea) { -- smallestarea = triarea; -- } -- if (triarea > biggestarea) { -- biggestarea = triarea; -- } -- triminaltitude2 = triarea * triarea / trilongest2; -- if (triminaltitude2 < minaltitude) { -- minaltitude = triminaltitude2; -- } -- triaspect2 = trilongest2 / triminaltitude2; -- if (triaspect2 > worstaspect) { -- worstaspect = triaspect2; -- } -- aspectindex = 0; -- while ((triaspect2 > ratiotable[aspectindex] * ratiotable[aspectindex]) -- && (aspectindex < 15)) { -- aspectindex++; -- } -- aspecttable[aspectindex]++; -- -- for (i = 0; i < 3; i++) { -- j = plus1mod3[i]; -- k = minus1mod3[i]; -- dotproduct = dx[j] * dx[k] + dy[j] * dy[k]; -- cossquare = dotproduct * dotproduct / (edgelength[j] * edgelength[k]); -- tendegree = 8; -- for (ii = 7; ii >= 0; ii--) { -- if (cossquare > cossquaretable[ii]) { -- tendegree = ii; -- } -- } -- if (dotproduct <= 0.0) { -- angletable[tendegree]++; -- if (cossquare > smallestangle) { -- smallestangle = cossquare; -- } -- if (acutebiggest && (cossquare < biggestangle)) { -- biggestangle = cossquare; -- } -- } else { -- angletable[17 - tendegree]++; -- if (acutebiggest || (cossquare > biggestangle)) { -- biggestangle = cossquare; -- acutebiggest = 0; -- } -- } -- } -- triangleloop.tri = triangletraverse(m); -- } -- -- shortest = sqrt(shortest); -- longest = sqrt(longest); -- minaltitude = sqrt(minaltitude); -- worstaspect = sqrt(worstaspect); -- smallestarea *= 0.5; -- biggestarea *= 0.5; -- if (smallestangle >= 1.0) { -- smallestangle = 0.0; -- } else { -- smallestangle = degconst * acos(sqrt(smallestangle)); -- } -- if (biggestangle >= 1.0) { -- biggestangle = 180.0; -- } else { -- if (acutebiggest) { -- biggestangle = degconst * acos(sqrt(biggestangle)); -- } else { -- biggestangle = 180.0 - degconst * acos(sqrt(biggestangle)); -- } -- } -- -- printf(" Smallest area: %16.5g | Largest area: %16.5g\n", -- smallestarea, biggestarea); -- printf(" Shortest edge: %16.5g | Longest edge: %16.5g\n", -- shortest, longest); -- printf(" Shortest altitude: %12.5g | Largest aspect ratio: %8.5g\n\n", -- minaltitude, worstaspect); -- -- printf(" Triangle aspect ratio histogram:\n"); -- printf(" 1.1547 - %-6.6g : %8d | %6.6g - %-6.6g : %8d\n", -- ratiotable[0], aspecttable[0], ratiotable[7], ratiotable[8], -- aspecttable[8]); -- for (i = 1; i < 7; i++) { -- printf(" %6.6g - %-6.6g : %8d | %6.6g - %-6.6g : %8d\n", -- ratiotable[i - 1], ratiotable[i], aspecttable[i], -- ratiotable[i + 7], ratiotable[i + 8], aspecttable[i + 8]); -- } -- printf(" %6.6g - %-6.6g : %8d | %6.6g - : %8d\n", -- ratiotable[6], ratiotable[7], aspecttable[7], ratiotable[14], -- aspecttable[15]); -- printf(" (Aspect ratio is longest edge divided by shortest altitude)\n\n"); -- -- printf(" Smallest angle: %15.5g | Largest angle: %15.5g\n\n", -- smallestangle, biggestangle); -- -- printf(" Angle histogram:\n"); -- for (i = 0; i < 9; i++) { -- printf(" %3d - %3d degrees: %8d | %3d - %3d degrees: %8d\n", -- i * 10, i * 10 + 10, angletable[i], -- i * 10 + 90, i * 10 + 100, angletable[i + 9]); -- } -- printf("\n"); --} -- --/*****************************************************************************/ --/* */ --/* statistics() Print all sorts of cool facts. */ --/* */ --/*****************************************************************************/ -- --#ifdef ANSI_DECLARATORS --void statistics(struct mesh *m, struct behavior *b) --#else /* not ANSI_DECLARATORS */ --void statistics(m, b) --struct mesh *m; --struct behavior *b; --#endif /* not ANSI_DECLARATORS */ -- --{ -- printf("\nStatistics:\n\n"); -- printf(" Input vertices: %d\n", m->invertices); -- if (b->refine) { -- printf(" Input triangles: %d\n", m->inelements); -- } -- if (b->poly) { -- printf(" Input segments: %d\n", m->insegments); -- if (!b->refine) { -- printf(" Input holes: %d\n", m->holes); -- } -- } -- -- printf("\n Mesh vertices: %ld\n", m->vertices.items - m->undeads); -- printf(" Mesh triangles: %ld\n", m->triangles.items); -- printf(" Mesh edges: %ld\n", m->edges); -- printf(" Mesh exterior boundary edges: %ld\n", m->hullsize); -- if (b->poly || b->refine) { -- printf(" Mesh interior boundary edges: %ld\n", -- m->subsegs.items - m->hullsize); -- printf(" Mesh subsegments (constrained edges): %ld\n", -- m->subsegs.items); -- } -- printf("\n"); -- -- if (b->verbose) { -- quality_statistics(m, b); -- printf("Memory allocation statistics:\n\n"); -- printf(" Maximum number of vertices: %ld\n", m->vertices.maxitems); -- printf(" Maximum number of triangles: %ld\n", m->triangles.maxitems); -- if (m->subsegs.maxitems > 0) { -- printf(" Maximum number of subsegments: %ld\n", m->subsegs.maxitems); -- } -- if (m->viri.maxitems > 0) { -- printf(" Maximum number of viri: %ld\n", m->viri.maxitems); -- } -- if (m->badsubsegs.maxitems > 0) { -- printf(" Maximum number of encroached subsegments: %ld\n", -- m->badsubsegs.maxitems); -- } -- if (m->badtriangles.maxitems > 0) { -- printf(" Maximum number of bad triangles: %ld\n", -- m->badtriangles.maxitems); -- } -- if (m->flipstackers.maxitems > 0) { -- printf(" Maximum number of stacked triangle flips: %ld\n", -- m->flipstackers.maxitems); -- } -- if (m->splaynodes.maxitems > 0) { -- printf(" Maximum number of splay tree nodes: %ld\n", -- m->splaynodes.maxitems); -- } -- printf(" Approximate heap memory use (bytes): %ld\n\n", -- m->vertices.maxitems * m->vertices.itembytes + -- m->triangles.maxitems * m->triangles.itembytes + -- m->subsegs.maxitems * m->subsegs.itembytes + -- m->viri.maxitems * m->viri.itembytes + -- m->badsubsegs.maxitems * m->badsubsegs.itembytes + -- m->badtriangles.maxitems * m->badtriangles.itembytes + -- m->flipstackers.maxitems * m->flipstackers.itembytes + -- m->splaynodes.maxitems * m->splaynodes.itembytes); -- -- printf("Algorithmic statistics:\n\n"); -- if (!b->weighted) { -- printf(" Number of incircle tests: %ld\n", m->incirclecount); -- } else { -- printf(" Number of 3D orientation tests: %ld\n", m->orient3dcount); -- } -- printf(" Number of 2D orientation tests: %ld\n", m->counterclockcount); -- if (m->hyperbolacount > 0) { -- printf(" Number of right-of-hyperbola tests: %ld\n", -- m->hyperbolacount); -- } -- if (m->circletopcount > 0) { -- printf(" Number of circle top computations: %ld\n", -- m->circletopcount); -- } -- if (m->circumcentercount > 0) { -- printf(" Number of triangle circumcenter computations: %ld\n", -- m->circumcentercount); -- } -- printf("\n"); -- } --} -- --/*****************************************************************************/ --/* */ --/* main() or triangulate() Gosh, do everything. */ --/* */ --/* The sequence is roughly as follows. Many of these steps can be skipped, */ --/* depending on the command line switches. */ --/* */ --/* - Initialize constants and parse the command line. */ --/* - Read the vertices from a file and either */ --/* - triangulate them (no -r), or */ --/* - read an old mesh from files and reconstruct it (-r). */ --/* - Insert the PSLG segments (-p), and possibly segments on the convex */ --/* hull (-c). */ --/* - Read the holes (-p), regional attributes (-pA), and regional area */ --/* constraints (-pa). Carve the holes and concavities, and spread the */ --/* regional attributes and area constraints. */ --/* - Enforce the constraints on minimum angle (-q) and maximum area (-a). */ --/* Also enforce the conforming Delaunay property (-q and -a). */ --/* - Compute the number of edges in the resulting mesh. */ --/* - Promote the mesh's linear triangles to higher order elements (-o). */ --/* - Write the output files and print the statistics. */ --/* - Check the consistency and Delaunay property of the mesh (-C). */ --/* */ --/*****************************************************************************/ -- --#ifdef TRILIBRARY -- --#ifdef ANSI_DECLARATORS --void triangulate(const char *const triswitches, struct triangulateio *in, -- struct triangulateio *out, struct triangulateio *vorout) --#else /* not ANSI_DECLARATORS */ --void triangulate(triswitches, in, out, vorout) --const char *const triswitches; --struct triangulateio *in; --struct triangulateio *out; --struct triangulateio *vorout; --#endif /* not ANSI_DECLARATORS */ -- --#else /* not TRILIBRARY */ -- --#ifdef ANSI_DECLARATORS --int main(int argc, char **argv) --#else /* not ANSI_DECLARATORS */ --int main(argc, argv) --int argc; --char **argv; --#endif /* not ANSI_DECLARATORS */ -- --#endif /* not TRILIBRARY */ -- --{ -- struct mesh m; -- struct behavior b; -- REAL *holearray; /* Array of holes. */ -- REAL *regionarray; /* Array of regional attributes and area constraints. */ --#ifndef TRILIBRARY -- FILE *polyfile; --#endif /* not TRILIBRARY */ --#ifndef NO_TIMER -- /* Variables for timing the performance of Triangle. The types are */ -- /* defined in sys/time.h. */ -- struct timeval tv0, tv1, tv2, tv3, tv4, tv5, tv6; -- struct timezone tz; --#endif /* not NO_TIMER */ -- --#ifndef NO_TIMER -- gettimeofday(&tv0, &tz); --#endif /* not NO_TIMER */ -- -- triangleinit(&m); --#ifdef TRILIBRARY -- parsecommandline(1, &triswitches, &b); --#else /* not TRILIBRARY */ -- parsecommandline(argc, argv, &b); --#endif /* not TRILIBRARY */ -- m.steinerleft = b.steiner; -- --#ifdef TRILIBRARY -- transfernodes(&m, &b, in->pointlist, in->pointattributelist, -- in->pointmarkerlist, in->numberofpoints, -- in->numberofpointattributes); --#else /* not TRILIBRARY */ -- readnodes(&m, &b, b.innodefilename, b.inpolyfilename, &polyfile); --#endif /* not TRILIBRARY */ -- --#ifndef NO_TIMER -- if (!b.quiet) { -- gettimeofday(&tv1, &tz); -- } --#endif /* not NO_TIMER */ -- --#ifdef CDT_ONLY -- m.hullsize = delaunay(&m, &b); /* Triangulate the vertices. */ --#else /* not CDT_ONLY */ -- if (b.refine) { -- /* Read and reconstruct a mesh. */ --#ifdef TRILIBRARY -- m.hullsize = reconstruct(&m, &b, in->trianglelist, -- in->triangleattributelist, in->trianglearealist, -- in->numberoftriangles, in->numberofcorners, -- in->numberoftriangleattributes, -- in->segmentlist, in->segmentmarkerlist, -- in->numberofsegments); --#else /* not TRILIBRARY */ -- m.hullsize = reconstruct(&m, &b, b.inelefilename, b.areafilename, -- b.inpolyfilename, polyfile); --#endif /* not TRILIBRARY */ -- } else { -- m.hullsize = delaunay(&m, &b); /* Triangulate the vertices. */ -- } --#endif /* not CDT_ONLY */ -- --#ifndef NO_TIMER -- if (!b.quiet) { -- gettimeofday(&tv2, &tz); -- if (b.refine) { -- printf("Mesh reconstruction"); -- } else { -- printf("Delaunay"); -- } -- printf(" milliseconds: %ld\n", 1000l * (tv2.tv_sec - tv1.tv_sec) + -- (tv2.tv_usec - tv1.tv_usec) / 1000l); -- } --#endif /* not NO_TIMER */ -- -- /* Ensure that no vertex can be mistaken for a triangular bounding */ -- /* box vertex in insertvertex(). */ -- m.infvertex1 = (vertex) NULL; -- m.infvertex2 = (vertex) NULL; -- m.infvertex3 = (vertex) NULL; -- -- if (b.usesegments) { -- m.checksegments = 1; /* Segments will be introduced next. */ -- if (!b.refine) { -- /* Insert PSLG segments and/or convex hull segments. */ --#ifdef TRILIBRARY -- formskeleton(&m, &b, in->segmentlist, -- in->segmentmarkerlist, in->numberofsegments); --#else /* not TRILIBRARY */ -- formskeleton(&m, &b, polyfile, b.inpolyfilename); --#endif /* not TRILIBRARY */ -- } -- } -- --#ifndef NO_TIMER -- if (!b.quiet) { -- gettimeofday(&tv3, &tz); -- if (b.usesegments && !b.refine) { -- printf("Segment milliseconds: %ld\n", -- 1000l * (tv3.tv_sec - tv2.tv_sec) + -- (tv3.tv_usec - tv2.tv_usec) / 1000l); -- } -- } --#endif /* not NO_TIMER */ -- -- if (b.poly && (m.triangles.items > 0)) { --#ifdef TRILIBRARY -- holearray = in->holelist; -- m.holes = in->numberofholes; -- regionarray = in->regionlist; -- m.regions = in->numberofregions; --#else /* not TRILIBRARY */ -- readholes(&m, &b, polyfile, b.inpolyfilename, &holearray, &m.holes, -- ®ionarray, &m.regions); --#endif /* not TRILIBRARY */ -- if (!b.refine) { -- /* Carve out holes and concavities. */ -- carveholes(&m, &b, holearray, m.holes, regionarray, m.regions); -- } -- } else { -- /* Without a PSLG, there can be no holes or regional attributes */ -- /* or area constraints. The following are set to zero to avoid */ -- /* an accidental free() later. */ -- m.holes = 0; -- m.regions = 0; -- } -- --#ifndef NO_TIMER -- if (!b.quiet) { -- gettimeofday(&tv4, &tz); -- if (b.poly && !b.refine) { -- printf("Hole milliseconds: %ld\n", 1000l * (tv4.tv_sec - tv3.tv_sec) + -- (tv4.tv_usec - tv3.tv_usec) / 1000l); -- } -- } --#endif /* not NO_TIMER */ -- --#ifndef CDT_ONLY -- if (b.quality && (m.triangles.items > 0)) { -- enforcequality(&m, &b); /* Enforce angle and area constraints. */ -- } --#endif /* not CDT_ONLY */ -- --#ifndef NO_TIMER -- if (!b.quiet) { -- gettimeofday(&tv5, &tz); --#ifndef CDT_ONLY -- if (b.quality) { -- printf("Quality milliseconds: %ld\n", -- 1000l * (tv5.tv_sec - tv4.tv_sec) + -- (tv5.tv_usec - tv4.tv_usec) / 1000l); -- } --#endif /* not CDT_ONLY */ -- } --#endif /* not NO_TIMER */ -- -- /* Calculate the number of edges. */ -- m.edges = (3l * m.triangles.items + m.hullsize) / 2l; -- -- if (b.order > 1) { -- highorder(&m, &b); /* Promote elements to higher polynomial order. */ -- } -- if (!b.quiet) { -- printf("\n"); -- } -- --#ifdef TRILIBRARY -- if (b.jettison) { -- out->numberofpoints = m.vertices.items - m.undeads; -- } else { -- out->numberofpoints = m.vertices.items; -- } -- out->numberofpointattributes = m.nextras; -- out->numberoftriangles = m.triangles.items; -- out->numberofcorners = (b.order + 1) * (b.order + 2) / 2; -- out->numberoftriangleattributes = m.eextras; -- out->numberofedges = m.edges; -- if (b.usesegments) { -- out->numberofsegments = m.subsegs.items; -- } else { -- out->numberofsegments = m.hullsize; -- } -- if (vorout != (struct triangulateio *) NULL) { -- vorout->numberofpoints = m.triangles.items; -- vorout->numberofpointattributes = m.nextras; -- vorout->numberofedges = m.edges; -- } --#endif /* TRILIBRARY */ -- /* If not using iteration numbers, don't write a .node file if one was */ -- /* read, because the original one would be overwritten! */ -- if (b.nonodewritten || (b.noiterationnum && m.readnodefile)) { -- if (!b.quiet) { --#ifdef TRILIBRARY -- printf("NOT writing vertices.\n"); --#else /* not TRILIBRARY */ -- printf("NOT writing a .node file.\n"); --#endif /* not TRILIBRARY */ -- } -- numbernodes(&m, &b); /* We must remember to number the vertices. */ -- } else { -- /* writenodes() numbers the vertices too. */ --#ifdef TRILIBRARY -- writenodes(&m, &b, &out->pointlist, &out->pointattributelist, -- &out->pointmarkerlist); --#else /* not TRILIBRARY */ -- writenodes(&m, &b, b.outnodefilename, argc, argv); --#endif /* TRILIBRARY */ -- } -- if (b.noelewritten) { -- if (!b.quiet) { --#ifdef TRILIBRARY -- printf("NOT writing triangles.\n"); --#else /* not TRILIBRARY */ -- printf("NOT writing an .ele file.