SHA256
1
0
forked from pool/onednn
onednn/onednn.changes
2020-10-05 09:11:22 +00:00

108 lines
4.2 KiB
Plaintext

-------------------------------------------------------------------
Mon Oct 5 06:16:30 UTC 2020 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Obsoletes mkl-dnn* <= %{version}
-------------------------------------------------------------------
Fri Oct 2 12:47:08 UTC 2020 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Rename mkl-dnn to onednn to follow upstream
-------------------------------------------------------------------
Wed Sep 23 13:36:02 UTC 2020 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Update to 1.6.3
- Drop upstream patch:
* cmake-no-install-ocl-cmake.patch
-------------------------------------------------------------------
Wed Sep 23 13:16:39 UTC 2020 - Guillaume GARDET <guillaume.gardet@opensuse.org>
- Build on aarch64 and ppc64le which are now also supported
- Provide oneDNN and oneDNN-devel as it is the new official name
-------------------------------------------------------------------
Tue May 5 07:38:34 UTC 2020 - Tomáš Chvátal <tchvatal@suse.com>
- Update to 1.4:
* Performance improvements all over the board
- Rebase patch cmake-no-install-ocl-cmake.patch
-------------------------------------------------------------------
Tue Mar 24 10:50:57 UTC 2020 - Tomáš Chvátal <tchvatal@suse.com>
- Add constraints to not crash during testing on OOM
-------------------------------------------------------------------
Thu Feb 27 12:44:00 UTC 2020 - Tomáš Chvátal <tchvatal@suse.com>
- Do not disable LTO there is no actual reason for that
- Export LD_LIBRARY_PATH to fix older releases build
-------------------------------------------------------------------
Wed Feb 26 10:36:26 UTC 2020 - Tomáš Chvátal <tchvatal@suse.com>
- There is no actual reason to not use github tag for tarball
fetching -> remove the service
- Format with spec-cleaner
- Use proper %cmake macros everywhere
- Add configure options for cmake to set it up in a way we really
want
- Add patch from Debian to not install OpenCL cmake finder:
* cmake-no-install-ocl-cmake.patch
-------------------------------------------------------------------
Thu Feb 20 10:26:52 UTC 2020 - Christian Goll <cgoll@suse.com>
- enabled tests
-------------------------------------------------------------------
Thu Jan 30 14:20:22 UTC 2020 - Christian Goll <cgoll@suse.com>
- packaged separate benchnn packae with its input files
- updated to v1.1.3 which includes
* Fixed the mean and variance memory descriptors in layer
normalization (65f1908)
* Fixed the layer normalization formula (c176ceb)
-------------------------------------------------------------------
Wed Jan 8 15:21:54 UTC 2020 - Christian Goll <cgoll@suse.com>
- updated to v1.1.2
* Fixed threading over the spatial in bfloat16 batched
normalization (017b6c9)
* Fixed read past end-of-buffer error for int8 convolution (7d6f45e)
* Fixed condition for dispatching optimized channel blocking in
fp32 backward convolution on Intel Xeon Phi(TM) processor (846eba1)
* Fixed fp32 backward convolution for shapes with spatial strides
over the depth dimension (002e3ab)
* Fixed softmax with zero sizes on GPU (936bff4)
* Fixed int8 deconvolution with dilation when ih <= dh (3e3bacb)
* Enabled back fp32 -> u8 reorder for RNN (a2c2507)
* Fixed segmentation fault in bfloat16 backward convolution from
kd_padding=0 computation (52d476c)
* Fixed segmentation fault in bfloat16 forward convolution due
to push/pop imbalance (4f6e3d5)
* Fixed library version for OS X build (0d85005)
* Fixed padding by channels in concat (a265c7d)
* Added full text of third party licenses and
copyright notices to LICENSE file (79f204c)
* Added separate README for binary packages (28f4c96)
* Fixed computing per-oc mask in RNN (ff3ffab)
* Added workaround for number of cores calculation in Xbyak (301b088)
-------------------------------------------------------------------
Mon Feb 11 16:35:48 UTC 2019 - cgoll@suse.com
- added ARCH_OPT_FLAGS=""
-------------------------------------------------------------------
Tue Feb 5 07:45:53 UTC 2019 - Christian Goll <cgoll@suse.com>
- Initial checking of the Intel(R) Math Kernel Library for
Deep Neural Networks which can be used by:
* tensorflow
* Caffee
* PyTorch
and other machine learning tools