forked from pool/python-lmfit
c391a04316
OBS-URL: https://build.opensuse.org/package/show/devel:languages:python:numeric/python-lmfit?expand=0&rev=2
126 lines
4.4 KiB
Python
126 lines
4.4 KiB
Python
#
|
|
# spec file for package python-lmfit
|
|
#
|
|
# Copyright (c) 2020 SUSE LLC.
|
|
#
|
|
# All modifications and additions to the file contributed by third parties
|
|
# remain the property of their copyright owners, unless otherwise agreed
|
|
# upon. The license for this file, and modifications and additions to the
|
|
# file, is the same license as for the pristine package itself (unless the
|
|
# license for the pristine package is not an Open Source License, in which
|
|
# case the license is the MIT License). An "Open Source License" is a
|
|
# license that conforms to the Open Source Definition (Version 1.9)
|
|
# published by the Open Source Initiative.
|
|
|
|
# Please submit bugfixes or comments via https://bugs.opensuse.org/
|
|
#
|
|
|
|
|
|
%{?!python_module:%define python_module() python-%{**} python3-%{**}}
|
|
%define skip_python2 1
|
|
Name: python-lmfit
|
|
Version: 1.0.1
|
|
Release: 0
|
|
Summary: Least-Squares Minimization with Bounds and Constraints
|
|
License: MIT AND BSD-3-Clause
|
|
URL: https://lmfit.github.io/lmfit-py/
|
|
Source: https://files.pythonhosted.org/packages/source/l/lmfit/lmfit-%{version}.tar.gz
|
|
BuildRequires: %{python_module setuptools}
|
|
BuildRequires: fdupes
|
|
BuildRequires: python-rpm-macros
|
|
Requires: python-asteval >= 0.9.16
|
|
Requires: python-numpy >= 1.16
|
|
Requires: python-scipy >= 1.2
|
|
Recommends: python-dill
|
|
Recommends: python-emcee
|
|
Recommends: python-matplotlib
|
|
Recommends: python-pandas
|
|
Recommends: python-uncertainties >= 3.0.1
|
|
BuildArch: noarch
|
|
# SECTION test requirements
|
|
BuildRequires: %{python_module asteval >= 0.9.16}
|
|
BuildRequires: %{python_module numpy >= 1.16}
|
|
BuildRequires: %{python_module pytest}
|
|
BuildRequires: %{python_module scipy >= 1.2}
|
|
BuildRequires: %{python_module uncertainties >= 3.0.1}
|
|
# /SECTION
|
|
%python_subpackages
|
|
|
|
%description
|
|
A library for least-squares minimization and data fitting in
|
|
Python. Built on top of scipy.optimize, lmfit provides a Parameter object
|
|
which can be set as fixed or free, can have upper and/or lower bounds, or
|
|
can be written in terms of algebraic constraints of other Parameters. The
|
|
user writes a function to be minimized as a function of these Parameters,
|
|
and the scipy.optimize methods are used to find the optimal values for the
|
|
Parameters. The Levenberg-Marquardt (leastsq) is the default minimization
|
|
algorithm, and provides estimated standard errors and correlations between
|
|
varied Parameters. Other minimization methods, including Nelder-Mead's
|
|
downhill simplex, Powell's method, BFGS, Sequential Least Squares, and
|
|
others are also supported. Bounds and constraints can be placed on
|
|
Parameters for all of these methods.
|
|
|
|
In addition, methods for explicitly calculating confidence intervals are
|
|
provided for exploring minmization problems where the approximation of
|
|
estimating Parameter uncertainties from the covariance matrix is
|
|
questionable.
|
|
|
|
%prep
|
|
%setup -q -n lmfit-%{version}
|
|
sed -i -e '/^#!\//, 1d' lmfit/jsonutils.py
|
|
|
|
%build
|
|
%python_build
|
|
|
|
%install
|
|
%python_install
|
|
%python_expand %fdupes %{buildroot}%{$python_sitelib}
|
|
|
|
%check
|
|
python3 -c "import sys, lmfit, numpy, scipy, asteval, uncertainties, six;print('Python: {}\n\nlmfit: {}, scipy: {}, numpy: {}, asteval: {}, uncertainties: {}, six: {}'.format(sys.version, lmfit.__version__, scipy.__version__, numpy.__version__, asteval.__version__, uncertainties.__version__, six.__version__))"
|
|
|
|
cat << 'EOF' >> testexample.py
|
|
import numpy as np
|
|
|
|
import lmfit
|
|
from lmfit.lineshapes import gaussian
|
|
from lmfit.models import PseudoVoigtModel
|
|
|
|
x = np.linspace(0, 10, 201)
|
|
np.random.seed(0)
|
|
y = gaussian(x, 10.0, 6.15, 0.8)
|
|
y += gaussian(x, 8.0, 6.35, 1.1)
|
|
y += gaussian(x, 0.25, 6.00, 7.5)
|
|
y += np.random.normal(size=len(x), scale=0.5)
|
|
|
|
# with NaN values in the input data
|
|
y[55] = y[91] = np.nan
|
|
mod = PseudoVoigtModel()
|
|
params = mod.make_params(amplitude=20, center=5.5,
|
|
sigma=1, fraction=0.25)
|
|
params['fraction'].vary = False
|
|
|
|
# with propagate, should get no error, but bad results
|
|
result = mod.fit(y, params, x=x, nan_policy='propagate')
|
|
lmfit.report_fit(result)
|
|
|
|
print(result.__dict__)
|
|
EOF
|
|
|
|
cat testexample.py
|
|
|
|
python3 testexample.py
|
|
|
|
|
|
# We don't care about speed, and test_itercb is architecture-specific
|
|
# test_model_nan_policy - fails on non x86_64
|
|
# test_shgo_scipy_vs_lmfit_2 - fails on non x86_64
|
|
%pytest -k 'not speed and not (test_model_nan_policy or test_shgo_scipy_vs_lmfit_2)'
|
|
|
|
%files %{python_files}
|
|
%doc README.rst THANKS.txt
|
|
%license LICENSE
|
|
%{python_sitelib}/*
|
|
|
|
%changelog
|