\n"); --#endif /* not TRILIBRARY */ -- } -- } else { --#ifdef TRILIBRARY -- writeelements(&m, &b, &out->trianglelist, &out->triangleattributelist); --#else /* not TRILIBRARY */ -- writeelements(&m, &b, b.outelefilename, argc, argv); --#endif /* not TRILIBRARY */ -- } -- /* The -c switch (convex switch) causes a PSLG to be written */ -- /* even if none was read. */ -- if (b.poly || b.convex) { -- /* If not using iteration numbers, don't overwrite the .poly file. */ -- if (b.nopolywritten || b.noiterationnum) { -- if (!b.quiet) { --#ifdef TRILIBRARY -- printf("NOT writing segments.\n"); --#else /* not TRILIBRARY */ -- printf("NOT writing a .poly file.\n"); --#endif /* not TRILIBRARY */ -- } -- } else { --#ifdef TRILIBRARY -- writepoly(&m, &b, &out->segmentlist, &out->segmentmarkerlist); -- out->numberofholes = m.holes; -- out->numberofregions = m.regions; -- if (b.poly) { -- out->holelist = in->holelist; -- out->regionlist = in->regionlist; -- } else { -- out->holelist = (REAL *) NULL; -- out->regionlist = (REAL *) NULL; -- } --#else /* not TRILIBRARY */ -- writepoly(&m, &b, b.outpolyfilename, holearray, m.holes, regionarray, -- m.regions, argc, argv); --#endif /* not TRILIBRARY */ -- } -- } --#ifndef TRILIBRARY --#ifndef CDT_ONLY -- if (m.regions > 0) { -- trifree((void *) regionarray); -- } --#endif /* not CDT_ONLY */ -- if (m.holes > 0) { -- trifree((void *) holearray); -- } -- if (b.geomview) { -- writeoff(&m, &b, b.offfilename, argc, argv); -- } --#endif /* not TRILIBRARY */ -- if (b.edgesout) { --#ifdef TRILIBRARY -- writeedges(&m, &b, &out->edgelist, &out->edgemarkerlist); --#else /* not TRILIBRARY */ -- writeedges(&m, &b, b.edgefilename, argc, argv); --#endif /* not TRILIBRARY */ -- } -- if (b.voronoi) { --#ifdef TRILIBRARY -- writevoronoi(&m, &b, &vorout->pointlist, &vorout->pointattributelist, -- &vorout->pointmarkerlist, &vorout->edgelist, -- &vorout->edgemarkerlist, &vorout->normlist); --#else /* not TRILIBRARY */ -- writevoronoi(&m, &b, b.vnodefilename, b.vedgefilename, argc, argv); --#endif /* not TRILIBRARY */ -- } -- if (b.neighbors) { --#ifdef TRILIBRARY -- writeneighbors(&m, &b, &out->neighborlist); --#else /* not TRILIBRARY */ -- writeneighbors(&m, &b, b.neighborfilename, argc, argv); --#endif /* not TRILIBRARY */ -- } -- -- if (!b.quiet) { --#ifndef NO_TIMER -- gettimeofday(&tv6, &tz); -- printf("\nOutput milliseconds: %ld\n", -- 1000l * (tv6.tv_sec - tv5.tv_sec) + -- (tv6.tv_usec - tv5.tv_usec) / 1000l); -- printf("Total running milliseconds: %ld\n", -- 1000l * (tv6.tv_sec - tv0.tv_sec) + -- (tv6.tv_usec - tv0.tv_usec) / 1000l); --#endif /* not NO_TIMER */ -- -- statistics(&m, &b); -- } -- --#ifndef REDUCED -- if (b.docheck) { -- checkmesh(&m, &b); -- checkdelaunay(&m, &b); -- } --#endif /* not REDUCED */ -- -- triangledeinit(&m, &b); --#ifndef TRILIBRARY -- return 0; --#endif /* not TRILIBRARY */ --}; -diff --git a/Modules/ThirdParty/VNL/src/vxl/v3p/netlib/triangle.h b/Modules/ThirdParty/VNL/src/vxl/v3p/netlib/triangle.h -deleted file mode 100644 -index de14cb5395..0000000000 ---- a/Modules/ThirdParty/VNL/src/vxl/v3p/netlib/triangle.h -+++ /dev/null -@@ -1,299 +0,0 @@ --#ifndef netlib_triangle_h_ --#define netlib_triangle_h_ --/*****************************************************************************/ --/* */ --/* (triangle.h) */ --/* */ --/* Include file for programs that call Triangle. */ --/* */ --/* Accompanies Triangle Version 1.6 */ --/* July 28, 2005 */ --/* */ --/* Copyright 1996, 2005 */ --/* Jonathan Richard Shewchuk */ --/* 2360 Woolsey #H */ --/* Berkeley, California 94705-1927 */ --/* jrs@cs.berkeley.edu */ --/* */ --/*****************************************************************************/ -- --/*****************************************************************************/ --/* */ --/* How to call Triangle from another program */ --/* */ --/* */ --/* If you haven't read Triangle's instructions (run "triangle -h" to read */ --/* them), you won't understand what follows. */ --/* */ --/* Triangle must be compiled into an object file (triangle.o) with the */ --/* TRILIBRARY symbol defined (generally by using the -DTRILIBRARY compiler */ --/* switch). The makefile included with Triangle will do this for you if */ --/* you run "make trilibrary". The resulting object file can be called via */ --/* the procedure triangulate(). */ --/* */ --/* If the size of the object file is important to you, you may wish to */ --/* generate a reduced version of triangle.o. The REDUCED symbol gets rid */ --/* of all features that are primarily of research interest. Specifically, */ --/* the -DREDUCED switch eliminates Triangle's -i, -F, -s, and -C switches. */ --/* The CDT_ONLY symbol gets rid of all meshing algorithms above and beyond */ --/* constrained Delaunay triangulation. Specifically, the -DCDT_ONLY switch */ --/* eliminates Triangle's -r, -q, -a, -u, -D, -Y, -S, and -s switches. */ --/* */ --/* IMPORTANT: These definitions (TRILIBRARY, REDUCED, CDT_ONLY) must be */ --/* made in the makefile or in triangle.c itself. Putting these definitions */ --/* in this file (triangle.h) will not create the desired effect. */ --/* */ --/* */ --/* The calling convention for triangulate() follows. */ --/* */ --/* void triangulate(triswitches, in, out, vorout) */ --/* char *triswitches; */ --/* struct triangulateio *in; */ --/* struct triangulateio *out; */ --/* struct triangulateio *vorout; */ --/* */ --/* `triswitches' is a string containing the command line switches you wish */ --/* to invoke. No initial dash is required. Some suggestions: */ --/* */ --/* - You'll probably find it convenient to use the `z' switch so that */ --/* points (and other items) are numbered from zero. This simplifies */ --/* indexing, because the first item of any type always starts at index */ --/* [0] of the corresponding array, whether that item's number is zero or */ --/* one. */ --/* - You'll probably want to use the `Q' (quiet) switch in your final code, */ --/* but you can take advantage of Triangle's printed output (including the */ --/* `V' switch) while debugging. */ --/* - If you are not using the `q', `a', `u', `D', `j', or `s' switches, */ --/* then the output points will be identical to the input points, except */ --/* possibly for the boundary markers. If you don't need the boundary */ --/* markers, you should use the `N' (no nodes output) switch to save */ --/* memory. (If you do need boundary markers, but need to save memory, a */ --/* good nasty trick is to set out->pointlist equal to in->pointlist */ --/* before calling triangulate(), so that Triangle overwrites the input */ --/* points with identical copies.) */ --/* - The `I' (no iteration numbers) and `g' (.off file output) switches */ --/* have no effect when Triangle is compiled with TRILIBRARY defined. */ --/* */ --/* `in', `out', and `vorout' are descriptions of the input, the output, */ --/* and the Voronoi output. If the `v' (Voronoi output) switch is not used, */ --/* `vorout' may be NULL. `in' and `out' may never be NULL. */ --/* */ --/* Certain fields of the input and output structures must be initialized, */ --/* as described below. */ --/* */ --/*****************************************************************************/ -- --/*****************************************************************************/ --/* */ --/* The `triangulateio' structure. */ --/* */ --/* Used to pass data into and out of the triangulate() procedure. */ --/* */ --/* */ --/* Arrays are used to store points, triangles, markers, and so forth. In */ --/* all cases, the first item in any array is stored starting at index [0]. */ --/* However, that item is item number `1' unless the `z' switch is used, in */ --/* which case it is item number `0'. Hence, you may find it easier to */ --/* index points (and triangles in the neighbor list) if you use the `z' */ --/* switch. Unless, of course, you're calling Triangle from a Fortran */ --/* program. */ --/* */ --/* Description of fields (except the `numberof' fields, which are obvious): */ --/* */ --/* `pointlist': An array of point coordinates. The first point's x */ --/* coordinate is at index [0] and its y coordinate at index [1], followed */ --/* by the coordinates of the remaining points. Each point occupies two */ --/* REALs. */ --/* `pointattributelist': An array of point attributes. Each point's */ --/* attributes occupy `numberofpointattributes' REALs. */ --/* `pointmarkerlist': An array of point markers; one int per point. */ --/* */ --/* `trianglelist': An array of triangle corners. The first triangle's */ --/* first corner is at index [0], followed by its other two corners in */ --/* counterclockwise order, followed by any other nodes if the triangle */ --/* represents a nonlinear element. Each triangle occupies */ --/* `numberofcorners' ints. */ --/* `triangleattributelist': An array of triangle attributes. Each */ --/* triangle's attributes occupy `numberoftriangleattributes' REALs. */ --/* `trianglearealist': An array of triangle area constraints; one REAL per */ --/* triangle. Input only. */ --/* `neighborlist': An array of triangle neighbors; three ints per */ --/* triangle. Output only. */ --/* */ --/* `segmentlist': An array of segment endpoints. The first segment's */ --/* endpoints are at indices [0] and [1], followed by the remaining */ --/* segments. Two ints per segment. */ --/* `segmentmarkerlist': An array of segment markers; one int per segment. */ --/* */ --/* `holelist': An array of holes. The first hole's x and y coordinates */ --/* are at indices [0] and [1], followed by the remaining holes. Two */ --/* REALs per hole. Input only, although the pointer is copied to the */ --/* output structure for your convenience. */ --/* */ --/* `regionlist': An array of regional attributes and area constraints. */ --/* The first constraint's x and y coordinates are at indices [0] and [1], */ --/* followed by the regional attribute at index [2], followed by the */ --/* maximum area at index [3], followed by the remaining area