1
0
python-matplotlib/0002-Dont-modify-arrays-when-masking-values-for-log.patch
Markéta Machová 1e86cb3b45 Accepting request 904573 from home:alarrosa:branches:devel:languages:python:numeric
- Add patches from upstream to fix an raised exception saying
  "__array__(): takes 1 positional argument but 2 were given"
  and an incompatibility with numpy 1.21.0 (slightly rebased):
  * 0001-FIX-Pillow-asarray-bug.patch
  * 0002-Dont-modify-arrays-when-masking-values-for-log.patch

OBS-URL: https://build.opensuse.org/request/show/904573
OBS-URL: https://build.opensuse.org/package/show/devel:languages:python:numeric/python-matplotlib?expand=0&rev=53
2021-07-07 12:45:05 +00:00

72 lines
2.9 KiB
Diff

From 48eef460e8c861321e6d6a08a86ef0e45a863b59 Mon Sep 17 00:00:00 2001
From: Elliott Sales de Andrade <quantum.analyst@gmail.com>
Date: Thu, 24 Jun 2021 04:11:39 -0400
Subject: [PATCH] Don't modify arrays when masking values for log.
NumPy 1.21.0 fixed a bug with `np.ma.masked_where` where `copy=False`
now modifies the input if it is masked, which we do not want to do.
`np.ma.array` defaults to not copying the data, but copies the mask
(adding the new mask), which is what we wanted with `copy=False`.
---
lib/matplotlib/colors.py | 4 ++--
lib/matplotlib/tests/test_image.py | 28 ++++++++++++++++++++++++++++
2 files changed, 30 insertions(+), 2 deletions(-)
diff --git a/lib/matplotlib/colors.py b/lib/matplotlib/colors.py
index e0c42c5b69d5..0f6bf35dc440 100644
--- a/lib/matplotlib/colors.py
+++ b/lib/matplotlib/colors.py
@@ -1545,11 +1545,11 @@ class LogNorm(Normalize):
def autoscale(self, A):
# docstring inherited.
- super().autoscale(np.ma.masked_less_equal(A, 0, copy=False))
+ super().autoscale(np.ma.array(A, mask=(A <= 0)))
def autoscale_None(self, A):
# docstring inherited.
- super().autoscale_None(np.ma.masked_less_equal(A, 0, copy=False))
+ super().autoscale_None(np.ma.array(A, mask=(A <= 0)))
@_make_norm_from_scale(
diff --git a/lib/matplotlib/tests/test_image.py b/lib/matplotlib/tests/test_image.py
index 42ed7479ae54..0e385ba7a805 100644
--- a/lib/matplotlib/tests/test_image.py
+++ b/lib/matplotlib/tests/test_image.py
@@ -1233,6 +1233,34 @@ def test_imshow_quantitynd():
fig.canvas.draw()
+@check_figures_equal(extensions=['png'])
+def test_norm_change(fig_test, fig_ref):
+ # LogNorm should not mask anything invalid permanently.
+ data = np.full((5, 5), 1, dtype=np.float64)
+ data[0:2, :] = -1
+
+ masked_data = np.ma.array(data, mask=False)
+ masked_data.mask[0:2, 0:2] = True
+
+ cmap = plt.get_cmap('viridis').with_extremes(under='w')
+
+ ax = fig_test.subplots()
+ im = ax.imshow(data, norm=colors.LogNorm(vmin=0.5, vmax=1),
+ extent=(0, 5, 0, 5), interpolation='nearest', cmap=cmap)
+ im.set_norm(colors.Normalize(vmin=-2, vmax=2))
+ im = ax.imshow(masked_data, norm=colors.LogNorm(vmin=0.5, vmax=1),
+ extent=(5, 10, 5, 10), interpolation='nearest', cmap=cmap)
+ im.set_norm(colors.Normalize(vmin=-2, vmax=2))
+ ax.set(xlim=(0, 10), ylim=(0, 10))
+
+ ax = fig_ref.subplots()
+ ax.imshow(data, norm=colors.Normalize(vmin=-2, vmax=2),
+ extent=(0, 5, 0, 5), interpolation='nearest', cmap=cmap)
+ ax.imshow(masked_data, norm=colors.Normalize(vmin=-2, vmax=2),
+ extent=(5, 10, 5, 10), interpolation='nearest', cmap=cmap)
+ ax.set(xlim=(0, 10), ylim=(0, 10))
+
+
@check_figures_equal(extensions=['png'])
def test_huge_range_log(fig_test, fig_ref):
data = np.full((5, 5), -1, dtype=np.float64)