# # spec file for package python-lmfit # # Copyright (c) 2021 SUSE LLC # # All modifications and additions to the file contributed by third parties # remain the property of their copyright owners, unless otherwise agreed # upon. The license for this file, and modifications and additions to the # file, is the same license as for the pristine package itself (unless the # license for the pristine package is not an Open Source License, in which # case the license is the MIT License). An "Open Source License" is a # license that conforms to the Open Source Definition (Version 1.9) # published by the Open Source Initiative. # Please submit bugfixes or comments via https://bugs.opensuse.org/ # %{?!python_module:%define python_module() python-%{**} python3-%{**}} %define skip_python2 1 %define skip_python36 1 Name: python-lmfit Version: 1.0.2 Release: 0 Summary: Least-Squares Minimization with Bounds and Constraints License: MIT AND BSD-3-Clause URL: https://lmfit.github.io/lmfit-py/ Source: https://files.pythonhosted.org/packages/source/l/lmfit/lmfit-%{version}.tar.gz BuildRequires: %{python_module setuptools} BuildRequires: fdupes BuildRequires: python-rpm-macros Requires: python-asteval >= 0.9.21 Requires: python-numpy >= 1.18 Requires: python-scipy >= 1.3 Recommends: python-dill Recommends: python-emcee Recommends: python-matplotlib Recommends: python-pandas Recommends: python-uncertainties >= 3.0.1 BuildArch: noarch # SECTION test requirements BuildRequires: %{python_module asteval >= 0.9.21} BuildRequires: %{python_module numpy >= 1.18} BuildRequires: %{python_module pytest} BuildRequires: %{python_module scipy >= 1.3} BuildRequires: %{python_module uncertainties >= 3.0.1} # /SECTION %python_subpackages %description A library for least-squares minimization and data fitting in Python. Built on top of scipy.optimize, lmfit provides a Parameter object which can be set as fixed or free, can have upper and/or lower bounds, or can be written in terms of algebraic constraints of other Parameters. The user writes a function to be minimized as a function of these Parameters, and the scipy.optimize methods are used to find the optimal values for the Parameters. The Levenberg-Marquardt (leastsq) is the default minimization algorithm, and provides estimated standard errors and correlations between varied Parameters. Other minimization methods, including Nelder-Mead's downhill simplex, Powell's method, BFGS, Sequential Least Squares, and others are also supported. Bounds and constraints can be placed on Parameters for all of these methods. In addition, methods for explicitly calculating confidence intervals are provided for exploring minmization problems where the approximation of estimating Parameter uncertainties from the covariance matrix is questionable. %prep %setup -q -n lmfit-%{version} sed -i -e '/^#!\//, 1d' lmfit/jsonutils.py %build %python_build %install %python_install %python_expand %fdupes %{buildroot}%{$python_sitelib} %check %{python_exec -c "import sys, lmfit, numpy, scipy, asteval, uncertainties, six; print('Python: {}\n\n' 'lmfit: {}, scipy: {}, numpy: {}, asteval: {}, uncertainties: {}, six: {}'.format( sys.version, lmfit.__version__, scipy.__version__, numpy.__version__, asteval.__version__, uncertainties.__version__, six.__version__))"} cat << 'EOF' >> testexample.py import numpy as np import lmfit from lmfit.lineshapes import gaussian from lmfit.models import PseudoVoigtModel x = np.linspace(0, 10, 201) np.random.seed(0) y = gaussian(x, 10.0, 6.15, 0.8) y += gaussian(x, 8.0, 6.35, 1.1) y += gaussian(x, 0.25, 6.00, 7.5) y += np.random.normal(size=len(x), scale=0.5) # with NaN values in the input data y[55] = y[91] = np.nan mod = PseudoVoigtModel() params = mod.make_params(amplitude=20, center=5.5, sigma=1, fraction=0.25) params['fraction'].vary = False # with propagate, should get no error, but bad results result = mod.fit(y, params, x=x, nan_policy='propagate') lmfit.report_fit(result) print(result.__dict__) EOF cat testexample.py %python_exec testexample.py # We don't care about speed, and test_itercb is architecture-specific # test_model_nan_policy - fails on non x86_64 # test_shgo_scipy_vs_lmfit_2 - fails on non x86_64 %pytest -k 'not speed and not (test_model_nan_policy or test_shgo_scipy_vs_lmfit_2)' %files %{python_files} %doc README.rst THANKS.txt %license LICENSE %{python_sitelib}/lmfit %{python_sitelib}/lmfit-%{version}*-info %changelog