constraints. */ --/* Four REALs per area constraint. Note that each regional attribute is */ --/* used only if you select the `A' switch, and each area constraint is */ --/* used only if you select the `a' switch (with no number following), but */ --/* omitting one of these switches does not change the memory layout. */ --/* Input only, although the pointer is copied to the output structure for */ --/* your convenience. */ --/* */ --/* `edgelist': An array of edge endpoints. The first edge's endpoints are */ --/* at indices [0] and [1], followed by the remaining edges. Two ints per */ --/* edge. Output only. */ --/* `edgemarkerlist': An array of edge markers; one int per edge. Output */ --/* only. */ --/* `normlist': An array of normal vectors, used for infinite rays in */ --/* Voronoi diagrams. The first normal vector's x and y magnitudes are */ --/* at indices [0] and [1], followed by the remaining vectors. For each */ --/* finite edge in a Voronoi diagram, the normal vector written is the */ --/* zero vector. Two REALs per edge. Output only. */ --/* */ --/* */ --/* Any input fields that Triangle will examine must be initialized. */ --/* Furthermore, for each output array that Triangle will write to, you */ --/* must either provide space by setting the appropriate pointer to point */ --/* to the space you want the data written to, or you must initialize the */ --/* pointer to NULL, which tells Triangle to allocate space for the results. */ --/* The latter option is preferable, because Triangle always knows exactly */ --/* how much space to allocate. The former option is provided mainly for */ --/* people who need to call Triangle from Fortran code, though it also makes */ --/* possible some nasty space-saving tricks, like writing the output to the */ --/* same arrays as the input. */ --/* */ --/* Triangle will not free() any input or output arrays, including those it */ --/* allocates itself; that's up to you. You should free arrays allocated by */ --/* Triangle by calling the trifree() procedure defined below. (By default, */ --/* trifree() just calls the standard free() library procedure, but */ --/* applications that call triangulate() may replace trimalloc() and */ --/* trifree() in triangle.c to use specialized memory allocators.) */ --/* */ --/* Here's a guide to help you decide which fields you must initialize */ --/* before you call triangulate(). */ --/* */ --/* `in': */ --/* */ --/* - `pointlist' must always point to a list of points; `numberofpoints' */ --/* and `numberofpointattributes' must be properly set. */ --/* `pointmarkerlist' must either be set to NULL (in which case all */ --/* markers default to zero), or must point to a list of markers. If */ --/* `numberofpointattributes' is not zero, `pointattributelist' must */ --/* point to a list of point attributes. */ --/* - If the `r' switch is used, `trianglelist' must point to a list of */ --/* triangles, and `numberoftriangles', `numberofcorners', and */ --/* `numberoftriangleattributes' must be properly set. If */ --/* `numberoftriangleattributes' is not zero, `triangleattributelist' */ --/* must point to a list of triangle attributes. If the `a' switch is */ --/* used (with no number following), `trianglearealist' must point to a */ --/* list of triangle area constraints. `neighborlist' may be ignored. */ --/* - If the `p' switch is used, `segmentlist' must point to a list of */ --/* segments, `numberofsegments' must be properly set, and */ --/* `segmentmarkerlist' must either be set to NULL (in which case all */ --/* markers default to zero), or must point to a list of markers. */ --/* - If the `p' switch is used without the `r' switch, then */ --/* `numberofholes' and `numberofregions' must be properly set. If */ --/* `numberofholes' is not zero, `holelist' must point to a list of */ --/* holes. If `numberofregions' is not zero, `regionlist' must point to */ --/* a list of region constraints. */ --/* - If the `p' switch is used, `holelist', `numberofholes', */ --/* `regionlist', and `numberofregions' is copied to `out'. (You can */ --/* nonetheless get away with not initializing them if the `r' switch is */ --/* used.) */ --/* - `edgelist', `edgemarkerlist', `normlist', and `numberofedges' may be */ --/* ignored. */ --/* */ --/* `out': */ --/* */ --/* - `pointlist' must be initialized (NULL or pointing to memory) unless */ --/* the `N' switch is used. `pointmarkerlist' must be initialized */ --/* unless the `N' or `B' switch is used. If `N' is not used and */ --/* `in->numberofpointattributes' is not zero, `pointattributelist' must */ --/* be initialized. */ --/* - `trianglelist' must be initialized unless the `E' switch is used. */ --/* `neighborlist' must be initialized if the `n' switch is used. If */ --/* the `E' switch is not used and (`in->numberofelementattributes' is */ --/* not zero or the `A' switch is used), `elementattributelist' must be */ --/* initialized. `trianglearealist' may be ignored. */ --/* - `segmentlist' must be initialized if the `p' or `c' switch is used, */ --/* and the `P' switch is not used. `segmentmarkerlist' must also be */ --/* initialized under these circumstances unless the `B' switch is used. */ --/* - `edgelist' must be initialized if the `e' switch is used. */ --/* `edgemarkerlist' must be initialized if the `e' switch is used and */ --/* the `B' switch is not. */ --/* - `holelist', `regionlist', `normlist', and all scalars may be ignored.