forked from pool/python-lmfit
Matej Cepl
3ead3c1698
- Update to v1.0.3 **Potentially breaking change:** * argument ``x`` is now required for the ``guess`` method of Models (Issue #747; PR #748) To get reasonable estimates for starting values one should always supply both ``x`` and ``y`` values; in some cases it would work when only providing ``data`` (i.e., y-values). With the change above, ``x`` is now required in the ``guess`` method call, so scripts might need to be updated to explicitly supply ``x``. **Bug fixes/enhancements:** * do not overwrite user-specified figure titles in Model.plot() functions and allow setting with ``title`` keyword argument (PR #711) * preserve Parameters subclass in deepcopy (@jenshnielsen; PR #719) * coerce ``data`` and ``indepdent_vars`` to NumPy array with ``dtype=float64`` or ``dtype=complex128`` where applicable (Issues #723 and #728) * fix collision between parameter names in built-in models and user-specified parameters (Issue #710 and PR #732) * correct error message in PolynomialModel (@kremeyer; PR #737) * improved handling of altered JSON data (Issue #739; PR #740, reported by Matthew Giammar) * map ``max_nfev`` to ``maxiter`` when using ``differential_evolution`` (PR #749, reported by Olivier B.) * correct use of noise versus experimental uncertainty in the documentation (PR #751, reported by Andrés Zelcer) * specify return type of ``eval`` method more precisely and allow for plotting of (Complex)ConstantModel by coercing their OBS-URL: https://build.opensuse.org/request/show/942992 OBS-URL: https://build.opensuse.org/package/show/devel:languages:python:numeric/python-lmfit?expand=0&rev=6
145 lines
4.7 KiB
RPMSpec
145 lines
4.7 KiB
RPMSpec
#
|
|
# spec file for package python-lmfit
|
|
#
|
|
# Copyright (c) 2021 SUSE LLC
|
|
#
|
|
# All modifications and additions to the file contributed by third parties
|
|
# remain the property of their copyright owners, unless otherwise agreed
|
|
# upon. The license for this file, and modifications and additions to the
|
|
# file, is the same license as for the pristine package itself (unless the
|
|
# license for the pristine package is not an Open Source License, in which
|
|
# case the license is the MIT License). An "Open Source License" is a
|
|
# license that conforms to the Open Source Definition (Version 1.9)
|
|
# published by the Open Source Initiative.
|
|
|
|
# Please submit bugfixes or comments via https://bugs.opensuse.org/
|
|
#
|
|
|
|
|
|
%{?!python_module:%define python_module() python3-%{**}}
|
|
%define skip_python2 1
|
|
%define skip_python36 1
|
|
Name: python-lmfit
|
|
Version: 1.0.3
|
|
Release: 0
|
|
Summary: Least-Squares Minimization with Bounds and Constraints
|
|
License: BSD-3-Clause AND MIT
|
|
URL: https://lmfit.github.io/lmfit-py/
|
|
Source: https://files.pythonhosted.org/packages/source/l/lmfit/lmfit-%{version}.tar.gz
|
|
BuildRequires: %{python_module setuptools_scm}
|
|
BuildRequires: %{python_module setuptools}
|
|
BuildRequires: fdupes
|
|
BuildRequires: python-rpm-macros
|
|
Requires: python-asteval >= 0.9.22
|
|
Requires: python-numpy >= 1.18
|
|
Requires: python-scipy >= 1.3
|
|
Recommends: python-dill
|
|
Recommends: python-emcee
|
|
Recommends: python-matplotlib
|
|
Recommends: python-pandas
|
|
Recommends: python-uncertainties >= 3.0.1
|
|
BuildArch: noarch
|
|
# SECTION test requirements
|
|
BuildRequires: %{python_module asteval >= 0.9.22}
|
|
BuildRequires: %{python_module numpy >= 1.18}
|
|
BuildRequires: %{python_module pytest}
|
|
BuildRequires: %{python_module scipy >= 1.4}
|
|
BuildRequires: %{python_module uncertainties >= 3.0.1}
|
|
# /SECTION
|
|
%python_subpackages
|
|
|
|
%description
|
|
A library for least-squares minimization and data fitting in
|
|
Python. Built on top of scipy.optimize, lmfit provides a Parameter object
|
|
which can be set as fixed or free, can have upper and/or lower bounds, or
|
|
can be written in terms of algebraic constraints of other Parameters. The
|
|
user writes a function to be minimized as a function of these Parameters,
|
|
and the scipy.optimize methods are used to find the optimal values for the
|
|
Parameters. The Levenberg-Marquardt (leastsq) is the default minimization
|
|
algorithm, and provides estimated standard errors and correlations between
|
|
varied Parameters. Other minimization methods, including Nelder-Mead's
|
|
downhill simplex, Powell's method, BFGS, Sequential Least Squares, and
|
|
others are also supported. Bounds and constraints can be placed on
|
|
Parameters for all of these methods.