*/ --/* */ --/* `vorout' (only needed if `v' switch is used): */ --/* */ --/* - `pointlist' must be initialized. If `in->numberofpointattributes' */ --/* is not zero, `pointattributelist' must be initialized. */ --/* `pointmarkerlist' may be ignored. */ --/* - `edgelist' and `normlist' must both be initialized. */ --/* `edgemarkerlist' may be ignored. */ --/* - Everything else may be ignored. */ --/* */ --/* After a call to triangulate(), the valid fields of `out' and `vorout' */ --/* will depend, in an obvious way, on the choice of switches used. Note */ --/* that when the `p' switch is used, the pointers `holelist' and */ --/* `regionlist' are copied from `in' to `out', but no new space is */ --/* allocated; be careful that you don't free() the same array twice. On */ --/* the other hand, Triangle will never copy the `pointlist' pointer (or any */ --/* others); new space is allocated for `out->pointlist', or if the `N' */ --/* switch is used, `out->pointlist' remains uninitialized. */ --/* */ --/* All of the meaningful `numberof' fields will be properly set; for */ --/* instance, `numberofedges' will represent the number of edges in the */ --/* triangulation whether or not the edges were written. If segments are */ --/* not used, `numberofsegments' will indicate the number of boundary edges. */ --/* */ --/*****************************************************************************/ --#undef REAL --#ifdef SINGLE --#define REAL float --#else /* not SINGLE */ --#define REAL double --#endif /* not SINGLE */ -- --struct triangulateio { -- REAL *pointlist; /* In / out */ -- REAL *pointattributelist; /* In / out */ -- int *pointmarkerlist; /* In / out */ -- int numberofpoints; /* In / out */ -- int numberofpointattributes; /* In / out */ -- -- int *trianglelist; /* In / out */ -- REAL *triangleattributelist; /* In / out */ -- REAL *trianglearealist; /* In only */ -- int *neighborlist; /* Out only */ -- int numberoftriangles; /* In / out */ -- int numberofcorners; /* In / out */ -- int numberoftriangleattributes; /* In / out */ -- -- int *segmentlist; /* In / out */ -- int *segmentmarkerlist; /* In / out */ -- int numberofsegments; /* In / out */ -- -- REAL *holelist; /* In / pointer to array copied out */ -- int numberofholes; /* In / copied out */ -- -- REAL *regionlist; /* In / pointer to array copied out */ -- int numberofregions; /* In / copied out */ -- -- int *edgelist; /* Out only */ -- int *edgemarkerlist; /* Not used with Voronoi diagram; out only */ -- REAL *normlist; /* Used only with Voronoi diagram; out only */ -- int numberofedges; /* Out only */ --}; -- --#define ANSI_DECLARATORS --#ifdef ANSI_DECLARATORS --void triangulate(const char * const, struct triangulateio *, struct triangulateio *, -- struct triangulateio *); --void trifree(void *memptr); --#else /* not ANSI_DECLARATORS */ --void triangulate(); --void trifree(); --#endif /* not ANSI_DECLARATORS */ --#endif /* netlib_triangle_h_ */ -commit d1066224e3b048650e278f5ebfb648b2a198ba55 -Author: Matt McCormick -Date: Mon Jul 13 14:28:52 2020 -0400 - - BUG: Remove License incompatible netlib files from vxl updates - - Per issue #1913. - -diff --git a/Modules/ThirdParty/VNL/UpdateFromUpstream.sh b/Modules/ThirdParty/VNL/UpdateFromUpstream.sh -index b2665ad167..010d5a2047 100755 ---- a/Modules/ThirdParty/VNL/UpdateFromUpstream.sh -+++ b/Modules/ThirdParty/VNL/UpdateFromUpstream.sh -@@ -8,7 +8,10 @@ upstream_git_branch='master' - snapshot_author_name='VXL Maintainers' - snapshot_author_email='vxl-maintainers@lists.sourceforge.net' - --snapshot_redact_cmd='' -+snapshot_redact_cmd=' -+ rm v3p/netlib/triangle* -+ rm v3p/netlib/examples/showme.c -+' - snapshot_relative_path='src/vxl' - snapshot_paths=' - CMakeLists.txt diff --git a/insighttoolkit.changes b/insighttoolkit.changes index 18a1521..a336ee6 100644 --- a/insighttoolkit.changes +++ b/insighttoolkit.changes @@ -1,3 +1,65 @@ +------------------------------------------------------------------- +Thu Aug 20 17:49:29 UTC 2020 - Atri Bhattacharya + +- Update to version 5.1.1: + * VtkGlue module-Provide support for VTK new cmake targets. + * Add VXL support for GCC 9. + * Use double-conversion's CMake targets. + * Fix for non-system double-conversion build. + * Patch missing const qualifier to GDCM dircos_comp comparison. + * Back-port gh#InsightSoftwareConsortium/ITK#1165 to support + Visual Studio 2019. + * Address bug with small size in output of SliceImageFilter. + * Update GDCM to latest on the release-2.8 branch. + * Don't use InsertElement which modifies MTime. + * Address buffer overflow with deprecated GDCM1 interface. + * update download location for pre-built ICU for Visual Studio. + * Duplicate ImageToImageFilter wrapping of ULL. + * Double scaling introduced in refactoring. + * Add missing const qualifier. + * Add StatisticsImageFilter::SetNumberOfStreamDivisions Python. + * Make column limit more stringent in the examples. + * CUFFTW paths were not being set and unnecessary FFTW files + used. + * Disable dynamic threading in noise filter. + * Added vcl compiler detection for GCC 10.x. + * Specify itk package in SWIG Python modules. + * Fix warning in PointSetToPointSetMetricv4 + (gh#InsightSoftwareConsortium/ITK#1820). + * Fix segfault with empty CompositeTransforms. + * Fix additional segmentation faults with empty Composite. + * Address missing brace initializer warning. + * Address memory leak in CastSpatialOpbjectTest. + * Simplify itk.BlockMatchingImageFilter feature points PointSet + mangling. + * ITK_WRAP_PYTHON_PROCCESS to ITK_WRAP_PYTHON_PROCESS. + * Accept TemplateTypeError with fallback_only. + * Import C module from Python submodule. + * Fix Segfault in Delaunay Filter. + * ITKModuleExternal CMAKE_LIBRARY_OUTPUT_DIRECTORY when + wrapping. + * Avoid duplicate itk.PointSetD3 wrapping. + * Wrap ExtractImageFilter for UL. + * Use Numpy bridge with array of dimension 1. + * Restore LICENSE accidentally overwritten by a merge commit. + * Rename libPNG's license to match the original one. + * Support casting unsigned long pixel types in Python. + * Empty image support in image_from_xarray. + * Remove netnlib triangle classes. + * Remove License incompatible netlib files from vxl updates. + * improve helpers of itk.Filters. + * Do not reference FE_DIVBYZERO FE_INVALID with Emscripten. + * Add missing enumerate with multi-ndarray-output itk filters. + * Do not wrap unsigned char for connected component output. + * Fix issue gh#InsightSoftwareConsortium/ITK#1950, + ImageMaskSpatialObject access outside image buffer. + * Register Dask serialization functions for NDArrayITKBase. + * Add testing data content links for ITK 5.1.1. +- Drop insighttoolkit-drop-netlib-triangle-files.patch: + incorporated upstream. +- Disable builds for aarch64: Known Eigen+CastXML issue + [https://gitlab.com/libeigen/eigen/-/issues/1979]. + ------------------------------------------------------------------- Thu Aug 20 08:52:30 UTC 2020 - Martin Liška diff --git a/insighttoolkit.spec b/insighttoolkit.spec index bd4b560..2ac5b15 100644 --- a/insighttoolkit.spec +++ b/insighttoolkit.spec @@ -18,25 +18,21 @@ %global __builder ninja -%define tarname InsightToolkit +%define tarname ITK %define baseversion 5.1 %define libname lib%{name}5 Name: insighttoolkit -Version: 5.1.0 +Version: 5.1.1 Release: 0 Summary: Toolkit for scientific image processing, segmentation, and registration -# NON-FREE FILES IN Modules/ThirdParty/VNL/src/vxl/v3p/netlib/ NOT USED BY ITK AND REMOVED BY Patch4 -# SEE NOTICE file, https://github.com/InsightSoftwareConsortium/ITK/pull/1913, and https://github.com/InsightSoftwareConsortium/ITK/pull/1920 License: Apache-2.0 URL: https://www.itk.org -Source: https://github.com/InsightSoftwareConsortium/ITK/releases/download/v%{version}/%{tarname}-%{version}.tar.gz +Source: https://github.com/InsightSoftwareConsortium/ITK/archive/v%{version}.tar.gz#/%{name}-%{version}.tar.gz # PATCH-FIX-UPSTREAM proper linking against math library [gh#InsightSoftwareConsortium/ITK#1867, gh#InsightSoftwareConsortium/ITK#1878] Patch1: nrrdio-linking.patch # PATCH-FIX-UPSTREAM proper linking against math library [gh#InsightSoftwareConsortium/ITK#1867, gh#InsightSoftwareConsortium/ITK#1878] Patch3: itklbfgs-linking.patch -# PATCH-FIX-UPSTREAM insighttoolkit-drop-netlib-triangle-files.patch [gh#InsightSoftwareConsortium/ITK#1913] badshah400@gmail.com -- Drop netlib triangle files and any linking to them due to licensing issues; patch from upstream -Patch4: insighttoolkit-drop-netlib-triangle-files.patch # PATCH-FIX-OPENSUSE reproducible.patch boo#1100677 gh#InsightSoftwareConsortium/ITK#1939 Patch100: reproducible.patch BuildRequires: CastXML-devel @@ -67,6 +63,8 @@ BuildRequires: pkgconfig(libpng) BuildRequires: pkgconfig(libtiff-4) BuildRequires: pkgconfig(libxml-2.0) BuildRequires: pkgconfig(zlib) +# Builds currently fail on aarch64 due to known eigen+CastXML issues: https://gitlab.com/libeigen/eigen/-/issues/1979 +ExcludeArch: aarch64 %description The Insight Toolkit (ITK) is a toolkit for N-dimensional scientific @@ -119,8 +117,7 @@ This package provides the modules for ITK's python bindings. %autosetup -p1 -n %{tarname}-%{version} %build - -# Enabling BUILD_TESTING requires KWStyle, not available for openSUSE +# Tests disabled because no KWStyle pkg for openSUSE %cmake \ -DITK_INSTALL_LIBRARY_DIR:PATH=%{_lib}/ \ -DITK_INSTALL_INCLUDE_DIR:PATH=include/%{name}/ \