|
|
|
|
In addition, methods for explicitly calculating confidence intervals are
|
|
provided for exploring minmization problems where the approximation of
|
|
estimating Parameter uncertainties from the covariance matrix is
|
|
questionable.
|
|
|
|
%prep
|
|
%setup -q -n lmfit-%{version}
|
|
sed -i -e '/^#!\//, 1d' lmfit/jsonutils.py
|
|
# only coverage related pytest flags here. remove
|
|
sed -i '/addopts/d' setup.cfg
|
|
|
|
%build
|
|
%python_build
|
|
|
|
%install
|
|
%python_install
|
|
%python_expand %fdupes %{buildroot}%{$python_sitelib}
|
|
|
|
%check
|
|
%{python_exec -c "import sys, lmfit, numpy, scipy, asteval, uncertainties;
|
|
print('Python: {}\n\n'
|
|
'lmfit: {}, scipy: {}, numpy: {}, asteval: {}, uncertainties: {}'.format(
|
|
sys.version,
|
|
lmfit.__version__,
|
|
scipy.__version__,
|
|
numpy.__version__,
|
|
asteval.__version__,
|
|
uncertainties.__version__
|
|
))"}
|
|
|
|
cat << 'EOF' >> testexample.py
|
|
import numpy as np
|
|
|
|
import lmfit
|
|
from lmfit.lineshapes import gaussian
|
|
from lmfit.models import PseudoVoigtModel
|
|
|
|
x = np.linspace(0, 10, 201)
|
|
np.random.seed(0)
|
|
y = gaussian(x, 10.0, 6.15, 0.8)
|
|
y += gaussian(x, 8.0, 6.35, 1.1)
|
|
y += gaussian(x, 0.25, 6.00, 7.5)
|
|
y += np.random.normal(size=len(x), scale=0.5)
|
|
|
|
# with NaN values in the input data
|
|
y[55] = y[91] = np.nan
|
|
mod = PseudoVoigtModel()
|
|
params = mod.make_params(amplitude=20, center=5.5,
|
|
sigma=1, fraction=0.25)
|
|
params['fraction'].vary = False
|
|
|
|
# with propagate, should get no error, but bad results
|
|
result = mod.fit(y, params, x=x, nan_policy='propagate')
|
|
lmfit.report_fit(result)
|
|
|
|
print(result.__dict__)
|
|
EOF
|
|
|
|
cat testexample.py
|
|
|
|
%python_exec testexample.py
|
|
|
|
# We don't care about speed
|
|
donttest="speed"
|
|
# these tests fail on non x86_64. Upstream does not care: https://github.com/lmfit/lmfit-py/issues/692
|
|
donttest+=" or test_model_nan_policy"
|
|
donttest+=" or test_shgo_scipy_vs_lmfit_2"
|
|
# fails on 32-bit
|
|
if [ $(getconf LONG_BIT) -ne 64 ]; then
|
|
donttest+=" or (test_itercb_minimizer_class and leastsq and False)"
|
|
fi
|
|
%pytest -k "not ($donttest)"
|
|
|
|
%files %{python_files}
|
|
%doc README.rst THANKS.txt
|
|
%license LICENSE
|
|
%{python_sitelib}/lmfit
|
|
%{python_sitelib}/lmfit-%{version}*-info
|
|
|
|
%changelog
|